Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T22:22:22.681Z Has data issue: false hasContentIssue false

14 - Electronic Activity Monitoring

from Part II - Technologies in Cyber Behavior

Published online by Cambridge University Press:  06 December 2024

Zheng Yan
Affiliation:
University at Albany, State University of New York
Get access

Summary

1 Electronic Activity Monitoring Systems for Physical Activity Promotion

 1.1 The Evolution and Early Versions of Electronic Activity Monitoring Systems

 1.2 Early Pioneers and Their Contributions

 1.3 Early Systematic Evaluation of EAMS

2 Current Evidence of Electronic Activity Monitoring Systems

 2.1 Generally Healthy Adults

  2.1.1 Evidence by Device

  2.1.2 Current Leaders and Their Major Contributions

  2.1.3 Limitations to the Evidence among Generally Healthy Adults

 2.2 Chronic Health Conditions

  2.2.1 Alzheimer’s Disease

 2.2.2 Cancer

  2.2.3 Chronic Obstructive Pulmonary Disease

  2.2.4 Diabetes

  2.2.5 Heart Disease

  2.2.6 Rheumatic and Musculoskeletal Diseases

 2.3 Children

  2.3.1 Limitation to the Evidence among Children

 2.4 Factors Impacting User Acceptance

  2.4.1 Measurement Validity

  2.4.2 Behavior Change Techniques

  2.4.3 Supplemental Intervention Tools

3 Proposed Future Research

 3.1 Older Adults

 3.2 Adaptive Interventions

 3.3 Cancer

 3.4 Mental Illness

 3.5 Cardiovascular Disease and Other Health Conditions

 3.6 Multiple Health Behaviors

 3.7 Rehabilitation

 3.8 Family Intervention

 3.9 EAMS Alone versus Multicomponent

4 Conclusion

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, W. (2020). Technology coaching intervention for Black women with hypertension. University of North Carolina Press.Google ScholarPubMed
Ahn, S. J. (2019). Virtual fitness buddy ecosystem. University of Georgia Press.Google Scholar
Alley, S., van Uffelen, J. G. Z., Schoeppe, S., Parkinson, L., Hunt, S., Power, D., … & Vandelanotte, C. (2019). Efficacy of a computer-tailored web-based physical activity intervention using Fitbits for older adults: A randomised controlled trial protocol. BMJ Open, 9(12), e033305.CrossRefGoogle ScholarPubMed
Aschbrenner, K. (2020). Lifestyle intervention for young adults with serious mental illness. Dartmouth-Hitchcock Medical Center.Google Scholar
Ashton, L. M., Morgan, P. J., Hutchesson, M. J., Rollo, M. E., & Collins, C. E. (2017). Feasibility and preliminary efficacy of the “HEYMAN” healthy lifestyle program for young men: A pilot randomised controlled trial. Nutrition Journal, 16(1), 2.CrossRefGoogle Scholar
Bai, Y. (2018). Fight hypertension in the digital age. University of Vermont Press.Google Scholar
Bevelander, K. E., Smit, C. R., van Woudenberg, T. J., Buijs, L., Burk, W. J., & Buijzen, M. (2018). Youth’s social network structures and peer influences: Study protocol MyMovez project – Phase I. BMC Public Health, 18(1), 113.CrossRefGoogle ScholarPubMed
Bian, J., Guo, Y., Xie, M., Parish, A. E., Wardlaw, I., Brown, R., … & Perry, T. T. (2017). Exploring the association between self-reported asthma impact and Fitbit-derived sleep quality and physical activity measures in adolescents. JMIR mHealth and uHealth, 5(7), e105.CrossRefGoogle ScholarPubMed
Bonikowske, A. R. (2020). Objective measure of physical activity and sedentary behavior during cardiac rehabilitation. Mayo Clinic.Google Scholar
Brakenridge, C. L., Fjeldsoe, B. S., Young, D. C., Winkler, E. A. H., Dunstan, D. W., Straker, L. M., & Healy, G. N. (2016). Evaluating the effectiveness of organisational-level strategies with or without an activity tracker to reduce office workers’ sitting time: A cluster-randomised trial. International Journal of Behavioral Nutrition and Physical Activity, 13(1), 115.CrossRefGoogle ScholarPubMed
Bravata, D. M., Smith-Spangler, C., Sundaram, V., Gienger, A. L., Lin, N., Lewis, R., … & Sirard, J. R. (2007). Using pedometers to increase physical activity and improve health: A systematic review. JAMA, 298(19), 22962304.CrossRefGoogle ScholarPubMed
Brickwood, K.-J., Watson, G., O’Brien, J., & Williams, A. D. (2019). Consumer-based wearable activity trackers increase physical activity participation: Systematic review and meta-analysis. JMIR mHealth and uHealth, 7(4), e11819.CrossRefGoogle ScholarPubMed
Broyles, S. (2018). Physical and social environmental influence on children’s exercise: preparation (pre-PLACE). Pennington Biomedical Research Center.Google Scholar
Buchholz, S. W., Wilbur, J., Halloway, S., Schoeny, M., Johnson, T., Vispute, S., & Kitsiou, S. (2020). Study protocol for a sequential multiple assignment randomized trial (SMART) to improve physical activity in employed women. Contemporary Clinical Trials, 89, 105921.CrossRefGoogle ScholarPubMed
Burch, A. (2018). Does activity feedback increase ICD patient activity levels? East Carolina University Press.Google Scholar
Byun, W., Kim, Y., & Brusseau, T. A. (2018). The use of a Fitbit device for assessing physical activity and sedentary behavior in preschoolers. The Journal of Pediatrics, 199, 3540.CrossRefGoogle ScholarPubMed
