Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T14:52:52.818Z Has data issue: false hasContentIssue false

4 - Female Bisexuality

from Part I - Controversies and Unresolved Issues

Published online by Cambridge University Press:  30 June 2022

Todd K. Shackelford
Affiliation:
Oakland University, Michigan
Get access

Summary

Bisexual behavior is an order of magnitude more common than exclusive homosexuality in women. Many evolutionary hypotheses on sexual orientation have focused on homosexuality, particularly in men, yet there has recently been a growing recognition that male and female homosexuality may have different evolutionary origins, and that the various forms of nonheterosexuality in the female sexual orientation spectrum may arise via discrete evolutionary–developmental mechanisms. Evolutionarily informed sex research therefore has the fascinating task of understanding the whole spectrum of female sexual orientation – from heterosexual, mostly heterosexual, and bisexual women through to exclusively homosexual women, and from feminine femmes to masculine butches – including the proximate mechanisms and ultimate functions that underlie that variation. Here, we address that task by applying Tinbergen’s four questions to analyze female bisexuality, synthesizing existing research on proximate mechanisms, ontogeny, phylogeny, and ultimate functions. Research in psychology and behavioral sciences indicates that bisexual women comprise a group distinct from heterosexual women and, on some metrics, even from lesbian women: bisexual women have more male-typical personality traits, more unrestricted sociosexual attitudes and behaviors, higher sexual responsiveness, earlier reproduction, higher substance use, higher incarceration rates, and worse health outcomes than heterosexual women. There is broad evidence from across mammalian species that indicates that individual differences in prenatal exposure to sex hormones creates individual differences in brain morphology, cognition, behavioral predispositions, and even life outcomes. They are typically studied in a sex differences framework, but there is now enough evidence to suggest that sexual orientation differences along these parameters can also be robust and informative. We review ten ultimate-level hypotheses on the evolution of female bisexuality and conclude that four hypotheses – balanced polymorphism of masculinity, sexually antagonistic selection, hormonally mediated fast life history strategy, and by-product – are currently best supported by evidence. These hypotheses are also consilient with the wealth of neurodevelopmental evidence on the masculinization of the brain and behavior, which is thought to underlie variation in female sexual orientation. By synthesizing ultimate functions with proximate mechanisms – combined with powerful mid-level frameworks such as life history theory – evolutionary scientists are in a stronger position to provide a comprehensive account of the phenotypic variation observed in the female sexual orientation spectrum.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboulghar, M. (2009). Luteal support in reproduction: When, what and how? Current Opinion in Obstetrics and Gynecology, 21(3), 279284.Google Scholar
Adamsson, N. A., Brokken, L. J. S., Paranko, J., & Toppari, J. (2008). In vivo and in vitro effects of flutamide and diethylstilbestrol on fetal testicular steroidogenesis in the rat. Reproductive Toxicology, 25(1), 7683.Google Scholar
Albrecht, E. D., & Pepe, G. J. (2010). Estrogen regulation of placental angiogenesis and fetal ovarian development during primate pregnancy. International Journal of Developmental Biology, 54(2–3), 397407.CrossRefGoogle ScholarPubMed
Allen, L. S., Hines, M., Shryne, J. E., & Gorski, R. A. (1989). Two sexually dimorphic cell groups in the human brain. Journal of Neuroscience, 9(2), 497506.Google Scholar
