To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Electroconvulsive therapy (ECT) is an effective treatment of severe manifestations of mental illness. Since delay in initiation of ECT can have detrimental effects, prediction of the need for ECT could improve outcomes via more timely treatment initiation. Therefore, this study aimed to predict the need for ECT following admission to a psychiatric hospital.
Methods:
This study was based on electronic health record (EHR) data from routine clinical practice. Adult patients admitted to a hospital within the Psychiatric Services of the Central Denmark Region between January 2013 and November 2021 were included in the study. The outcome was initiation of ECT >7 days (to not include patients admitted for planned ECT) and ≤67 days after admission. The data was randomly split into an 85% training set and a 15% test set. On the 7th day of the inpatient stay, machine learning models (extreme gradient boosting) were trained to predict initiation of ECT and subsequently tested on the test set.
Results:
The cohort consisted of 41,610 patients with 164,961 admissions. In the held out test set, the trained model predicted ECT initiation with an area under the receiver operating characteristic curve of 0.94, 47% sensitivity, 98% specificity, positive predictive value of 24% and negative predictive value of 99%. The top predictors were the highest suicide assessment score and mean Brøset violence checklist score in the preceding three months.
Conclusions:
EHR data from routine clinical practice may be used to predict need for ECT. This may lead to more timely treatment initiation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.