Cadmus-Bertram, L. A., Marcus, B. H., Patterson, R. E., Parker, B. A., & Morey, B. L. (2015). Randomized trial of a Fitbit-based physical activity intervention for women. American Journal of Preventive Medicine, 49(3), 414418.CrossRefGoogle ScholarPubMed
Carlson, J. A., Bellettiere, J., Kerr, J., Salmon, J., Timperio, A., Verswijveren, S. J. J. M., & Ridgers, N. D. (2019). Day-level sedentary pattern estimates derived from hip-worn accelerometer cut-points in 8–12-year-olds: Do they reflect postural transitions? Journal of Sports Sciences, 37(16), 18991909.CrossRefGoogle ScholarPubMed
Carr, L. (2019). Residential MapTrek. University of Iowa Press.Google Scholar
Caspersen, C. J., Christenson, G. M., & Pollard, R. A. (1986). Status of the 1990 physical fitness and exercise objectives – Evidence from NHIS 1985. Public Health Reports, 101(6), 587.Google ScholarPubMed
Chapman, J. J., Suetani, S., Siskind, D., Kisely, S., Breakspear, M., Byrne, J. H., & Patterson, S. (2018). Protocol for a randomised controlled trial of interventions to promote adoption and maintenance of physical activity in adults with mental illness. BMJ Open, 8(9), e023460.CrossRefGoogle ScholarPubMed
Chen, J.-L., & Guo, J. (2020). SCOPE – Chinese women study. University of California Press.Google Scholar
Chia, G. L. C., Anderson, A., & McLean, L. A. (2019). Behavior change techniques incorporated in fitness trackers: Content analysis. JMIR mHealth and uHealth, 7(7), e12768.CrossRefGoogle ScholarPubMed
Chou, F.-y., & Chen, J.-L. (2020). Central obesity and cancer prevention for Chinese American women. San Francisco State University Press.Google Scholar
Christiansen, C. (2020). Dysvascular amputation self-management of health (DASH). University of Colorado Press.Google Scholar
Christiansen, M. B., Thoma, L. M., Master, H., Mathews, D., Schmitt, L. A., & White, D. K. (2018). Preliminary findings of a novel physical therapist administered physical activity intervention after total knee replacement. Osteoarthritis and Cartilage, 26, S334.CrossRefGoogle Scholar
Collins, J. E., Yang, H. Y., Trentadue, T. P., Gong, Y., & Losina, E. (2019). Validation of the Fitbit Charge 2 compared to the ActiGraph GT3X+ in older adults with knee osteoarthritis in free-living conditions. PLoS ONE, 14(1), e0211231.CrossRefGoogle Scholar
Community-based intervention effects on older adults’ physical activity. (2019). University of Minnesota.Google Scholar
Conroy, D. (2020). Random assignment of intervention messages for developing personalized decision rules to promote physical activity (random AIM). Penn State University Press.Google Scholar
Croymans, D. M. (2019). MyLife: A digital health coaching program. University of California Press.Google Scholar
Davergne, T., Pallot, A., Dechartres, A., Fautrel, B., & Gossec, L. (2019). Use of wearable activity trackers to improve physical activity behavior in patients with rheumatic and musculoskeletal diseases: A systematic review and meta‐analysis. Arthritis Care & Research, 71(6), 758767.CrossRefGoogle ScholarPubMed
Delrieu, L., Pérol, O., Fervers, B., Friedenreich, C., Vallance, J., Febvey-Combes, O., … & Bachelot, T. (2018). A personalized physical activity program with activity trackers and a mobile phone app for patients with metastatic breast cancer: Protocol for a single-arm feasibility trial. JMIR Research Protocols, 7(8), e10487.CrossRefGoogle Scholar
Demark-Wahnefried, W. (2020). Daughters, dUdes, mothers and othErs fighting cancer together (DUET). University of Alabama at Birmingham Press.Google Scholar
Dominick, G. (2018). SMART technology to promote heart health in midlife adults (BeSMART). University of Delaware Press.Google Scholar
Duncan, M., Murawski, B., Short, C. E., Rebar, A. L., Schoeppe, S., Alley, S., … & Kirwan, M. (2017). Activity trackers implement different behavior change techniques for activity, sleep, and sedentary behaviors. Interactive Journal of Medical Research, 6(2), e13.CrossRefGoogle ScholarPubMed
Duncan, M. J., Vandelanotte, C., Trost, S. G., Rebar, A. L., Rogers, N., Burton, N. W., … & Brown, W. J. (2016). Balanced: A randomised trial examining the efficacy of two self-monitoring methods for an app-based multi-behaviour intervention to improve physical activity, sitting and sleep in adults. BMC Public Health, 16(1), 114.CrossRefGoogle ScholarPubMed
Ellingson-Sayen, L. (2019). Evaluating motivational interviewing and habit formation to enhance the effect of activity trackers on healthy adults’ activity levels: Randomized intervention. JMIR Mhealth Uhealth, 7(2), e10988. https://mhealth.jmir.org/2019/2/e10988Google Scholar
Evenson, K. R., Goto, M. M., & Furberg, R. D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 159.CrossRefGoogle ScholarPubMed
Feasibility of a social media-based weight loss program for low socioeconomic status individuals. (2020). Case Comprehensive Cancer Center.Google Scholar
