Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T09:46:18.518Z Has data issue: false hasContentIssue false

Chapter 6 - Limbic Encephalitis

from Section 3 - Specific Syndromes and Diseases

Published online by Cambridge University Press:  27 January 2022

Josep Dalmau
Affiliation:
Universitat de Barcelona
Francesc Graus
Affiliation:
Universitat de Barcelona
Get access

Summary

Limbic encephalitis is characterized by the subacute onset, usually <3 months, of memory and cognitive deficits, behavioural changes, and seizures. The most typical deficit is impairment of short-term memory. Brain MRI shows FLAIR and T2 signal abnormalities involving bilaterally, less frequently unilaterally, the hippocampus and amygdala. Limbic encephalitis was initially considered a paraneoplastic syndrome, but after the discovery of several immunological subtypes we now know that >60% of cases are non-paraneoplastic and usually associated to LGI1 antibodies. Paraneoplastic limbic encephalitis mainly associates with small-cell lung cancer and Hu or GABAbR antibodies, testicular seminoma and Ma2 antibodies, Hodgkin disease and mGluR5 antibodies, and thymoma and AMPAR antibodies. Limbic encephalitis may be triggered by treatment of cancer with immune checkpoint inhibitors. The response to immunotherapy and outcome vary according to the type of antibody and presence or absence of an underlying tumour. In patients with antibodies against intracellular antigens (onconeural, AK5), immunotherapy is usually ineffective. In contrast, most patients with LGI1 antibodies show substantial improvement after treatment with steroids and immunotherapy. Patients with cancer and GABAbR or AMPAR antibodies respond better to treatment than those with the same type of cancer and onconeural antibodies, and worse than those of patients with LGI antibodies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391404.CrossRefGoogle ScholarPubMed
Rolls, ET. Limbic systems for emotion and for memory, but no single limbic system. Cortex 2015;62:119157.Google Scholar
Dalmau, J, Graus, F. Antibody-mediated encephalitis. N Engl J Med 2018;378:840851.CrossRefGoogle ScholarPubMed
Ehling, P, Melzer, N, Budde, T, Meuth, SG. CD8(+) T cell-mediated neuronal dysfunction and degeneration in limbic encephalitis. Front Neurol 2015;6:163.CrossRefGoogle ScholarPubMed
Bien, CG, Vincent, A, Barnett, MH, et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 2012;135:16221638.Google Scholar
Dubey, D, Pittock, SJ, Kelly, CR, et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol 2018;83:166177.Google Scholar
Gultekin, SH, Rosenfeld, MR, Voltz, R, et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain 2000;123(Pt 7):14811494.Google Scholar
Graus, F, Escudero, D, Oleaga, L, et al. Syndrome and outcome of antibody-negative limbic encephalitis. Eur J Neurol 2018;25:10111016.Google Scholar
Kasper, BS, Taylor, DC, Janz, D, et al. Neuropathology of epilepsy and psychosis: the contributions of J.A.N. Corsellis. Brain 2010;133:37953805.Google Scholar
Brierley, JB, Corsellis, JAN, Hierons, R, et al. Subacute encephalitis of later adult life: mainly affecting the limbic areas. Brain 1960;83:357368.Google Scholar
Henson, RA, Hoffman, HL, Urich, H. Encephalomyelitis with carcinoma. Brain 1965;88:449464.CrossRefGoogle ScholarPubMed
Brain, WR, Norris, FH. The Remote Effects of Cancer on the Nervous System. New York: Grune and Stratton, 1965.Google Scholar
Corsellis, JA, Goldberg, GJ, Norton, AR. ‘Limbic encephalitis’ and its association with carcinoma. Brain 1968;91:481496.CrossRefGoogle ScholarPubMed
Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 39–1988: a 76-year-old man with confusion, agitation, and a gait disorder. N Engl J Med 1988;319:849860.Google Scholar
Dalmau, J, Graus, F, Rosenblum, MK, Posner, JB. Anti-Hu–associated paraneoplastic encephalomyelitis/sensory neuronopathy: a clinical study of 71 patients. Medicine (Baltimore) 1992;71:5972.CrossRefGoogle ScholarPubMed
