We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we introduce the field of reinforcement learning and some of its most prominent applications in quantum physics and computing. First, we provide an intuitive description of the main concepts, which we then formalize mathematically. We introduce some of the most widely used reinforcement learning algorithms. Starting with temporal-difference algorithms and Q-learning, followed by policy gradient methods and REINFORCE, and the interplay of both approaches in actor-critic algorithms. Furthermore, we introduce the projective simulation algorithm, which deviates from the aforementioned prototypical approaches and has multiple applications in the field of physics. Then, we showcase some prominent reinforcement learning applications, featuring some examples in games; quantum feedback control; quantum computing, error correction and information; and the design of quantum experiments. Finally, we discuss some potential applications and limitations of reinforcement learning in the field of quantum physics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.