Finkelstein, E. A., Haaland, B. A., Bilger, M., Sahasranaman, A., Sloan, R. A., Nang, E. E. K., & Evenson, K. R. (2016). Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): A randomised controlled trial. The Lancet Diabetes & Endocrinology, 4(12), 983995.CrossRefGoogle ScholarPubMed
Fritschi, C. (2020). Building self-regulation capacity in AA T2DM women: Feasibility of EMI. University of Illinois at Chicago Press.Google Scholar
Fukuoka, Y., Haskell, W., Lin, F., & Vittinghoff, E. (2019). Short- and Long-term effects of a mobile phone app in conjunction with brief in-person counseling on physical activity among physically inactive women: The mPED randomized clinical trial. JAMA Netw Open, 2(5), e194281.CrossRefGoogle Scholar
Gell, N. (2019). Bemobile intervention to support physical activity in cancer survivors. University of Vermont.Google Scholar
Goode, A. P., Hall, K. S., Batch, B. C., Huffman, K. M., Hastings, S. N., Allen, K. D., … & Kosinski, A. S. (2017). The impact of interventions that integrate accelerometers on physical activity and weight loss: A systematic review. Annals of Behavioral Medicine, 51(1), 7993.CrossRefGoogle ScholarPubMed
Gordon, R., & Bloxham, S. (2017). Influence of the Fitbit Charge HR on physical activity, aerobic fitness and disability in non-specific back pain participants. The Journal of Sports Medicine and Physical Fitness, 57(12), 16691675.CrossRefGoogle Scholar
Gourlan, M., Bernard, P., Bortolon, C., Romain, A. J., Lareyre, O., Carayol, M., … & Boiché, J. (2016). Efficacy of theory-based interventions to promote physical activity: A meta-analysis of randomised controlled trials. Health Psychology Review, 10(1), 5066.CrossRefGoogle ScholarPubMed
Greene, J., Sacks, R., Piniewski, B., Kil, D., & Hahn, J. S. (2013). The impact of an online social network with wireless monitoring devices on physical activity and weight loss. Journal of Primary Care & Community Health, 4(3), 189194.CrossRefGoogle ScholarPubMed
Grimshaw, S. L. (2020). CanMove: A physical activity program for children with cancer. Murdoch Childrens Research Institute.Google Scholar
Haberlin, C., Broderick, J., Guinan, E. M., Darker, C., Hussey, J., & O’Donnell, D. M. (2019). eHealth-based intervention to increase physical activity levels in people with cancer: Protocol of a feasibility trial in an Irish acute hospital setting. BMJ Open, 9(3), e024999.CrossRefGoogle Scholar
Hamari, L., Kullberg, T., Ruohonen, J., Heinonen, O. J., Díaz-Rodríguez, N., Lilius, J., … & Salanterä, S. (2017). Physical activity among children: Objective measurements using Fitbit One® and ActiGraph. BMC Research Notes, 10(1), 16.CrossRefGoogle ScholarPubMed
Hardcastle, S. J., Hince, D., Jiménez-Castuera, R., Boyle, T., Cavalheri, V., Makin, G., … & Mohan, G. R. (2019). Promoting physical activity in regional and remote cancer survivors (PPARCS) using wearables and health coaching: Randomised controlled trial protocol. BMJ Open, 9(5), e028369.CrossRefGoogle ScholarPubMed
Hartman, S. J., Nelson, S. H., Cadmus-Bertram, L. A., Patterson, R. E., Parker, B. A., & Pierce, J. P. (2016). Technology-and phone-based weight loss intervention: Pilot RCT in women at elevated breast cancer risk. American Journal of Preventive Medicine, 51(5), 714721.CrossRefGoogle ScholarPubMed
Hartman, S. J., Nelson, S. H., Myers, E., Natarajan, L., Sears, D. D., Palmer, B. W., … & Patterson, R. E. (2018). Randomized controlled trial of increasing physical activity on objectively measured and self‐reported cognitive functioning among breast cancer survivors: The memory & motion study. Cancer, 124(1), 192202.CrossRefGoogle ScholarPubMed
Hartwig, T. B., del Pozo‐Cruz, B., White, R. L., Sanders, T., Kirwan, M., Parker, P. D., … & Antczak, D. (2019). A monitoring system to provide feedback on student physical activity during physical education lessons. Scandinavian Journal of Medicine & Science in Sports, 29(9), 13051312.CrossRefGoogle ScholarPubMed
Hawkins, J., Charles, J. M., Edwards, M., Hallingberg, B., McConnon, L., Edwards, R. T., … & Moore, G. (2019). Acceptability and feasibility of implementing accelorometry-based activity monitors and a linked web portal in an exercise referral scheme: Feasibility randomized controlled trial. Journal of Medical Internet Research, 21(3), e12374.CrossRefGoogle Scholar
Heale, L. D., Dover, S., Goh, Y. I., Maksymiuk, V. A., Wells, G. D., & Feldman, B. M. (2018). A wearable activity tracker intervention for promoting physical activity in adolescents with juvenile idiopathic arthritis: A pilot study. Pediatric Rheumatology, 16(1), 66.CrossRefGoogle ScholarPubMed
Health and recovery program in increasing physical activity level in stage IA–IIIA endometrial cancer survivors. (2019). Stanford University.Google Scholar
Hegde, N., Zhang, T., Uswatte, G., Taub, E., Barman, J., McKay, S., … & Sazonov, E. S. (2017). The pediatric SmartShoe: Wearable sensor system for ambulatory monitoring of physical activity and gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(2), 477486.CrossRefGoogle Scholar
