Let   $D$  be a connected bounded domain in
 $D$  be a connected bounded domain in   ${{\mathbb{R}}^{n}}$ . Let
 ${{\mathbb{R}}^{n}}$ . Let   $0\,<\,{{\mu }_{1}}\,\le \,{{\mu }_{2}}\,\le \,\cdots \,\le \,{{\mu }_{k}}\,\le \,\cdots $  be the eigenvalues of the following Dirichlet problem:
 $0\,<\,{{\mu }_{1}}\,\le \,{{\mu }_{2}}\,\le \,\cdots \,\le \,{{\mu }_{k}}\,\le \,\cdots $  be the eigenvalues of the following Dirichlet problem:
   $$\left\{ \begin{align}& {{\Delta }^{2}}u(x)\,+\,V(x)u(x)\,=\,\mu \rho (x)u(x),x\in \,D \\& u{{|}_{\partial D}}\,=\,\frac{\partial u}{\partial n}\,{{|}_{\partial D}}\,=\,0, \\ \end{align} \right.$$
 $$\left\{ \begin{align}& {{\Delta }^{2}}u(x)\,+\,V(x)u(x)\,=\,\mu \rho (x)u(x),x\in \,D \\& u{{|}_{\partial D}}\,=\,\frac{\partial u}{\partial n}\,{{|}_{\partial D}}\,=\,0, \\ \end{align} \right.$$  
where   $V(x)$  is a nonnegative potential, and
 $V(x)$  is a nonnegative potential, and   $\rho (x)\,\in \,C(\overset{-}{\mathop{D}}\,)$  is positive. We prove the following inequalities:
 $\rho (x)\,\in \,C(\overset{-}{\mathop{D}}\,)$  is positive. We prove the following inequalities:
   $$\begin{align}& {{\mu }_{k+1}}\le \frac{1}{k}\sum\limits_{i=1}^{k}{\mu i+}{{[\frac{8(n+2)}{{{n}^{2}}}{{\left( \frac{\rho \max }{\rho \min } \right)}^{2}}]}^{1/2}}\times \frac{1}{k}{{\sum\limits_{i=1}^{k}{[{{\mu }_{i}}({{\mu }_{k+1}}-{{\mu }_{i}})]}}^{1/2}}, \\& \frac{{{n}^{2}}{{k}^{2}}}{8(n+2)}\le {{\left( \frac{\rho \max }{\rho \min } \right)}^{2}}[\sum\limits_{i=1}^{k}{\frac{\mu _{i}^{1/2}}{{{\mu }_{k+1}}-{{\mu }_{i}}}}]\times \sum\limits_{i=1}^{k}{\mu _{i}^{1/2}}. \\ \end{align}$$
 $$\begin{align}& {{\mu }_{k+1}}\le \frac{1}{k}\sum\limits_{i=1}^{k}{\mu i+}{{[\frac{8(n+2)}{{{n}^{2}}}{{\left( \frac{\rho \max }{\rho \min } \right)}^{2}}]}^{1/2}}\times \frac{1}{k}{{\sum\limits_{i=1}^{k}{[{{\mu }_{i}}({{\mu }_{k+1}}-{{\mu }_{i}})]}}^{1/2}}, \\& \frac{{{n}^{2}}{{k}^{2}}}{8(n+2)}\le {{\left( \frac{\rho \max }{\rho \min } \right)}^{2}}[\sum\limits_{i=1}^{k}{\frac{\mu _{i}^{1/2}}{{{\mu }_{k+1}}-{{\mu }_{i}}}}]\times \sum\limits_{i=1}^{k}{\mu _{i}^{1/2}}. \\ \end{align}$$