Allen, M. S., & Robson, D. A. (2020). Personality and sexual orientation: New data and meta-analysis. Journal of Sex Research, 57(8), 953965.Google Scholar
Amateau, S. K., & McCarthy, M. M. (2002). A novel mechanism of dendritic spine plasticity involving estradiol induction of prostaglandin-E2. Journal of Neuroscience, 22(19), 85868596.Google Scholar
Amateau, S. K., & McCarthy, M. M. (2004). Induction of PGE2 by estradiol mediates developmental masculinization of sex behavior. Nature Neuroscience, 7(6), 643650.Google Scholar
Apostolou, M. (2018a). Are women sexually fluid? The nature of female same-sex attraction and its evolutionary origins. Evolutionary Psychological Science, 4(2), 191201.Google Scholar
Apostolou, M. (2018b). The evolutionary origins of same-sex attraction: Assessing weak negative selection and positive selection arguments. Mankind Quarterly, 59(2), 171196.Google Scholar
Apostolou, M., Shialos, M., Khalil, M., & Paschali, V. (2017). The evolution of female same-sex attraction: The male choice hypothesis. Personality and Individual Differences, 116, 372378.Google Scholar
Archer, J. (2019). The reality and evolutionary significance of human psychological sex differences. Biological Reviews, 94(4), 13811415.Google Scholar
Arnold, A. P. (2017). A general theory of sexual differentiation. Journal of Neuroscience Research, 95(1–2), 291300.Google Scholar
Arnold, A. P. (2020). Sexual differentiation of brain and other tissues: Five questions for the next 50 years. Hormones and Behavior. https://doi.org/10.1016/j.yhbeh.2020.104691CrossRefGoogle Scholar
Bagemihl, B. (1999). Biological exuberance: Animal homosexuality and natural diversity, 1st ed. New York: St. Martin’s Press.Google Scholar
Bailey, J. M. (2019). How to ruin sex research. Archives of Sexual Behavior, 48(4), 10071011.Google Scholar
Bailey, J. M., Willerman, L., & Parks, C. (1991). A test of the maternal stress theory of human male homosexuality. Archives of Sexual Behavior, 20(3), 277293.Google Scholar
Baker, V. L., Jones, C. A., Doody, K., Foulk, R., Yee, B., Adamson, G. D., … & Soules, M. (2014). A randomized, controlled trial comparing the efficacy and safety of aqueous subcutaneous progesterone with vaginal progesterone for luteal phase support of in vitro fertilization. Human Reproduction, 29(10), 22122220.Google Scholar
Bakker, J., Brand, T., van Ophemert, J., & Slob, A. K. (1993). Hormonal regulation of adult partner preference behavior in neonatally ATD-treated male rats. Behavioral Neuroscience, 107(3), 480487.Google Scholar
Bakker, J., Van Ophemert, J., & Slob, A. K. (1993). Organization of partner preference and sexual behavior and its nocturnal rhythmicity in male rats. Behavioral Neuroscience, 107(6), 10491058.Google Scholar
Bakker, J., Van Ophemert, J., & Slob, A. K. (1996). Sexual differentiation of odor and partner preference in the rat. Physiology and Behavior, 60(2), 489494.Google Scholar
Balthazart, J. (2020). Sexual partner preference in animals and humans. Neuroscience & Biobehavioral Reviews, 115, 3447.Google Scholar
Bao, A.-M., & Swaab, D. F. (2011). Sexual differentiation of the human brain: Relation to gender identity, sexual orientation and neuropsychiatric disorders. Frontiers in Neuroendocrinology, 32(2), 214226.Google Scholar
Baron-Cohen, S., Tsompanidis, A., Auyeung, B., Nørgaard-Pedersen, B., Hougaard, D. M., Abdallah, M., … & Pohl, A. (2020). Foetal oestrogens and autism. Molecular Psychiatry, 25, 29702978.Google Scholar
Barron, A. B., & Hare, B. (2020). Prosociality and a sociosexual hypothesis for the evolution of same-sex attraction in humans. Frontiers in Psychology, 10, 2955.Google Scholar
Bateson, P., & Laland, K. N. (2013). Tinbergen’s four questions: An appreciation and an update. Trends in Ecology and Evolution, 28(12), 712718.Google Scholar
Bejerot, S., & Eriksson, J. M. (2014). Sexuality and gender role in autism spectrum disorder: A case control study. PLOS ONE, 9(1), e87961.Google Scholar
