Book contents
- Frontmatter
- Contents
- Participants
- Preface
- Black holes, entropy, and information
- Gravitational waves from black-hole mergers
- Out-of-this-world physics: Black holes at future colliders
- Black holes in globular clusters
- Evolution of massive black holes
- Supermassive black holes in deep multiwavelength surveys
- Black-hole masses from reverberation mapping
- Black-hole masses from gas dynamics
- Evolution of supermassive black holes
- Black-hole masses of distant quasars
- The accretion history of supermassive black holes
- Strong field gravity and spin of black holes from broad iron lines
- Birth of massive black-hole binaries
- Dynamics around supermassive black holes
- Black-hole formation and growth: Simulations in general relativity
- Estimating the spins of stellar-mass black holes
- Stellar relaxation processes near the Galactic massive black hole
- Tidal disruptions of stars by supermassive black holes
- Where to look for radiatively inefficient accrection flows in low-luminosity AGN
- Making black holes visible: Accretion, radiation, and jets
Out-of-this-world physics: Black holes at future colliders
Published online by Cambridge University Press: 11 April 2011
- Frontmatter
- Contents
- Participants
- Preface
- Black holes, entropy, and information
- Gravitational waves from black-hole mergers
- Out-of-this-world physics: Black holes at future colliders
- Black holes in globular clusters
- Evolution of massive black holes
- Supermassive black holes in deep multiwavelength surveys
- Black-hole masses from reverberation mapping
- Black-hole masses from gas dynamics
- Evolution of supermassive black holes
- Black-hole masses of distant quasars
- The accretion history of supermassive black holes
- Strong field gravity and spin of black holes from broad iron lines
- Birth of massive black-hole binaries
- Dynamics around supermassive black holes
- Black-hole formation and growth: Simulations in general relativity
- Estimating the spins of stellar-mass black holes
- Stellar relaxation processes near the Galactic massive black hole
- Tidal disruptions of stars by supermassive black holes
- Where to look for radiatively inefficient accrection flows in low-luminosity AGN
- Making black holes visible: Accretion, radiation, and jets
Summary
One of the most dramatic consequences of low-scale (~1 TeV) quantum gravity in models with large or warped extra dimension(s) is possibly copious production of mini black holes at future colliders. Hawking radiation of these black holes is expected to be constrained mainly to our three-dimensional world and results in rich phenomenology. In this talk we discuss selected aspects of mini black hole phenomenology, such as production at colliders, black-hole decay properties, and Hawking radiation as a sensitive probe of the dimensionality of extra space.
Introduction
Particle physics and astrophysics have much in common. Both fields build beautiful instruments to unveil hidden mysteries of space. Not only do they utilize the cutting edge (and often similar) technology to achieve best possible performance, but they also look gorgeous—shiny metal shells protecting the most precise detectors human kind ever built. We both launch big things—the astrophysicists launch things up, in the outer space; particle physicists launch things down—into enormous underground caverns where the most powerful particle accelerators collide particles to converge energy into mass and perhaps recreate the early moments of the universe. Figure 1 shows two of these spectacular launches: that of the Hubble Space Telescope and the largest part of the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC).
The more we learn about the puzzles of the world around us, the more we find an astonishing connection between phenomena happening at the largest distance scales and physics revealed at the tiniest distances we have been able to probe.
- Type
- Chapter
- Information
- Black Holes , pp. 21 - 45Publisher: Cambridge University PressPrint publication year: 2011