Henry, B. (2020). iSTEP – An mHealth physical activity and diet intervention for persons with HIV. University of California Press.Google Scholar
Hirschey, R., Kimmick, G., Hockenberry, M., Shaw, R., Pan, W., & Lipkus, I. (2018). Protocol for moving on: A randomized controlled trial to increase outcome expectations and exercise among breast cancer survivors. Nursing Open, 5(1), 101108.CrossRefGoogle ScholarPubMed
Hooke, M. C., Gilchrist, L., Tanner, L., Hart, N., & Withycombe, J. S. (2016). Use of a fitness tracker to promote physical activity in children with acute lymphoblastic leukemia. Pediatric Blood & Cancer, 63(4), 684689.CrossRefGoogle ScholarPubMed
Hurley, J. C., Hollingshead, K. E., Todd, M., Jarrett, C. L., Tucker, W. J., Angadi, S. S., & Adams, M. A. (2015). The walking interventions through texting (WalkIT) trial: Rationale, design, and protocol for a factorial randomized controlled trial of adaptive interventions for overweight and obese, inactive adults. JMIR Research Protocols, 4(3), e108.CrossRefGoogle ScholarPubMed
Hurling, R., Catt, M., De Boni, M., Fairley, B., Hurst, T., Murray, P., … & Sodhi, J. (2007). Using internet and mobile phone technology to deliver an automated physical activity program: Randomized controlled trial. Journal of Medical Internet Research, 9(2), e7.CrossRefGoogle ScholarPubMed
Increasing activity post-kidney transplant with SystemCHANGE (CHANGE). (2019). Ohio State University.Google Scholar
Integrated web-based customer engagement, physical exercise, and coaching platform for older adults. (2018). Northeastern University.Google Scholar
Jackson, J. (2020). Congenital heart disease physical activity lifestyle study (CHD–PALS). Nationwide Children’s Hospital.Google Scholar
Jakicic, J. M., Davis, K. K., Rogers, R. J., King, W. C., Marcus, M. D., Helsel, D., … & Belle, S. H. (2016). Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: The IDEA randomized clinical trial. Jama, 316(11), 11611171.CrossRefGoogle ScholarPubMed
Jakicic, J. M., Kraus, W. E., Powell, K. E., Campbell, W. W., et al. (2018). 2018 Physical Activity Guidelines Advisory Committee scientific report. Washington, DC: US Department of Health and Human Services.Google Scholar
Kadan-Lottick, N. (2020). Mobile health and social media physical activity intervention among adolescent and young adult childhood cancer survivors: The StepByStep study. Children’s Oncology Group.Google Scholar
Katigbak, C. (2019). Together we move: A multi-component intervention to increase physical activity for ethnic minority older adults. Boston College.Google Scholar
Kim, I., Lai, P.-H., Lobo, R., & Gluckman, B. J. (2014). Challenges in wearable personal health monitoring systems. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5264–5267).Google Scholar
King, A. C., Whitt-Glover, M. C., Marquez, D. X., Buman, M. P., Napolitano, M. A., Jakicic, J., … & Tennant, B. L. (2019). Physical activity promotion: Highlights from the 2018 physical activity guidelines advisory committee systematic review. Medicine & Science in Sports & Exercise, 51(6), 13401353.CrossRefGoogle ScholarPubMed
Kononova, A., Li, L., Kamp, K., Bowen, M., Rikard, R. V., Cotten, S., & Peng, W. (2019). The use of wearable activity trackers among older adults: Focus group study of tracker perceptions, motivators, and barriers in the maintenance stage of behavior change. JMIR mHealth and uHealth, 7(4), e9832.CrossRefGoogle ScholarPubMed
Kooiman, T. J. M., de Groot, M., Hoogenberg, K., Krijnen, W. P., van der Schans, C. P., & Kooy, A. (2018). Self-tracking of physical activity in people with type 2 diabetes: A randomized controlled trial. CIN: Computers, Informatics, Nursing, 36(7), 340349.Google ScholarPubMed
Kraus, W. E., Janz, K. F., Powell, K. E., Campbell, W. W., Jakicic, J. M., Troiano, R. P., … & Piercy, K. L. (2019). Daily step counts for measuring physical activity exposure and its relation to health. Medicine and Science in Sports and Exercise, 51(6), 12061212.CrossRefGoogle ScholarPubMed
Larsen, B. (2019). Fit for two: Incorporating wearable trackers into clinical care for pregnant women with diabetes (FFT). University of California Press.Google Scholar
Larsen, B. (2020). Physical activity intervention for adolescent girls. University of California Press.Google Scholar
Lewis, Z. H., Lyons, E. J., Jarvis, J. M., & Baillargeon, J. (2015). Using an electronic activity monitor system as an intervention modality: A systematic review. BMC Public Health, 15(1), 585.CrossRefGoogle Scholar
Lewis, Z. H., Pritting, L., Picazo, A. L., & JeanMarie-Tucker, M. (2020). The utility of wearable fitness trackers and implications for increased engagement: An exploratory, mixed methods observational study. Digit Health, 6, 2055207619900059.Google ScholarPubMed
Li, J. (2020). A personalized behavioral intervention to improve physical activity, sleep and cognition in sedentary older adults. Johns Hopkins University Press.Google Scholar
Li, L. (2018). SuPRA: Using wearable activity trackers with a new application to improve physical activity in knee osteoarthritis. University of British Columbia Press.Google Scholar