Graus, F, Elkon, KB, Cordon-Cardo, C, Posner, JB. Sensory neuronopathy and small cell lung cancer. Antineuronal antibody that also reacts with the tumor. Am J Med 1986;80:4552.CrossRefGoogle ScholarPubMed
Alamowitch, S, Graus, F, Uchuya, M, et al. Limbic encephalitis and small cell lung cancer: clinical and immunological features. Brain 1997;120:923928.CrossRefGoogle ScholarPubMed
Buckley, C, Oger, J, Clover, L, et al. Potassium channel antibodies in two patients with reversible limbic encephalitis. Ann Neurol 2001;50:7378.CrossRefGoogle ScholarPubMed
Lai, M, Huijbers, MG, Lancaster, E, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 2010;9:776785.CrossRefGoogle ScholarPubMed
Irani, SR, Alexander, S, Waters, P, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 2010;133:27342748.Google Scholar
Dalmau, J, Geis, C, Graus, F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev 2017;97:839887.CrossRefGoogle ScholarPubMed
Lai, M, Hughes, EG, Peng, X, et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol 2009;65:424434.Google Scholar
Lancaster, E, Lai, M, Peng, X, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 2010;9:6776.CrossRefGoogle Scholar
Nokura, K, Yamamoto, H, Okawara, Y, et al. Reversible limbic encephalitis caused by ovarian teratoma. Acta Neurol Scand 1997;95:367373.Google Scholar
Rajappa, S, Digumarti, R, Immaneni, SR, Parage, M. Primary renal lymphoma presenting with paraneoplastic limbic encephalitis. J Clin Oncol 2007;25:37833785.Google Scholar
Bien, CG, Urbach, H, Schramm, J, et al. Limbic encephalitis as a precipitating event in adult-onset temporal lobe epilepsy. Neurology 2007;69:12361244.CrossRefGoogle ScholarPubMed
Gultekin, HS, Rosenfeld, MR, Voltz, RD, et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumor association in 50 patients. Brain 2000;123:14811494.CrossRefGoogle ScholarPubMed
Graus, F, Delattre, JY, Antoine, JC, et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry 2004;75:11351140.Google Scholar
Newman, NJ, Bell, IR, McKee, AC. Paraneoplastic limbic encephalitis: neuropsychiatric presentation. Biol Psychiatry 1990;27:529542.Google Scholar
Iranzo, A, Graus, F, Clover, L, et al. Rapid eye movement sleep behavior disorder and potassium channel antibody-associated limbic encephalitis. Ann Neurol 2006;59:178181.Google Scholar
Irani, SR, Michell, AW, Lang, B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69:892900.Google Scholar
Maureille, A, Fenouil, T, Joubert, B, et al. Isolated seizures are a common early feature of paraneoplastic anti-GABAB receptor encephalitis. J Neurol 2019;266:195206.Google Scholar
Harrison, NA, Johnston, K, Corno, F, et al. Psychogenic amnesia: syndromes, outcome, and patterns of retrograde amnesia. Brain 2017;140:24982510.CrossRefGoogle ScholarPubMed
Pertzov, Y, Miller, TD, Gorgoraptis, N, et al. Binding deficits in memory following medial temporal lobe damage in patients with voltage-gated potassium channel complex antibody-associated limbic encephalitis. Brain 2013;136:24742485.Google Scholar
Butler, CR, Miller, TD, Kaur, MS, et al. Persistent anterograde amnesia following limbic encephalitis associated with antibodies to the voltage-gated potassium channel complex. J Neurol Neurosurg Psychiatry 2014;85:387391.Google Scholar
Baddeley, A. Working memory. Science 1992;255:556559.CrossRefGoogle ScholarPubMed
Baddeley, A. The concept of episodic memory. Philos Trans Roy Soc Lond B Biol Sci 2001;356:13451350.Google Scholar
Finke, C, Pruss, H, Heine, J, et al. Evaluation of cognitive deficits and structural hippocampal damage in encephalitis with leucine-rich, glioma-inactivated 1 antibodies. JAMA Neurol 2017;74:5059.Google Scholar
Kayser, MS, Kohler, CG, Dalmau, J. Psychiatric manifestations of paraneoplastic disorders. Am J Psychiatry 2010;167:10391050.Google Scholar
Jang, Y, Lee, ST, Lim, JA, et al. Psychiatric symptoms delay the diagnosis of anti-LGI1 encephalitis. J Neuroimmunol 2018;317:814.Google Scholar