Bekker, M., Van Heck, G. L., & Vingerhoets, A. J. (1996). Gender-identity, body-experience, sexuality, and the wish for having children in DES-daughters. Women and Health, 24, 6582.CrossRefGoogle ScholarPubMed
Bennett, J. A., Zhu, S. J., Pagano-Mirarchi, A., Kellom, T. A., & Jacobson, H. I. (1998). α-Fetoprotein derived from a human hepatoma prevents growth of estrogen-dependent human breast cancer xenografts. Clinical Cancer Research, 4(11), 28772884.Google Scholar
Berenbaum, S. A., & Resnick, S. M. (1997). Early androgen effects on aggression in children and adults with congenital adrenal hyperplasia. Psychoneuroendocrinology, 22(7), 505515.CrossRefGoogle ScholarPubMed
Betini, G. S., Avgar, T., & Fryxell, J. M. (2017). Why are we not evaluating multiple competing hypotheses in ecology and evolution? Royal Society Open Science, 4(1), 160756.Google Scholar
Blackburn, S. T. (2018). Maternal, fetal, & neonatal physiology: A clinical perspective, 5th ed. St. Louis, MO: Elsevier.Google Scholar
Bogaert, A. F., & Skorska, M. N. (2020). A short review of biological research on the development of sexual orientation. Hormones and Behavior, 119, 104659.Google Scholar
Breedlove, S. M. (2017). Response to commentaries. Archives of Sexual Behavior, 46(6), 16251629.Google Scholar
Breedlove, M. & Hampson, E. (2002). Sexual differentiation of the brain and behavior. In Becker, J., Breedlove, M., Crews, D., & McCarthy, M. M. (Eds.), Behavioral endocrinology (pp. 75114). Cambridge, MA: MIT Press.Google Scholar
Brown, W. M., Finn, C. J., Cooke, B. M., & Breedlove, S. M. (2002). Differences in finger length ratios between self-identified “butch” and “femme” lesbians. Archives of Sexual Behavior, 31, 123127.Google Scholar
Brunner, F., Fliegner, M., Krupp, K., Rall, K., Brucker, S., & Richter-Appelt, H. (2016). Gender role, gender identity and sexual orientation in CAIS (“XY-women”) compared with subfertile and infertile 46, XX women. Journal of Sex Research, 53(1), 109124.Google Scholar
Burri, A., Spector, T., & Rahman, Q. (2015). Common genetic factors among sexual orientation, gender nonconformity, and number of sex partners in female twins: Implications for the evolution of homosexuality. Journal of Sexual Medicine, 12, 10041011.Google Scholar
Buss, D. M., & Schmitt, D. P. (2019). Mate preferences and their behavioral manifestations. Annual Review of Psychology, 70, 77110.Google Scholar
Camperio Ciani, A., Battaglia, U., Cesare, L., Camperio Ciani, G., & Capiluppi, C. (2018). Possible balancing selection in human female homosexuality. Human Nature, 29(1), 1432.CrossRefGoogle ScholarPubMed
Carroll, J. L., Volk, K. D., & Hyde, J. S. (1985). Differences between males and females in motives for engaging in sexual intercourse. Archives of Sexual Behavior, 14(2), 131139.Google Scholar
Chivers, M. L. (2017). The specificity of women’s sexual response and its relationship with sexual orientations: A review and ten hypotheses. Archives of Sexual Behavior, 46(5), 11611179.Google Scholar
Clemens, L. G., & Gladue, B. A. (1978). Feminine sexual behavior in rats enhanced by prenatal inhibition of androgen aromatization. Hormones and Behavior, 11, 190201.Google Scholar
Compton, D. R., Farris, D. N., & Chang, Y. T. (2015). Patterns of bisexuality in America. Journal of Bisexuality, 15(4), 481497.Google Scholar
Confer, J. C., Easton, J. A., Fleischman, D. S., Goetz, C. D., Lewis, D. M. G., Perilloux, C., & Buss, D. M. (2010). Evolutionary psychology: Controversies, questions, prospects, and limitations. American Psychologist, 65(2), 110126.Google Scholar
Cooke, P. S., Nanjappa, M. K., Ko, C., Prins, G. S., & Hess, R. A. (2017). Estrogens in male physiology. Physiological Reviews, 97(3), 9951043.Google Scholar
Cornil, C. A., & Bakker, J. (2019). Alternative views on the role of sex steroid hormones on the emergence of phenotypic diversity in female sexual orientation. Archives of Sexual Behavior, 48(5), 13091313.Google Scholar
Daly, M., & Wilson, M. (1998). The truth about Cinderella: A Darwinian view of parental love. New Haven, CT: Yale University Press.Google Scholar