Li, L. C., Sayre, E. C., Xie, H., Clayton, C., & Feehan, L. M. (2017). A community-based physical activity counselling program for people with knee osteoarthritis: Feasibility and preliminary efficacy of the track-OA study. JMIR mHealth and uHealth, 5(6), e86.CrossRefGoogle ScholarPubMed
Long-term impact evaluation of a worksite-based lifestyle intervention to reduce cardiovascular risk in office workers (TANSNIP-PESA). (2019). Fundacion Central Nacional de Investigaciones Cardiovasculares Carlos III.Google Scholar
Lynch, C., Bird, S., Lythgo, N., & Selva-Raj, I. (2020). Changing the physical activity behavior of adults with fitness trackers: A systematic review and meta-analysis. American Journal of Health Promotion, 34(4), 418430.CrossRefGoogle ScholarPubMed
Lyons, E. J., Lewis, Z. H., Mayrsohn, B. G., & Rowland, J. L. (2014). Behavior change techniques implemented in electronic lifestyle activity monitors: A systematic content analysis. Journal of Medical Internet Research, 16(8), e192.CrossRefGoogle ScholarPubMed
Lyons, E. J., Swartz, M. C., Lewis, Z. H., Martinez, E., & Jennings, K. (2017). Feasibility and acceptability of a wearable technology physical activity intervention with telephone counseling for mid-aged and older adults: A randomized controlled pilot trial. JMIR mHealth and uHealth, 5(3), e28.CrossRefGoogle ScholarPubMed
Lystrup, R. M., West, G. F., Olsen, C., Ward, M., & Stephens, M. B. (2016). Pedometry to prevent cardiorespiratory fitness decline – Is it effective? Military Medicine, 181(10), 12351239.CrossRefGoogle ScholarPubMed
Maher, C., Ryan, J., Ambrosi, C., & Edney, S. (2017). Users’ experiences of wearable activity trackers: A cross-sectional study. BMC Public Health, 17(1), 880.CrossRefGoogle ScholarPubMed
Martin, S. S., Feldman, D. I., Blumenthal, R. S., Jones, S. R., Post, W. S., McKibben, R. A., … & Coresh, J. (2015). mActive: A randomized clinical trial of an automated mHealth intervention for physical activity promotion. Journal of the American Heart Association, 4(11), e002239.CrossRefGoogle ScholarPubMed
Maselli, M., Gobbi, E., & Carraro, A. (2019). Effectiveness of individual counseling and activity monitors to promote physical activity among university students. Journal of Sports Medicine and Physical Fitness, 59(1), 132140.Google ScholarPubMed
Masse, L. (2019). Investigating the efficacy of a mobile app intervention to change youth and their families’ health behaviours. University of British Columbia Press.Google Scholar
Maxwell-Smith, C., Cohen, P. A., Platell, C., Tan, P., Levitt, M., Salama, P., … & Hardcastle, S. J. (2018). Wearable activity technology and action-planning (WATAAP) to promote physical activity in cancer survivors: Randomised controlled trial protocol. International Journal of Clinical and Health Psychology, 18(2), 124132.CrossRefGoogle ScholarPubMed
McDermott, M. M., Spring, B., Berger, J. S., Treat-Jacobson, D., Conte, M. S., Creager, M. A., … & Guralnik, J. M. (2018). Effect of a home-based exercise intervention of wearable technology and telephone coaching on walking performance in peripheral artery disease: The HONOR randomized clinical trial. Jama, 319(16), 16651676.CrossRefGoogle ScholarPubMed
Meijer, G. A. L., Westerterp, K. R., Verhoeven, F. M. H., Koper, H. B. M., & ten Hoor, F. (1991). Methods to assess physical activity with special reference to motion sensors and accelerometers. IEEE Transactions on Biomedical Engineering, 38(3), 221229.CrossRefGoogle ScholarPubMed
Melton, B. F., Buman, M. P., Vogel, R. L., Harris, B. S., & Bigham, L. E. (2016). Wearable devices to improve physical activity and sleep: A randomized controlled trial of college-aged African American women. Journal of Black Studies, 47(6), 610625.CrossRefGoogle Scholar
Mendoza, J. A., Baker, K. S., Moreno, M. A., Whitlock, K., Abbey‐Lambertz, M., Waite, A., … & Chow, E. J. (2017). A Fitbit and Facebook mHealth intervention for promoting physical activity among adolescent and young adult childhood cancer survivors: A pilot study. Pediatric Blood & Cancer, 64(12), e26660.CrossRefGoogle Scholar
Mercer, K., Li, M., Giangregorio, L., Burns, C., & Grindrod, K. (2016). Behavior change techniques present in wearable activity trackers: a critical analysis. JMIR mHealth and uHealth, 4(2), e40.CrossRefGoogle ScholarPubMed
Michie, S., Abraham, C., Whittington, C., McAteer, J., & Gupta, S. (2009). Effective techniques in healthy eating and physical activity interventions: A meta-regression. Health Psychology, 28(6), 690.CrossRefGoogle Scholar
Michie, S., Ashford, S., Sniehotta, F. F., Dombrowski, S. U., Bishop, A., & French, D. P. (2011). A refined taxonomy of behaviour change techniques to help people change their physical activity and healthy eating behaviours: The CALO–RE taxonomy. Psychology & Health, 26(11), 14791498.CrossRefGoogle ScholarPubMed