Kayser, MS, Titulaer, MJ, Gresa-Arribas, N, Dalmau, J. Frequency and characteristics of isolated psychiatric episodes in anti-N-methyl-d-aspartate receptor encephalitis. JAMA Neurol 2013;70:11331139.Google Scholar
Hoftberger, R, Titulaer, MJ, Sabater, L, et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology 2013;81:15001506.Google Scholar
Gadoth, A, Pittock, SJ, Dubey, D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol 2017;82:7992.CrossRefGoogle ScholarPubMed
Rocamora, R, Becerra, JL, Fossas, P, et al. Pilomotor seizures: an autonomic semiology of limbic encephalitis? Seizure 2014;23:670673.Google Scholar
Tenyi, D, Bone, B, Horvath, R, et al. Ictal piloerection is associated with high-grade glioma and autoimmune encephalitis: results from a systematic review. Seizure 2019;64:15.CrossRefGoogle ScholarPubMed
Kohler, J, Hufschmidt, A, Hermle, L, Volk, B, Lucking, CH. Limbic encephalitis: two cases. J Neuroimmunol 1988;20:177178.Google Scholar
Lacomis, D, Khoshbin, S, Schick, RM. MR imaging of paraneoplastic limbic encephalitis. J Comput Assist Tomogr 1990;14:115117.CrossRefGoogle ScholarPubMed
Urbach, H, Soeder, BM, Jeub, M, et al. Serial MRI of limbic encephalitis. Neuroradiology 2006;48:380386.Google Scholar
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:18311844.Google Scholar
Dirr, LY, Elster, AD, Donofrio, PD, Smith, M. Evolution of brain MRI abnormalities in limbic encephalitis. Neurology 1990;40:13041306.Google Scholar
Miller, TD, Chong, TT, Aimola Davies, AM, et al. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis. Brain 2017;140:12121219.Google Scholar
Arino, H, Armangue, T, Petit-Pedrol, M, et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016;87:759765.CrossRefGoogle ScholarPubMed
Morbelli, S, Arbizu, J, Booij, J, et al. The need of standardization and of large clinical studies in an emerging indication of [(18)F]FDG PET: the autoimmune encephalitis. Eur J Nucl Med Molec Imag 2017;44:353357.CrossRefGoogle Scholar
Ances, BM, Vitaliani, R, Taylor, RA, et al. Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain 2005;128:17641777.Google Scholar
Baumgartner, A, Rauer, S, Mader, I, Meyer, PT. Cerebral FDG-PET and MRI findings in autoimmune limbic encephalitis: correlation with autoantibody types. J Neurol 2013;260:27442753.Google Scholar
Fakhoury, T, Abou-Khalil, B, Kessler, RM. Limbic encephalitis and hyperactive foci on PET scan. Seizure 1999;8:427431.CrossRefGoogle ScholarPubMed
Salmon, E, Sadzot, B, Maquet, P, Franck, G. Results on coregistration of mediotemporal 18F-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) hyperactivity and 3D magnetic resonance imaging hyperintense lesions in limbic encephalitis. J Neuroimag 2002;12:282.Google Scholar
Scheid, R, Lincke, T, Voltz, R, von Cramon, DY, Sabri, O. Serial 18F-fluoro-2-deoxy-D-glucose positron emission tomography and magnetic resonance imaging of paraneoplastic limbic encephalitis. Arch Neurol 2004;61:17851789.Google Scholar
Henry, TR, Babb, TL, Engel, J Jr., et al. Hippocampal neuronal loss and regional hypometabolism in temporal lobe epilepsy. Ann Neurol 1994;36:925927.Google Scholar
Spatola, M, Stojanova, V, Prior, JO, Dalmau, J, Rossetti, AO. Serial brain (1)(8)FDG-PET in anti-AMPA receptor limbic encephalitis. J Neuroimmunol 2014;271:5355.Google Scholar
Provenzale, JM, Barboriak, DP, Coleman, RE. Limbic encephalitis: comparison of FDG PET and MR imaging findings. AJR Am J Roentgenol 1998;170:16591660.Google Scholar
Kassubek, J, Juengling, FD, Nitzsche, EU, Lucking, CH. Limbic encephalitis investigated by 18FDG-PET and 3D MRI. J Neuroimaging 2001;11:5559.Google Scholar
Na, DL, Hahm, DS, Park, JM, Kim, SE. Hypermetabolism of the medial temporal lobe in limbic encephalitis on (18)FDG-PET scan: a case report. Eur Neurol 2001;45:187189.Google Scholar
Troester, F, Weske, G, Schlaudraff, E, Passlick, B, Kraemer, K. Image of the month. FDG-PET in paraneoplastic limbic encephalitis. Eur J Nucl Med Molec Imag 2009;36:539.Google Scholar