Dawkins, R. (2016). The selfish gene, 4th ed. Oxford: Oxford University Press.Google Scholar
de Jonge, F. H., Muntjewerff, J.-W., Louwerse, A. L., & de Poll, N. E. (1988). Sexual behavior and sexual orientation of the female rat after hormonal treatment during various stages of development. Hormones and Behavior, 22(1), 100115.Google Scholar
Del Giudice, M. (in press a). Measuring sex differences and similarities. In VanderLaan, D. P., & Wong, W. I. (Eds.), Gender and sexuality development: Contemporary theory and research. New York: Springer.Google Scholar
Del Giudice, M. (in press b). Ideological bias in the psychology of sex and gender. In Frisby, C. L., O’Donohue, W. T., Redding, R. E., & Lilienfeld, S. O. (Eds.), Political bias in psychology: Nature, scope, and solutions. New York: Springer.Google Scholar
Diamond, L. M. (2003). What does sexual orientation orient? A biobehavioral model distinguishing romantic love and sexual desire. Psychological Review, 110(1), 173192.Google Scholar
Diamond, L. M. (2008). Sexual fluidity. Cambridge, MA: Harvard University Press.Google Scholar
Dickins, T. E., & Rahman, Q. (2020). Ancestral primacy of same-sex sexual behaviour does not explain its stable prevalence in modern populations. Nature Ecology and Evolution. https://doi.org/10.1038/s41559–020-1187-5Google Scholar
Dittmann, R. W., Kappes, M. E., & Kappes, M. H. (1992). Sexual behavior in adolescent and adult females with congenital adrenal hyperplasia. Psychoneuroendocrinology, 17(2), 153170.Google Scholar
Dittmann, R. W., Kappes, M. H., Kappes, M. E., Börger, D., Stegner, H., Willig, R. H., & Wallis, H. (1990). Congenital adrenal hyperplasia I: Gender-related behavior and attitudes in female patients and sisters. Psychoneuroendocrinology, 15, 401420.Google Scholar
Dixson, A. (2012). Primate sexuality: Comparative studies of the prosimians, monkeys, apes, and humans. New York: Oxford University Press.Google Scholar
Dixson, A. (2015). Primate sexuality. In Whelehan, P. & Bolin, A. (Eds.), The international encyclopedia of human sexuality. Chichester: Wiley-Blackwell.Google Scholar
Döhler, K. D., Coquelin, A., Davis, F., Hines, M., Shryne, J. E., & Gorski, R. A. (1984). Pre- and postnatal influence of testosterone propionate and diethylstilbestrol on differentiation of the sexually dimorphic nucleus of the preoptic area in male and female rats. Brain Research, 302, 291295.Google Scholar
Doughty, C., Booth, J. E., McDonald, P. G., & Parrott, R. F. (1975). Inhibition, by the anti oestrogen MER 25, of defeminization induced by the synthetic oestrogen RU 2858. Journal of Endocrinology, 67, 459460.Google Scholar
Ehrhardt, A. A., Meyer-Bahlburg, H. F. L., Rosen, L. R., Feldman, J. F., Veridiano, N. P., Zimmerman, I., & McEwen, B. S. (1985). Sexual orientation after prenatal exposure to exogenous estrogen. Archives of Sexual Behavior, 14, 5777.Google Scholar
Ellison, P. T. (2017). Endocrinology, energetics, and human life history: A synthetic model. Hormones and Behavior, 91, 97106.Google Scholar
Faber, K. A., & Hughes, C. L. (1991). The effect of neonatal exposure to diethylstilbestrol, genistein, and zearalenone on pituitary responsiveness and sexually dimorphic nucleus volume in the castrated adult rat. Biology of Reproduction, 45, 649653.Google Scholar
Farr, R. H., Diamond, L. M., & Boker, S. M. (2014). Female same-sex sexuality from a dynamical systems perspective: Sexual desire, motivation, and behavior. Archives of Sexual Behavior, 43(8), 14771490.Google Scholar
Figueredo, A. J., Fernandes, H. B. F., & Peñaherrera-Aguirre, M. (2019). Do the predictors of atypical sexual orientations in women generalize across different evolutionary tests? Archives of Sexual Behavior, 48(5), 13251328.Google Scholar
Fisher, A. D., Ristori, J., Morelli, G., & Maggi, M. (2018). The molecular mechanisms of sexual orientation and gender identity. Molecular and Cellular Endocrinology, 467, 313.Google Scholar