Michie, S., Richardson, M., Johnston, M., Abraham, C., Francis, J., Hardeman, W., … & Wood, C. E. (2013). The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: Building an international consensus for the reporting of behavior change interventions. Annals of Behavioral Medicine, 46(1), 8195.CrossRefGoogle ScholarPubMed
Mucci, A. (2020). Cleveland Clinic Families Get Fit (CCFit): A family-based activity-monitor intervention in pediatric obesity. The Cleveland Clinic.Google Scholar
Muellmann, S., Bragina, I., Voelcker-Rehage, C., Rost, E., Lippke, S., Meyer, J., … & Koppelin, F. (2017). Development and evaluation of two web-based interventions for the promotion of physical activity in older adults: Study protocol for a community-based controlled intervention trial. BMC Public Health, 17(1), 512.CrossRefGoogle ScholarPubMed
Ng, K., Tynjälä, J., & Kokko, S. (2017). Ownership and use of commercial physical activity trackers among Finnish adolescents: Cross-sectional study. JMIR mHealth and uHealth, 5(5), e61.CrossRefGoogle ScholarPubMed
Nogic, J., Thein, P. M., Cameron, J., Mirzaee, S., Ihdayhid, A., & Nasis, A. (2017). The utility of personal activity trackers (Fitbit Charge 2) on exercise capacity in patients post acute coronary syndrome [UP-STEP ACS Trial]: A randomised controlled trial protocol. BMC Cardiovascular Disorders, 17(1), 303.CrossRefGoogle ScholarPubMed
Obling, K. H., Overgaard, K., Juul, L., & Maindal, H. T. (2019). Effects of a motivational, individual and locally anchored exercise intervention (MILE) on cardiorespiratory fitness: A community-based randomised controlled trial. BMC Public Health, 19(1), 239.CrossRefGoogle ScholarPubMed
Orme, M. W., Weedon, A. E., Saukko, P. M., Esliger, D. W., Morgan, M. D., Steiner, M. C., … & Singh, S. J. (2018). Findings of the chronic obstructive pulmonary disease-sitting and exacerbations trial (COPD–SEAT) in reducing sedentary time using wearable and mobile technologies with educational support: Randomized controlled feasibility trial. JMIR mHealth and uHealth, 6(4), e84.CrossRefGoogle ScholarPubMed
O’Driscoll, R., Turicchi, J., Beaulieu, K., Scott, S., Matu, J., Deighton, K., … & Stubbs, J. (2020). How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. British Journal of Sports Medicine, 54(6), 332340.CrossRefGoogle ScholarPubMed
Paxton, R. J., Forster, J. E., Miller, M. J., Gerron, K. L., Stevens-Lapsley, J. E., & Christiansen, C. L. (2018). A feasibility study for improved physical activity after total knee arthroplasty. Journal of Aging and Physical Activity, 26(1), 713.CrossRefGoogle ScholarPubMed
Pellegrini, C. A. (2019). Fitbit and social support in knee replacement patients & buddies. University of South Carolina Press.Google Scholar
Pellegrini, C. A., Verba, S. D., Otto, A. D., Helsel, D. L., Davis, K. K., & Jakicic, J. M. (2012). The comparison of a technology-based system and an in-person behavioral weight loss intervention. Obesity (Silver Spring), 20(2), 356363.CrossRefGoogle ScholarPubMed
Physical activity wearables in the police force: The PAW-Force trial. (2019). University of Exeter.Google Scholar
Piercy, K. L., Troiano, R. P., Ballard, R. M., Carlson, S. A., Fulton, J. E., Galuska, D. A., … & Olson, R. D. (2018). The physical activity guidelines for Americans. Journal of the American Medical Association, 320(19), 20202028.CrossRefGoogle ScholarPubMed
Pischke, C. R., Voelcker-Rehage, C., Peters, M., Ratz, T., Pohlabeln, H., Meyer, J., … & Lippke, S. (2020). Implementation and effects of information technology-based and print-based interventions to promote physical activity among community-dwelling older adults: Protocol for a randomized crossover trial. JMIR Research Protocols, 9(4), e15168.CrossRefGoogle ScholarPubMed
Poirier, J., Bennett, W. L., Jerome, G. J., Shah, N. G., Lazo, M., Yeh, H.-C., … & Cobb, N. K. (2016). Effectiveness of an activity tracker-and internet-based adaptive walking program for adults: A randomized controlled trial. Journal of Medical Internet Research, 18(2), e34.CrossRefGoogle ScholarPubMed
Polzien, K. M., Jakicic, J. M., Tate, D. F., & Otto, A. D. (2007). The efficacy of a technology‐based system in a short‐term behavioral weight loss intervention. Obesity, 15(4), 825830.CrossRefGoogle Scholar
Pope, Z. C., Barr-Anderson, D. J., Lewis, B. A., Pereira, M. A., & Gao, Z. (2019). Use of wearable technology and social media to improve physical activity and dietary behaviors among college students: A 12-week randomized pilot study. International Journal of Environmental Research and Public Health, 16(19).CrossRefGoogle Scholar
Promoting physical activity in young adult cancer survivors using mhealth and adaptive tailored feedback strategies (IMPACT). (2019). UNC Lineberger Comprehensive Cancer Center.Google Scholar
Reijonsaari, K., Vehtari, A., Kahilakoski, O.-P., van Mechelen, W., Aro, T., & Taimela, S. (2012). The effectiveness of physical activity monitoring and distance counseling in an occupational setting – Results from a randomized controlled trial (CoAct). BMC Public Health, 12(1), 344.CrossRefGoogle Scholar