Maffione, AM, Chondrogiannis, S, Ferretti, A, Al-Nahhas, A, Rubello, D. Correlative imaging with (18)F-FDG PET/CT and MRI in paraneoplastic limbic encephalitis. Clin Nucl Med 2013;38:463464.CrossRefGoogle ScholarPubMed
Su, M, Xu, D, Tian, R. (18)F-FDG PET/CT and MRI findings in a patient with anti-GABA(B) receptor encephalitis. Clin Nucl Med 2015;40:515517.Google Scholar
Kim, TJ, Lee, ST, Shin, JW, et al. Clinical manifestations and outcomes of the treatment of patients with GABAB encephalitis. J Neuroimmunol 2014;270:4550.Google Scholar
Cozar Santiago Mdel, P, Sanchez Jurado, R, Sanz Llorens, R, Aguilar Barrios, JE, Ferrer Rebolleda, J. Limbic encephalitis diagnosed with 18F-FDG PET/CT. Clin Nucl Med 2016;41:e101103.Google Scholar
Castagnoli, H, Manni, C, Marchesani, F, et al. The role of 18F-FDG PET/CT in management of paraneoplastic limbic encephalitis combined with small cell lung cancer: a case report. Medicine (Baltimore) 2019;98:e16593.Google Scholar
Taneja, S, Suri, V, Ahuja, A, Jena, A. Simultaneous 18F-FDG PET/MRI in autoimmune limbic encephalitis. Ind J Nucl Med 2018;33:174176.Google Scholar
Deuschl, C, Ruber, T, Ernst, L, et al. 18F-FDG-PET/MRI in the diagnostic work-up of limbic encephalitis. PLoS One 2020;15:e0227906.Google Scholar
Longo, R, Wagner, M, Savenkoff, B, et al. A paraneoplastic limbic encephalitis from an anorectal small cell neuroendocrine carcinoma: a case report. BMC Neurol 2019;19:304.Google Scholar
Rey, C, Koric, L, Guedj, E, et al. Striatal hypermetabolism in limbic encephalitis. J Neurol 2012;259:11061110.Google Scholar
Moloney, P, Boylan, R, Elamin, M, et al. Semi-quantitative analysis of cerebral FDG-PET reveals striatal hypermetabolism and normal cortical metabolism in a case of VGKCC limbic encephalitis. Neuroradiol J 2017;30:160163.Google Scholar
Maeder-Ingvar, M, Prior, JO, Irani, SR, et al. FDG-PET hyperactivity in basal ganglia correlating with clinical course in anti-NDMA-R antibodies encephalitis. J Neurol Neurosurg Psychiatry 2011;82:235236.Google Scholar
Krakauer, M, Law, I FDG PET brain imaging in neuropsychiatric systemic lupus erythematosis with choreic symptoms. Clin Nucl Med 2009;34:122123.Google Scholar
Goldman, S, Amrom, D, Szliwowski, HB Reversible striatalhypermetabolismin a case of Sydenham’s chorea. Mov Disord 1993;8:355358.CrossRefGoogle ScholarPubMed
Psimaras, D, Carpentier, AF, Rossi, C. Cerebrospinal fluid study in paraneoplastic syndromes. J Neurol Neurosurg Psychiatry 2010;81:4245.Google Scholar
Venkatesan, A, Michael, BD, Probasco, JC, Geocadin, RG, Solomon, T. Acute encephalitis in immunocompetent adults. Lancet 2019;393:702716.Google Scholar
Tyler, KL. Acute viral encephalitis. N Engl J Med 2018;379:557566.Google Scholar
Oyanguren, B, Sanchez, V, Gonzalez, FJ, et al. Limbic encephalitis: a clinical-radiological comparison between herpetic and autoimmune etiologies. Eur J Neurol 2013;20:15661570.Google Scholar
Chow, FC, Glaser, CA, Sheriff, H, et al. Use of clinical and neuroimaging characteristics to distinguish temporal lobe herpes simplex encephalitis from its mimics. Clin Infect Dis 2015;60:13771383.Google Scholar
Ward, KN. Child and adult forms of human herpesvirus 6 encephalitis: looking back, looking forward. Curr Opin Neurol 2014;27:349355.Google Scholar
Ongradi, J, Ablashi, DV, Yoshikawa, T, Stercz, B, Ogata, M. Roseolovirus-associated encephalitis in immunocompetent and immunocompromised individuals. J Neurovirol 2017;23:119.Google Scholar
Isaacson, E, Glaser, CA, Forghani, B, et al. Evidence of human herpesvirus 6 infection in 4 immunocompetent patients with encephalitis. Clin Infect Dis 2005;40:890893.Google Scholar
Seeley, WW, Marty, FM, Holmes, TM, et al. Post-transplant acute limbic encephalitis: clinical features and relationship to HHV6. Neurology 2007;69:156165.Google Scholar
Vinnard, C, Barton, T, Jerud, E, Blumberg, E. A report of human herpesvirus 6-associated encephalitis in a solid organ transplant recipient and a review of previously published cases. Liver Transpl 2009;15:12421246.Google Scholar