Fisher, H. E., Aron, A., & Brown, L. L. (2006). Romantic love: A mammalian brain system for mate choice. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361(1476), 21732186.Google Scholar
Frisén, L., Nordenström, A., Falhammar, H., Filipsson, H., Holmdahl, G., Janson, P. O., … & Nordenskjöld, A. (2009). Gender role behavior, sexuality, and psychosocial adaptation in women with congenital adrenal hyperplasia due to CYP21A2 deficiency. Journal of Clinical Endocrinology and Metabolism, 94(9), 34323439.Google Scholar
Fruth, B., & Hohmann, G. (2006). Social grease for females? Same sex genital contacts in wild bonobos. In Sommer, V. & Vasey, P. L. (Eds.), Homosexual behaviour in animals: An evolutionary perspective (pp. 294316). Cambridge: Cambridge University Press.Google Scholar
Fudge, D. S. (2014). Fifty years of J. R. Platt’s strong inference. Journal of Experimental Biology, 217, 12021204.Google Scholar
George, F. W., & Ojeda, S. R. (1982). Changes in aromatase activity in the rat brain during embryonic, neonatal, and infantile development. Endocrinology, 111(2), 522529.Google Scholar
Gettler, L. T., Ryan, C. P., Eisenberg, D. T. A., Rzhetskaya, M., Hayes, M. G., Feranil, A. B., … & Kuzawa, C. W. (2017). The role of testosterone in coordinating male life history strategies: The moderating effects of the androgen receptor CAG repeat polymorphism. Hormones and Behavior, 87, 164175.CrossRefGoogle ScholarPubMed
Giusti, R. M., Iwamoto, K., & Hatch, E. E. (1995). Diethylstilbestrol revisited: A review of the long-term health effects. Annals of Internal Medicine, 122, 778788.Google Scholar
González, M., Cabrera-Socorro, A., Pérez-García, C. G., Fraser, J. D., López, F. J., Alonso, R., & Meyer, G. (2007). Distribution patterns of estrogen receptor α and β in the human cortex and hippocampus during development and adulthood. Journal of Comparative Neurology, 503(6), 790802.Google Scholar
Gorski, R. A., Gordon, J. H., Shryne, J. E., & Southam, A. M. (1978). Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Research, 148, 333346.Google Scholar
Gorski, R. A., Harlan, R. E., Jacobson, C. D., Shryne, J. E., & Southam, A. M. (1980). Evidence for the existence of a sexually dimorphic nucleus in the preoptic area of the rat. Journal of Comparative Neurology, 193, 529539.Google Scholar
Grov, C., Bimbi, D. S., Nanín, J. E., & Parsons, J. T. (2006). Race, ethnicity, gender, and generational factors associated with the coming-out process among gay, lesbian, and bisexual individuals. Journal of Sex Research, 43(2), 115121.Google Scholar
Hämäläinen, A., Immonen, E., Tarka, M., & Schuett, W. (2018). Evolution of sex-specific pace-of-life syndromes: Causes and consequences. Behavioral Ecology and Sociobiology. https://doi.org/10.1007/s00265–018-2466-xGoogle Scholar
Hashimoto, M., Miyamoto, Y., Iwai, C., Matsuda, Y., Hiraoka, E., Kanazawa, K., … & Akita, H. (2009). Delivery may affect arterial elasticity in women. Circulation Journal, 73(4), 750754.CrossRefGoogle ScholarPubMed
Hiestand, K. R., & Levitt, H. M. (2005). Butch identity development: The formation of an authentic gender. Feminism and Psychology, 15, 6185.CrossRefGoogle Scholar
Hines, M. (2011a). Gender development and the human brain. Annual Review of Neuroscience, 34, 6988.CrossRefGoogle ScholarPubMed
Hines, M. (2011b). Prenatal endocrine influences on sexual orientation and on sexually differentiated childhood behavior. Frontiers in Neuroendocrinology, 32, 170182.Google Scholar
Hines, M., Ahmed, S. F., & Hughes, I. A. (2003). Psychological outcomes and gender-related development in complete androgen insensitivity syndrome. Archives of Sexual Behavior, 32(2), 93101.Google Scholar
Hines, M., Brook, C., & Conway, G. S. (2004). Androgen and psychosexual development: Core gender identity, sexual orientation, and recalled childhood gender role behavior in women and men with congenital adrenal hyperplasia (CAH). Journal of Sex Research, 41, 7581.Google Scholar
