Preface
Published online by Cambridge University Press: 10 November 2009
Summary
General relativity is the flagship of applied mathematics. Although from its inception this has been regarded as an extraordinarily difficult theory, it is in fact the simplest theory to consummate the union of special relativity and Newtonian gravity. Einstein's ‘popular articles’ set a high standard which is now emulated by many in the range of introductory textbooks. Having mastered one of these the new reader is recommended to move next to one of the more specialized monographs, e.g. Chandrasekhar, 1983, Kramer et al., 1980, before considering review anthologies such as Einstein (centenary), Hawking and Israel, 1979, Held, 1980 and Newton (tercentenary), Hawking and Israel, 1987. As plausible gravitational wave detectors come on line in the next decade (or two) interest will focus on gravitational radiation from isolated sources, e.g., a collapsing star or a binary system including one, and I have therefore chosen to concentrate in this book on the theoretical background to this topic.
The material for the first three chapters is based on my lecture courses for graduate students. The first chapter of this book presents an account of local differential geometry for the benefit of the beginner and as a reminder of notation for more experienced readers. Chapter 2 is devoted to two-component spinors which give a representation of the Lorentz group appropriate for the description of gravitational radiation. (The relationship to the more common Dirac four-component spinors is discussed in an appendix.) Far from an isolated gravitating object one might expect spacetime to become asymptotically Minkowskian, so that the description of the gravitational field would be especially simple.
- Type
- Chapter
- Information
- Advanced General Relativity , pp. vii - viiiPublisher: Cambridge University PressPrint publication year: 1991