Bhanushali, MJ, Kranick, SM, Freeman, AF, et al. Human herpes 6 virus encephalitis complicating allogeneic hematopoietic stem cell transplantation. Neurology 2013;80:14941500.Google Scholar
Yilmaz, M, Yasar, C, Aydin, S, et al. Human herpesvirus 6 encephalitis in an immunocompetent pregnant patient and review of the literature. Clin Neurol Neurosurg 2018;171:106108.Google Scholar
Filippova, A, Charles, J, Epaulard, O, et al. Exogenous human herpesvirus 6 reinfection after tumor-infiltrating T-lymphocyte therapy. Cytotherapy 2018;20:521523.Google Scholar
Athauda, D, Delamont, RS, Pablo-Fernandez, ED. High grade glioma mimicking voltage gated potassium channel complex associated antibody limbic encephalitis. Case Rep Neurologic Med 2014;2014:458790.Google Scholar
Vogrig, A, Joubert, B, Ducray, F, et al. Glioblastoma as differential diagnosis of autoimmune encephalitis. J Neurol 2018;265:669677.Google Scholar
Hainsworth, JB, Shishido, A, Theeler, BJ, Carroll, CG, Fasano, RE. Treatment responsive GABA(B)-receptor limbic encephalitis presenting as new-onset super-refractory status epilepticus (NORSE) in a deployed U.S. soldier. Epileptic Disord 2014;16:486493.Google Scholar
Chevret, L, Husson, B, Nguefack, S, Nehlig, A, Bouilleret, V. Prolonged refractory status epilepticus with early and persistent restricted hippocampal signal MRI abnormality. J Neurol 2008;255:112116.Google Scholar
Tien, RD, Felsberg, GJ. The hippocampus in status epilepticus: demonstration of signal intensity and morphologic changes with sequential fast spin-echo MR imaging. Radiology 1995;194:249256.Google Scholar
Chan, S, Chin, SS, Kartha, K, et al. Reversible signal abnormalities in the hippocampus and neocortex after prolonged seizures. Am J Neuroradiol 1996;17:17251731.Google Scholar
Kim, JA, Chung, JI, Yoon, PH, et al. Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging. Am J Neuroradiol 2001;22:11491160.Google Scholar
Budhram, A, Britton, JW, Liebo, GB, et al. Use of diffusion-weighted imaging to distinguish seizure-related change from limbic encephalitis. J Neurol 2020;267:33373342.Google Scholar
Scriven, J, Davies, S, Banerjee, AK, Jenkins, N, Watson, J. Limbic encephalitis secondary to HIV seroconversion. Int J STD AIDS 2011;22:236237.Google Scholar
Blanc, F, Ben Abdelghani, K, Schramm, F, et al. Whipple limbic encephalitis. Arch Neurol 2011;68:14711473.Google Scholar
Scheid, R, Voltz, R, Vetter, T, Sabri, O, von Cramon, DY. Neurosyphilis and paraneoplastic limbic encephalitis: important differential diagnoses. J Neurol 2005;252:11291132.Google Scholar
Derouich, I, Messouak, O, Belahsen, MF. Syphilitic limbic encephalitis revealed by status epilepticus. BMJ Case Rep 2013;2013.Google Scholar
Kano, O, Arasaki, K, Ikeda, K, et al. Limbic encephalitis associated with systemic lupus erythematosus. Lupus 2009;18:13161319.Google Scholar
Finelli, PF, Inoa, V. Limbic encephalitis as the presenting feature of Sjogren syndrome. Neurol Clin Pract 2013;3:165167.Google Scholar
Kumar, N, Leep Hunderfund, AN, Kutzbach, BR, Pulido, JS, Miller, GM. A limbic encephalitis MR imaging in a patient with Behcet disease and relapsing polychondritis. AM J Neuroradiol 2009;30:E96.Google Scholar
Yoneda, M, Fujii, A, Ito, A, et al. High prevalence of serum autoantibodies against the amino terminal of alpha-enolase in Hashimoto’s encephalopathy. J Neuroimmunol 2007;185:195200.Google Scholar
Fujii, A, Yoneda, M, Ito, T, et al. Autoantibodies against the amino terminal of alpha-enolase are a useful diagnostic marker of Hashimoto’s encephalopathy. J Neuroimmunol 2005;162:130136.Google Scholar
Kishitani, T, Matsunaga, A, Ikawa, M, et al. Limbic encephalitis associated with anti-NH2-terminal of alpha-enolase antibodies: a clinical subtype of Hashimoto encephalopathy. Medicine (Baltimore) 2017;96:e6181.Google Scholar