Hines, M., Constantinescu, M., & Spencer, D. (2015). Early androgen exposure and human gender development. Biology of Sex Differences, 6(1), 3.Google Scholar
Houtsmuller, E. J., Brand, T., de Jonge, F. H., Joosten, R. N. J. M. A., van de Poll, N. E., & Slob, A. K. (1994). SDN-POA volume, sexual behavior, and partner preference of male rats affected by perinatal treatment with ATD. Physiology and Behavior, 56(3), 535541.Google Scholar
Hughes, S. M., Aung, T., Harrison, M. A., Lafayette, J. N., & Gallup, G. G. (2021). Experimental evidence for sex differences in sexual variety preferences: Support for the Coolidge Effect in humans. Archives of Sexual Behavior, 50, 495509.Google Scholar
Immonen, E., Hämäläinen, A., Schuett, W., & Tarka, M. (2018). Evolution of sex-specific pace-of-life syndromes: Genetic architecture and physiological mechanisms. Behavioral Ecology and Sociobiology, 72(3), 60.CrossRefGoogle ScholarPubMed
Ivanova, T., & Beyer, C. (2000). Ontogenetic expression and sex differences of aromatase and estrogen receptor-α/β mRNA in the mouse hippocampus. Cell and Tissue Research, 300(2), 231237.Google Scholar
Jacobson, C. D., Csernus, V. J., Shryne, J. E., & Gorski, R. A. (1981). The influence of gonadectomy, androgen exposure, or a gonadal graft in the neonatal rat on the volume of the sexually dimorphic nucleus of the preoptic area. Journal of Neuroscience, 1(10), 11421147.Google Scholar
Jacobson, C. D., Shryne, J. E., Shapiro, F., & Gorski, R. A. (1980). Ontogeny of the sexually dimorphic nucleus of the preoptic area. Journal of Comparative Neurology, 193(2), 541548.Google Scholar
Jonason, P. K., & Luoto, S. (2021). The dark side of the rainbow: Homosexuals and bisexuals have higher Dark Triad traits than heterosexuals. Personality and Individual Differences, 181, 111040.CrossRefGoogle Scholar
Kanazawa, S. (2017). Possible evolutionary origins of human female sexual fluidity. Biological Reviews, 92(3), 12511274.Google Scholar
Koebele, S. V., & Bimonte-Nelson, H. A. (2015). Trajectories and phenotypes with estrogen exposures across the lifespan: What does Goldilocks have to do with it? Hormones and Behavior, 74, 86104.Google Scholar
Krams, I., Luoto, S., Rubika, A., Krama, T., Elferts, D., Krams, R., … & Rantala, M. J. (2019). A head start for life history development? Family income mediates associations between height and immune response in men. American Journal of Physical Anthropology, 168(3), 421427.Google Scholar
Kravitz, H. M., Haywood, T. W., Kelly, J., Liles, S., & Cavanaugh, J. L. (1996). Medroxyprogesterone and paraphiles: Do testosterone levels matter? Bulletin of the American Academy of Psychiatry and the Law, 24(1), 7383.Google Scholar
Krueger, E. A., Fish, J. N., & Upchurch, D. M. (2020). Sexual orientation disparities in substance use: Investigating social stress mechanisms in a national sample. American Journal of Preventive Medicine, 58(1), 5968.Google Scholar
Kuhle, B. X., & Radtke, S. (2013). Born both ways: The alloparenting hypothesis for sexual fluidity in women. Evolutionary Psychology. https://doi.org/10.1177/147470491301100200Google Scholar
Lai, M. C., Lombardo, M. V., Suckling, J., Ruigrok, A. N. V., Chakrabarti, B., Ecker, C., … & Baron-Cohen, S. (2013). Biological sex affects the neurobiology of autism. Brain, 136, 27992815.Google Scholar
Lam, J. S., Leppert, J. T., Vemulapalli, S. N., Shvarts, O., & Belldegrun, A. S. (2006). Secondary hormonal therapy for advanced prostate cancer. Journal of Urology, 175(1), 2734.Google Scholar
Lauber, M. E., & Lichtensteiger, W. (1994). Pre- and postnatal ontogeny of aromatase cytochrome P450 messenger ribonucleic acid expression in the male rat brain studied by in situ hybridization. Endocrinology, 135(4), 16611668.Google Scholar
Lenz, K. M., Nugent, B. M., & McCarthy, M. M. (2012). Sexual differentiation of the rodent brain: Dogma and beyond. Frontiers in Neuroscience, 6, 26.Google Scholar