Richardson, C. R., Newton, T. L., Abraham, J. J., Sen, A., Jimbo, M., & Swartz, A. M. (2008). A meta-analysis of pedometer-based walking interventions and weight loss. The Annals of Family Medicine, 6(1), 6977.CrossRefGoogle ScholarPubMed
Roberts, L. M., Jaeger, B. C., Baptista, L. C., Harper, S. A., Gardner, A. K., Jackson, E. A., … & Buford, T. W. (2019). Wearable technology to reduce sedentary behavior and CVD risk in older adults: A pilot randomized clinical trial. Clinical Interventions in Aging, 14, 18171828.CrossRefGoogle ScholarPubMed
Rogers, R. J., Lang, W., Barone Gibbs, B., Davis, K. K., Burke, L. E., Kovacs, S. J., … & Jakicic, J. M. (2016). Applying a technology‐based system for weight loss in adults with obesity. Obesity Science & Practice, 2(1), 312.CrossRefGoogle ScholarPubMed
Rote, A. E. (2017). Physical activity intervention using Fitbits in an introductory college health course. Health Education Journal, 76(3), 337348.CrossRefGoogle Scholar
Sala, D. A., Grissom, H. E., Delsole, E. M., Chu, M. L., Godfried, D. H., Bhattacharyya, S., … & Chu, A. (2019). Measuring ambulation with wrist‐based and hip‐based activity trackers for children with cerebral palsy. Developmental Medicine & Child Neurology, 61(11), 13091313.CrossRefGoogle ScholarPubMed
Self-monitoring and reminder texts to increase physical activity after cancer II (SmartPaceII). (2020). University of California, San Francisco.Google Scholar
Sheffield, J. (2019). Monitored Home Exercise in Pregnancy. Johns Hopkins University Press.Google Scholar
Shin, D. W., Yun, J. M., Shin, J. H., Kwon, H., Min, H. Y., Joh, H. K., … & Cho, B. (2017). Enhancing physical activity and reducing obesity through smartcare and financial incentives: A pilot randomized trial. Obesity, 25(2), 302310.CrossRefGoogle ScholarPubMed
Shrestha, M., Combest, T., Fonda, S. J., Alfonso, A., & Guerrero, A. (2013). Effect of an accelerometer on body weight and fitness in overweight and obese active duty soldiers. Military Medicine, 178(1), 8287.CrossRefGoogle ScholarPubMed
Shuger, S. L., Barry, V. W., Sui, X., McClain, A., Hand, G. A., Wilcox, S., … & Blair, S. N. (2011). Electronic feedback in a diet- and physical activity-based lifestyle intervention for weight loss: A randomized controlled trial. International Journal of Behavioral Nutrition and Physical Activity, 8(1), 41.CrossRefGoogle Scholar
Singh, B., Spence, R. R., Sandler, C. X., Tanner, J., & Hayes, S. C. (2020). Feasibility and effect of a physical activity counselling session with or without provision of an activity tracker on maintenance of physical activity in women with breast cancer – A randomised controlled trial. Journal of Science and Medicine in Sport, 23(3), 283290.CrossRefGoogle ScholarPubMed
Skrepnik, N., Spitzer, A., Altman, R., Hoekstra, J., Stewart, J., & Toselli, R. (2017). Assessing the impact of a novel smartphone application compared with standard follow-up on mobility of patients with knee osteoarthritis following treatment with Hylan GF 20: A randomized controlled trial. JMIR mHealth and uHealth, 5(5), e64.CrossRefGoogle ScholarPubMed
Slootmaker, S., Chinapaw, M., Schuit, A., Seidell, J., & Van Mechelen, W. (2009). Feasibility and effectiveness of online physical activity advice based on a personal activity monitor: Randomized controlled trial. Journal of Medical Internet Research, 11(3), e27.CrossRefGoogle ScholarPubMed
A social media game to increase physical activity among older adult women (CHALLENGE). (2019). University of Texas Medical Branch, Galveston.Google Scholar
Song, Y., Ren, C., Liu, P., Tao, L., Zhao, W., & Gao, W. (2019). Effect of smartphone-based telemonitored exercise rehabilitation among patients with coronary heart disease. Journal of Cardiovascular Translational Research, 1–9.Google Scholar
Spelt, H., Tsiampalis, T., Karnaki, P., Kouvari, M., Zota, D., Linos, A., & Westerink, J. (2019). Lifestyle e-coaching for physical activity level improvement: Short-term and long-term effectivity in low socioeconomic status groups. International Journal of Environmental Research and Public Health, 16(22).CrossRefGoogle ScholarPubMed
Spruijt-Metz, D. (2020). Developing dynamic theories for behavior change. University of Southern California Press.Google Scholar
Sypes, E. E., Newton, G., & Lewis, Z. H. (2019). Investigating the use of an electronic activity monitor system as a component of physical activity and weight-loss interventions in nonclinical populations: A systematic review. Journal of Physical Activity and Health, 16(4), 294302.CrossRefGoogle ScholarPubMed
Tabak, M., Op den Akker, H., & Hermens, H. (2014). Motivational cues as real-time feedback for changing daily activity behavior of patients with COPD. Patient Education and Counseling, 94(3), 372378.CrossRefGoogle ScholarPubMed
The effects of a mobile health intervention and health coach text messaging on cardiovascular risk of older adults (GET FIT). (2019). University of California, Irvine.Google Scholar