Hayashi, Y, Yamada, M, Kimura, A, et al. Clinical findings of a probable case of MM2-cortical-type sporadic Creutzfeldt-Jakob disease with antibodies to anti-N-terminus of alpha-enolase. Prion 2017;11:454464.CrossRefGoogle ScholarPubMed
Macchi, ZA, Kleinschmidt-DeMasters, BK, Orjuela, KD, et al. Glioblastoma as an autoimmune limbic encephalitis mimic: a case and review of the literature. J Neuroimmunol 2020;342:577214.Google Scholar
Verhelst, H, Van Coster, R, Bockaert, N, et al. Limbic encephalitis as presentation of a SAP deficiency. Neurology 2007;69:218219.Google Scholar
Langheinrich, TC, Romanowski, CA, Wharton, S, Hadjivassiliou, M. Presenilin-1 mutation associated with amnesia, ataxia, and medial temporal lobe T2 signal changes. Neurology 2011;76:14351436.Google Scholar
Goncalves, LF, Debelenko, LV, Bhambhani, KJ, Scheid, A, Altinok, D. Histiocytic necrotizing lymphadenitis (Kikuchi-Fujimoto disease) with CNS involvement in a child. Pediatr Radiol 2014;44:234238.Google Scholar
Graus, F, Keime-Guibert, F, Rene, R, et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain 2001;124:11381148.Google Scholar
Dorresteijn, LD, Kappelle, AC, Renier, WO, Gijtenbeek, JM. Anti-amphiphysin associated limbic encephalitis: a paraneoplastic presentation of small-cell lung carcinoma. J Neurol 2002;249:13071308.Google Scholar
Honnorat, J, Cartalat-Carel, S, Ricard, D, et al. Onco-neural antibodies and tumour type determine survival and neurological symptoms in paraneoplastic neurological syndromes with Hu or CV2/CRMP5 antibodies. J Neurol Neurosurg Psychiatry 2009;80:412416.Google Scholar
Zuliani, L, Saiz, A, Tavolato, B, et al. Paraneoplastic limbic encephalitis associated with potassium channel antibodies: value of anti-glial nuclear antibodies in identifying the tumour. J Neurol Neurosurg Psychiatry 2007;78:204205.Google Scholar
Voltz, R, Gultekin, SH, Rosenfeld, MR, et al. A serologic marker of paraneoplastic limbic and brain-stem encephalitis in patients with testicular cancer [see comments]. N Engl J Med 1999;340:17881795.CrossRefGoogle ScholarPubMed
Kellinghaus, C, Kraus, J, Blaes, F, Nabavi, DG, Schabitz, WR. CRMP-5-autoantibodies in testicular cancer associated with limbic encephalitis and choreiform dyskinesias. Eur Neurol 2007;57:241243.Google Scholar
Hoftberger, R, van Sonderen, A, Leypoldt, F, et al. Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology 2015;84:24032412.Google Scholar
Arino, H, Hoftberger, R, Gresa-Arribas, N, et al. Paraneoplastic neurological syndromes and glutamic acid decarboxylase antibodies. JAMA Neurol 2015;72:874881.Google Scholar
van Sonderen, A, Arino, H, Petit-Pedrol, M, et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 2016;87:521528.Google Scholar
Mitchell, AN, Bakhos, CT, Zimmerman, EA. Anti-Ri-associated paraneoplastic brainstem cerebellar syndrome with coexisting limbic encephalitis in a patient with mixed large cell neuroendocrine lung carcinoma. J Clin Neurosci 2015;22:421423.Google Scholar
Sutton, I, Winer, J, Rowlands, D, Dalmau, J. Limbic encephalitis and antibodies to Ma2: a paraneoplastic presentation of breast cancer. J Neurol Neurosurg Psychiatry 2000;69:266268.Google Scholar
Krishna, VR, Knievel, K, Ladha, S, Sivakumar, K. Lower extremity predominant stiff-person syndrome and limbic encephalitis with amphiphysin antibodies in breast cancer. J Clin Neuromusc Dis 2012;14:7274.CrossRefGoogle ScholarPubMed
Spatola, M, Sabater, L, Planaguma, J, et al. Encephalitis with mGluR5 antibodies: symptoms and antibody effects. Neurology 2018;90:e1964e1972.Google Scholar
Hoffmann, LA, Jarius, S, Pellkofer, HL, et al. Anti-Ma and anti-Ta associated paraneoplastic neurological syndromes: twenty-two newly diagnosed patients and review of previous cases. J Neurol Neurosurg Psychiatry 2008;79:767773.Google Scholar
Graus, F, Delattre, JY, Antoine, JC, et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry 2004;75:11351140.CrossRefGoogle ScholarPubMed