Lerch, B. A., & Servedio, M. R. (2020). Same-sex sexual behaviour and selection for indiscriminate mating. Nature Ecology & Evolution. https://doi.org/10.1038/s41559–020-01331-wGoogle Scholar
LeVay, S. (1994). The sexual brain. Cambridge, MA: MIT Press.Google Scholar
Levitt, H. M., Gerrish, E. A., & Hiestand, K. R. (2003). The misunderstood gender: A model of modern femme identity. Sex Roles, 48, 99113.Google Scholar
Levitt, H. M., & Horne, S. G. (2002). Explorations of lesbian-queer genders: Butch, femme, androgynous or “other.” Journal of Lesbian Studies, 6, 2539.Google Scholar
Lewis, D. M. G., Conroy-Beam, D., Asao, K., & Buss, D. M. (2017). Evolutionary psychology: A how-to guide. American Psychologist, 72(4), 353373.Google Scholar
Lippa, R. A. (2005). Sexual orientation and personality. Annual Review of Sex Research, 16(1), 119153.Google Scholar
Lippa, R. A. (2020). Interest, personality, and sexual traits that distinguish heterosexual, bisexual, and homosexual individuals: Are there two dimensions that underlie variations in sexual orientation? Archives of Sexual Behavior, 49, 607622.Google Scholar
Luoto, S. (2019). An updated theoretical framework for human sexual selection: From ecology, genetics, and life history to extended phenotypes. Adaptive Human Behavior and Physiology, 5(1), 48102.Google Scholar
Luoto, S. (2020). Did prosociality drive the evolution of homosexuality? Archives of Sexual Behavior, 49, 22392244.Google Scholar
Luoto, S., Krams, I., & Rantala, M. J. (2019a). A life history approach to the female sexual orientation spectrum: Evolution, development, causal mechanisms, and health. Archives of Sexual Behavior, 48(5), 12731308.Google Scholar
Luoto, S., Krams, I., & Rantala, M. J. (2019b). Response to commentaries: Life history evolution, causal mechanisms, and female sexual orientation. Archives of Sexual Behavior, 48(5), 13351347.Google Scholar
Luoto, S., & Rantala, M. J. (2017). Specificity of women’s sexual response: Proximate mechanisms and ultimate causes. Archives of Sexual Behavior, 46(5), 11951198.Google Scholar
Luoto, S., & Rantala, M. J. (2018). On estrogenic masculinization of the human brain and behavior. Hormones and Behavior, 97, 12.Google Scholar
MacLusky, N. J., & Naftolin, F. (1981). Sexual differentiation of the central nervous system. Science, 211, 12941302.Google Scholar
Mathews, G. A., Fane, B. A., Conway, G. S., Brook, C. G. D., & Hines, M. (2009). Personality and congenital adrenal hyperplasia: Possible effects of prenatal androgen exposure. Hormones and Behavior, 55(2), 285291.Google Scholar
McCarthy, M. M. (2008). Estradiol and the developing brain. Physiological Reviews, 88, 91134.Google Scholar
McEwen, B. S., Lieberburg, I., Chaptal, C., & Krey, L. C. (1977). Aromatization: Important for sexual differentiation of the neonatal rat brain. Hormones and Behavior, 9, 249263.Google Scholar
Meyer, I. H., Flores, A. R., Stemple, L., Romero, A. P., Wilson, B. D. M., & Herman, J. L. (2017). Incarceration rates and traits of sexual minorities in the United States: National inmate survey, 2011–2012. American Journal of Public Health, 107(2), 267273.Google Scholar
Meyer-Bahlburg, H. F. L., Dolezal, C., Baker, S. W., & New, M. I. (2008). Sexual orientation in women with classical or non-classical congenital adrenal hyperplasia as a function of degree of prenatal androgen excess. Archives of Sexual Behavior, 37, 8599.Google Scholar
Meyer-Bahlburg, H. F. L., Ehrhardt, A. A., Rosen, L. R., Gruen, R. S., Veridiano, N. P., Vann, F. H., & Neuwalder, H. F. (1995). Prenatal estrogens and the development of homosexual orientation. Developmental Psychology, 31(1), 1221.Google Scholar
Miller, E. M. (2000). Homosexuality, birth order, and evolution: Toward an equilibrium reproductive economics of homosexuality. Archives of Sexual Behavior, 29, 134.Google Scholar
Monk, J. D., Giglio, E., Kamath, A., Lambert, M. R., & McDonough, C. E. (2019). An alternative hypothesis for the evolution of same-sex sexual behaviour in animals. Nature Ecology and Evolution, 3(12), 16221631.Google Scholar