Thomas, J. G., Raynor, H. A., Bond, D. S., Luke, A. K., Cardoso, C. C., Foster, G. D., & Wing, R. R. (2017). Weight loss in weight watchers online with and without an activity tracking device compared to control: A randomized trial. Obesity, 25(6), 10141021.CrossRefGoogle ScholarPubMed
Thompson, W. G., Kuhle, C. L., Koepp, G. A., McCrady-Spitzer, S. K., & Levine, J. A. (2014). “Go4Life” exercise counseling, accelerometer feedback, and activity levels in older people. Archives of Gerontology and Geriatrics, 58(3), 314319.CrossRefGoogle ScholarPubMed
Thorndike, A. N., Mills, S., Sonnenberg, L., Palakshappa, D., Gao, T., Pau, C. T., & Regan, S. (2014). Activity monitor intervention to promote physical activity of physicians-in-training: Randomized controlled trial. PLoS ONE, 9(6).CrossRefGoogle ScholarPubMed
Tiedemann, A., Rissel, C., Howard, K., Tong, A., Merom, D., Smith, S., … & Vogler, C. (2016). Health coaching and pedometers to enhance physical activity and prevent falls in community-dwelling people aged 60 years and over: Study protocol for the Coaching for Healthy AGEing (CHAnGE) cluster randomised controlled trial. BMJ Open, 6(5).CrossRefGoogle ScholarPubMed
Transforming recovery through exercise and community (TREC). (2020). Butler Hospital.Google Scholar
Tudor-Locke, C., & Lutes, L. (2009). Why do pedometers work? Sports Medicine, 39(12), 981993.CrossRefGoogle ScholarPubMed
Uhm, K. E., Yoo, J. S., Chung, S. H., Lee, J. D., Lee, I., Kim, J. I., … & Lee, J. Y. (2017). Effects of exercise intervention in breast cancer patients: Is mobile health (mHealth) with pedometer more effective than conventional program using brochure? Breast Cancer Research and Treatment, 161(3), 443452.CrossRefGoogle ScholarPubMed
Uluer, A. (2018). Increase tolerance for exercise and raise activity through connectedness trial (INTERACT). Boston Children’s Hospital.Google Scholar
Unick, J. L., O’Leary, K. C., Bond, D. S., & Wing, R. R. (2012). Physical activity enhancement to a behavioral weight loss program for severely obese individuals: A preliminary investigation. ISRN Obesity, 2012.CrossRefGoogle ScholarPubMed
Valle, C. G., Deal, A. M., & Tate, D. F. (2017). Preventing weight gain in African American breast cancer survivors using smart scales and activity trackers: A randomized controlled pilot study. Journal of Cancer Survivorship, 11(1), 133148.CrossRefGoogle ScholarPubMed
van der Weegen, S., Verwey, R., Spreeuwenberg, M., Tange, H., van der Weijden, T., & de Witte, L. (2015). It’s LiFe! Mobile and web-based monitoring and feedback tool embedded in primary care increases physical activity: A cluster randomized controlled trial. Journal of Medical Internet Research, 17(7), e184.CrossRefGoogle ScholarPubMed
Van Hoye, K., Boen, F., & Lefevre, J. (2015). The impact of different degrees of feedback on physical activity levels: A 4-week intervention study. International Journal of Environmental Research and Public Health, 12(6), 65616581.CrossRefGoogle Scholar
VIDA mobile health cardiovascular prevention program. (2018). Duke University.Google Scholar
Vidoni, E. D., Watts, A. S., Burns, J. M., Greer, C. S., Graves, R. S., Van Sciver, A., … & Uphoff, E. (2016). Feasibility of a memory clinic-based physical activity prescription program. Journal of Alzheimer’s Disease, 53(1), 161170.CrossRefGoogle ScholarPubMed
Wa, J. L. Y. (2020). Enhancing physical activity levels of frail older people with a wearable activity tracker-based exercise intervention. Hong Kong Polytechnic University Press.Google Scholar
Wallbank, G., Sherrington, C., Canning, C. G., Hassett, L., Shepherd, R., Richards, B., … & Tiedemann, A. (2019). Active women over 50: Study protocol for RCT of a low-dose information and support program to promote physical activity behaviour change. BMC Public Health, 19(1), 1225.CrossRefGoogle ScholarPubMed
Wang, J. B., Cadmus-Bertram, L. A., Natarajan, L., White, M. M., Madanat, H., Nichols, J. F., … & Pierce, J. P. (2015). Wearable sensor/device (Fitbit One) and SMS text-messaging prompts to increase physical activity in overweight and obese adults: A randomized controlled trial. Telemedicine and e-Health, 21(10), 782792.CrossRefGoogle ScholarPubMed
Wijsman, C. A., Westendorp, R. G. J., Verhagen, E. A. L. M., Catt, M., Slagboom, P. E., de Craen, A. J. M., … & van der Ouderaa, F. (2013). Effects of a web-based intervention on physical activity and metabolism in older adults: Randomized controlled trial. Journal of Medical Internet Research, 15(11), e233.CrossRefGoogle ScholarPubMed
Yeh, E. A. (2019). ATOMIC (Active Teens with MultIple sClerosis) teens: A feasibility study. Hospital for Sick Children.Google Scholar
Zhang, J., & Jemmott Iii, J. B. (2019). Mobile app-based small-group physical activity intervention for young African American women: A pilot randomized controlled trial. Prevention Science, 20(6), 863872.CrossRefGoogle ScholarPubMed
Zia, A. (2020). Physical activity in children at risk of post-thrombotic sequelae (PACT). University of Texas Southwestern Medical Center.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×