Graus, F, Dalmou, J, Rene, R, et al. Anti-Hu antibodies in patients with small-cell lung cancer: association with complete response to therapy and improved survival. J Clin Oncol 1997;15:28662872.Google Scholar
Yu, Z, Kryzer, TJ, Griesmann, GE, Kim, K, Benarroch, EE, Lennon, VA. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol 2001;49:146154.Google Scholar
Rosenfeld, MR, Eichen, JG, Wade, DF, Posner, JB, Dalmau, J. Molecular and clinical diversity in paraneoplastic immunity to Ma proteins. Ann Neurol 2001;50:339348.Google Scholar
Vogrig, A, Fouret, M, Joubert, B, et al. Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors. Neurol Neuroimmunol Neuroinflamm 2019;6;e604.Google Scholar
Carreno, M, Bien, CG, Asadi-Pooya, AA, et al. Epilepsy surgery in drug resistant temporal lobe epilepsy associated with neuronal antibodies. Epilepsy Res 2017;129:101105.Google Scholar
Engel, J Jr, Van Ness, P, Rasmussen, TB, Ojemann, LM. Outcome with respect to epileptic seizures. In: Engel, J Jr, ed. Surgical Treatment of the Epilepsies, 2nd ed. New York: Raven Press, 1993:609621.Google Scholar
Spatola, M, Dalmau, J. Seizures and risk of epilepsy in autoimmune and other inflammatory encephalitis. Curr Opin Neurol 2017;30:345353.Google Scholar
Hoftberger, R, Titulaer, MJ, Sabater, L, et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology 2013;81:15001506.Google Scholar
McKay, JH, Dimberg, EL, Lopez Chiriboga, AS. A systematic review of gamma-aminobutyric acid receptor type B autoimmunity. Neurologia i neurochirurgia polska 2019;53:17.Google Scholar
van Coevorden-Hameete, MH, de Bruijn, M, de Graaff, E, et al. The expanded clinical spectrum of anti-GABABR encephalitis and added value of KCTD16 autoantibodies. Brain 2019;142:16311643.Google Scholar
Joubert, B, Kerschen, P, Zekeridou, A, et al. Clinical spectrum of encephalitis associated with antibodies against the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor: case series and review of the literature. JAMA Neurol 2015;72:11631169.CrossRefGoogle ScholarPubMed
Graus, F, Boronat, A, Xifro, X, et al. The expanding clinical profile of anti-AMPA receptor encephalitis. Neurology 2010;74:857859.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157165.Google Scholar
Jia, Y, Wang, J, Xue, L, Hou, Y. Limbic encephalitis associated with AMPA receptor and CRMP5 antibodies: a case report and literature review. Brain Behav 2020;10:e01528.Google Scholar
Laurido-Soto, O, Brier, MR, Simon, LE, et al. Patient characteristics and outcome associations in AMPA receptor encephalitis. J Neurol 2019;266:450460.Google Scholar
Carr, I. The Ophelia syndrome: memory loss in Hodgkin’s disease. Lancet 1982;1:844845.Google Scholar
Graus, F, Arino, H, Dalmau, J. Paraneoplastic neurological syndromes in Hodgkin and non-Hodgkin lymphomas. Blood 2014;123:32303238.CrossRefGoogle ScholarPubMed
Epaulard, O, Courby, S, Pavese, P, et al. Paraneoplastic acute diffuse encephalitis revealing Hodgkin’s disease. Leuk Lymphoma 2004;45:25092512.Google Scholar
Lancaster, E, Martinez-Hernandez, E, Titulaer, MJ, et al. Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology 2011;77:16981701.Google Scholar
van Sonderen, A, Thijs, RD, Coenders, EC, et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 2016;87:14491456.Google Scholar
Tuzun, E, Rossi, JE, Karner, SF, Centurion, AF, Dalmau, J. Adenylate kinase 5 autoimmunity in treatment refractory limbic encephalitis. J Neuroimmunol 2007;186:177180.Google Scholar
Do, LD, Chanson, E, Desestret, V, et al. Characteristics in limbic encephalitis with anti-adenylate kinase 5 autoantibodies. Neurology 2017;88:514524.Google Scholar
Bien, CI, Nehls, F, Kollmar, R, et al. Identification of adenylate kinase 5 antibodies during routine diagnostics in a tissue-based assay: three new cases and a review of the literature. J Neuroimmunol 2019;334:576975.Google Scholar
Giometto, B, Nicolao, P, Macucci, M, et al. Temporal-lobe epilepsy associated with glutamic-acid-decarboxylase autoantibodies. Lancet 1998;352:457.Google Scholar
