Let  $A \subseteq \{0,1\}^n$ be a set of size
$A \subseteq \{0,1\}^n$ be a set of size  $2^{n-1}$, and let
$2^{n-1}$, and let  $\phi \,:\, \{0,1\}^{n-1} \to A$ be a bijection. We define the average stretch of
$\phi \,:\, \{0,1\}^{n-1} \to A$ be a bijection. We define the average stretch of  $\phi$ as
$\phi$ as \begin{equation*} {\sf avgStretch}(\phi ) = {\mathbb E}[{{\sf dist}}(\phi (x),\phi (x'))], \end{equation*}
\begin{equation*} {\sf avgStretch}(\phi ) = {\mathbb E}[{{\sf dist}}(\phi (x),\phi (x'))], \end{equation*} $x,x' \in \{0,1\}^{n-1}$ that differ in exactly one coordinate.
$x,x' \in \{0,1\}^{n-1}$ that differ in exactly one coordinate.
In this paper, we continue the line of research studying mappings on the discrete hypercube with small average stretch. We prove the following results.
- For any set  $A \subseteq \{0,1\}^n$ of density $A \subseteq \{0,1\}^n$ of density $1/2$ there exists a bijection $1/2$ there exists a bijection $\phi _A \,:\, \{0,1\}^{n-1} \to A$ such that $\phi _A \,:\, \{0,1\}^{n-1} \to A$ such that ${\sf avgStretch}(\phi _A) = O\left(\sqrt{n}\right)$. ${\sf avgStretch}(\phi _A) = O\left(\sqrt{n}\right)$.
 
- For  $n = 3^k$ let $n = 3^k$ let ${A_{\textsf{rec-maj}}} = \{x \in \{0,1\}^n \,:\,{\textsf{rec-maj}}(x) = 1\}$, where ${A_{\textsf{rec-maj}}} = \{x \in \{0,1\}^n \,:\,{\textsf{rec-maj}}(x) = 1\}$, where ${\textsf{rec-maj}} \,:\, \{0,1\}^n \to \{0,1\}$ is the function recursive majority of 3’s. There exists a bijection ${\textsf{rec-maj}} \,:\, \{0,1\}^n \to \{0,1\}$ is the function recursive majority of 3’s. There exists a bijection $\phi _{{\textsf{rec-maj}}} \,:\, \{0,1\}^{n-1} \to{A_{\textsf{rec-maj}}}$ such that $\phi _{{\textsf{rec-maj}}} \,:\, \{0,1\}^{n-1} \to{A_{\textsf{rec-maj}}}$ such that ${\sf avgStretch}(\phi _{{\textsf{rec-maj}}}) = O(1)$. ${\sf avgStretch}(\phi _{{\textsf{rec-maj}}}) = O(1)$.
 
- Let  ${A_{{\sf tribes}}} = \{x \in \{0,1\}^n \,:\,{\sf tribes}(x) = 1\}$. There exists a bijection ${A_{{\sf tribes}}} = \{x \in \{0,1\}^n \,:\,{\sf tribes}(x) = 1\}$. There exists a bijection $\phi _{{\sf tribes}} \,:\, \{0,1\}^{n-1} \to{A_{{\sf tribes}}}$ such that $\phi _{{\sf tribes}} \,:\, \{0,1\}^{n-1} \to{A_{{\sf tribes}}}$ such that ${\sf avgStretch}(\phi _{{\sf tribes}}) = O(\!\log (n))$. ${\sf avgStretch}(\phi _{{\sf tribes}}) = O(\!\log (n))$.
 
These results answer the questions raised by Benjamini, Cohen, and Shinkar (Isr. J. Math 2016).