Book contents
- Frontmatter
- Contents
- List of Figures
- List of Tables
- Preface
- Acknowledgements
- Abbreviations
- Nomenclature
- 1 Introduction to Aircraft Aerodynamic Design
- 2 Airflow Physics and Mathematical Models
- 3 Concepts and Computational Models in Wing Design
- 4 Finite-Volume Schemes for the Euler Equations
- 5 Airframe Computer-Aided Design and Automated Grid Generation
- 6 Computational Fluid Dynamics for Steady and Unsteady Flows
- 7 Fast Computation of Airfoil Flow
- 8 Airfoil Design Considerations
- 9 Wing Design Considerations
- 10 Configuration Development and Flying Qualities
- 11 Airload–Structure Interactions and Aero–Elastic Effects
- Index
1 - Introduction to Aircraft Aerodynamic Design
Published online by Cambridge University Press: 30 April 2021
- Frontmatter
- Contents
- List of Figures
- List of Tables
- Preface
- Acknowledgements
- Abbreviations
- Nomenclature
- 1 Introduction to Aircraft Aerodynamic Design
- 2 Airflow Physics and Mathematical Models
- 3 Concepts and Computational Models in Wing Design
- 4 Finite-Volume Schemes for the Euler Equations
- 5 Airframe Computer-Aided Design and Automated Grid Generation
- 6 Computational Fluid Dynamics for Steady and Unsteady Flows
- 7 Fast Computation of Airfoil Flow
- 8 Airfoil Design Considerations
- 9 Wing Design Considerations
- 10 Configuration Development and Flying Qualities
- 11 Airload–Structure Interactions and Aero–Elastic Effects
- Index
Summary
The prime focus of aerodynamic design is the shaping and layout of the aircraft's lifting surfaces. Introducing the subject matter of the book, this chapter also conveys some appreciation for, and fundamental insight into, how and why wings evolve into the configurations we see flying. Typical of the development process is that the new aircraft evolves in a succession of design cycles. This chapter describes three early design cycles. As Theodore von Karman implies, creativity lies at the heart of any engineering activity. Belonging to the cognitive aspects of the human brain, creativity is not in the realm of technology, but we indicate how and where it enters into the design process and encourage students to "think outside the box." The fundamental aerodynamic quantities of lift and drag are key to performance. Sizing the wing surface to the design mission is a crucial step in determining the baseline configuration, which then develops further in cycles 2 and 3. The chapter introduces the tools, tasks, and workflows of the three design cycles, explains how computational fluid dynamics and optimization procedures are involved, and maps out where in the coming chapters each of these is treated in depth.
Keywords
- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2021