Peltola, J, Kulmala, P, Isojarvi, J, et al. Autoantibodies to glutamic acid decarboxylase in patients with therapy-resistant epilepsy. Neurology 2000;55:4650.Google Scholar
Mata, S, Muscas, GC, Naldi, I, et al. Non-paraneoplastic limbic encephalitis associated with anti-glutamic acid decarboxylase antibodies. J Neuroimmunol 2008;199:155159.Google Scholar
Malter, MP, Helmstaedter, C, Urbach, H, Vincent, A, Bien, CG. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol 2010;67:470478.Google Scholar
Finelli, PF. Autoimmune limbic encephalitis with GAD antibodies. Neurohospitalist 2011;1:178181.Google Scholar
Markakis, I, Alexopoulos, H, Poulopoulou, C, et al. Immunotherapy-responsive limbic encephalitis with antibodies to glutamic acid decarboxylase. J Neurol Sci 2014;343:192194.Google Scholar
Lopez-Sublet, M, Bihan, H, Reach, G, et al. Limbic encephalitis and type 1 diabetes with glutamic acid decarboxylase 65 (GAD65) autoimmunity: improvement with high-dose intravenous immunoglobulin therapy. Diabetes Metab 2012;38:273275.CrossRefGoogle ScholarPubMed
Blanc, F, Ruppert, E, Kleitz, C, et al. Acute limbic encephalitis and glutamic acid decarboxylase antibodies: a reality? J Neurol Sci 2009;287:6971.Google Scholar
Van Ael, Y, Amir, R, Cras, P. Anti-GAD antibodies, a rare cause of limbic encephalitis: a case report. Acta Neurol Belg 2016;116:105107.Google Scholar
Mishra, N, Rodan, LH, Nita, DA, et al. Anti-glutamic acid decarboxylase antibody associated limbic encephalitis in a child: expanding the spectrum of pediatric inflammatory brain diseases. J Child Neurol 2014;29:677683.Google Scholar
Arcani, R, Jean, E, Pozzo Di Borgo, J, et al. Anti-glutamic acid decarboxylase antibody paraneoplastic limbic encephalitis associated with acute myeloid leukemia. Clin Neurol Neurosurg 2020;189:105618.Google Scholar
Chung, M, Jaffer, M, Verma, N, et al. Immune checkpoint inhibitor induced anti-glutamic acid decarboxylase 65 (Anti-GAD 65) limbic encephalitis responsive to intravenous immunoglobulin and plasma exchange. J Neurol 2019;267:10231025.Google Scholar
Bernal, F, Graus, F, Pifarre, A, et al. Immunohistochemical analysis of anti-Hu-associated paraneoplastic encephalomyelitis. Acta Neuropathol (Berl) 2002;103:509515.Google Scholar
Ng, AS, Kramer, J, Centurion, A, et al. Clinico-pathological correlation in adenylate kinase 5 autoimmune limbic encephalitis. J Neuroimmunol 2015;287:3135.Google Scholar
Golombeck, KS, Bonte, K, Monig, C, et al. Evidence of a pathogenic role for CD8(+) T cells in anti-GABAB receptor limbic encephalitis. Neurol Neuroimmunol Neuroinflamm 2016;3:e232.CrossRefGoogle ScholarPubMed
Kortvelyessy, P, Bauer, J, Stoppel, CM, et al. Complement-associated neuronal loss in a patient with CASPR2 antibody-associated encephalitis. Neurol Neuroimmunol Neuroinflamm 2015;2:e75.Google Scholar
Schultze-Amberger, J, Pehl, D, Stenzel, W. LGI-1-positive limbic encephalitis: a clinicopathological study. J Neurol 2012;259:24782480.Google Scholar
Shams’ili, S, de Beukelaar, J, Gratama, JW, et al. An uncontrolled trial of rituximab for antibody associated paraneoplastic neurological syndromes. J Neurol 2006;253:1620.Google Scholar
Lee, WJ, Lee, ST, Byun, JI, et al. Rituximab treatment for autoimmune limbic encephalitis in an institutional cohort. Neurology 2016;86:16831691.Google Scholar
Hottinger, AF, de Micheli, R, Guido, V, et al. Natalizumab may control immune checkpoint inhibitor-induced limbic encephalitis. Neurol Neuroimmunol Neuroinflamm 2018;5:e439.Google Scholar
Lee, WJ, Lee, ST, Moon, J, et al. Tocilizumab in autoimmune encephalitis refractory to rituximab: an institutional cohort study. Neurotherapeutics 2016;13:824832.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Limbic Encephalitis
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Limbic Encephalitis
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Limbic Encephalitis
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.007
Available formats
×