Motta-Mena, N. V, & Puts, D. A. (2017). Endocrinology of human female sexuality, mating, and reproductive behavior. Hormones and Behavior, 91, 1935.Google Scholar
Neulen, J., Zahradnik, H. P., Flecken, U., & Breckwoldt, M. (1989). The effect of cortisol on the synthesis of prostaglandins (PGF2α, PGE2) by human endometrial fibroblasts in vitro with and without addition of estradiol-17β or progesterone. Prostaglandins, 37(5), 587595.CrossRefGoogle ScholarPubMed
Palagiano, A., Bulletti, C., Pace, M. C., De Ziegler, D., Cicinelli, E., & Izzo, A. (2004). Effects of vaginal progesterone on pain and uterine contractility in patients with threatened abortion before twelve weeks of pregnancy. Annals of the New York Academy of Sciences, 1034(1), 200210.Google Scholar
Paredes, R. G., Tzschentke, T., & Nakach, N. (1998). Lesions of the medial preoptic area/anterior hypothalamus (MPOA/AH) modify partner preference in male rats. Brain Research, 813(1), 18.Google Scholar
Pasterski, V., Geffner, M. E., Brain, C., Hindmarsh, P., Brook, C., & Hines, M. (2011). Prenatal hormones and childhood sex segregation: Playmate and play style preferences in girls with congenital adrenal hyperplasia. Hormones and Behavior, 59, 549555.Google Scholar
Pasterski, V., Hindmarsh, P., Geffner, M., Brook, C., Brain, C., & Hines, M. (2007). Increased aggression and activity level in 3- to 11-year-old girls with congenital adrenal hyperplasia (CAH). Hormones and Behavior, 52(3), 368374.Google Scholar
Pasterski, V., Zucker, K. J., Hindmarsh, P. C., Hughes, I. A., Acerini, C., Spencer, D., … & Hines, M. (2015). Increased cross-gender identification independent of gender role behavior in girls with congenital adrenal hyperplasia: Results from a standardized assessment of 4-to 11-year-old children. Archives of Sexual Behavior, 44, 13631375.Google Scholar
Pistella, J., Salvati, M., Ioverno, S., Laghi, F., & Baiocco, R. (2016). Coming-out to family members and internalized sexual stigma in bisexual, lesbian and gay people. Journal of Child and Family Studies, 25(12), 36943701.Google Scholar
Playà, E., Vinicius, L., & Vasey, P. L. (2017). Need for alloparental care and attitudes toward homosexuals in 58 countries: Implications for the kin selection hypothesis. Evolutionary Psychological Science, 3(4), 345352.Google Scholar
Poiani, A. (2010). Animal homosexuality: A biosocial perspective. Cambridge: Cambridge University Press.Google Scholar
Qualls, L. R., Hartmann, K., & Paulson, J. F. (2018). Broad autism phenotypic traits and the relationship to sexual orientation and sexual behavior. Journal of Autism and Developmental Disorders, 48(12), 39743983.CrossRefGoogle ScholarPubMed
Rahman, Q., Xu, Y., Lippa, R. A., & Vasey, P. L. (2020). Prevalence of sexual orientation across 28 nations and its association with gender equality, economic development, and individualism. Archives of Sexual Behavior, 49, 595606.Google Scholar
Rantala, M. J., Luoto, S., Krama, T., & Krams, I. (2019). Eating disorders: An evolutionary psychoneuroimmunological approach. Frontiers in Psychology, 10, 2200.Google Scholar
Raznahan, A., & Disteche, C. M. (2021). X-chromosome regulation and sex differences in brain anatomy. Neuroscience & Biobehavioral Reviews, 120, 2847.Google Scholar
Reinisch, J. M., Mortensen, E. L., & Sanders, S. A. (2017). Prenatal exposure to progesterone affects sexual orientation in humans. Archives of Sexual Behavior, 46(5), 12391249.Google Scholar
Reinisch, J. M., Ziemba-Davis, M., & Sanders, S. A. (1991). Hormonal contributions to sexually dimorphic behavioral development in humans. Psychoneuroendocrinology, 16, 213278.Google Scholar
Reynolds, A. L., & Hanjorgiris, W. F. (2000). Coming out: Lesbian, gay, and bisexual identity development. In Perez, R. M., DeBord, K. A., & Bieschke, K. J. (Eds.), Handbook of counseling and psychotherapy with lesbian, gay, and bisexual clients (pp. 3555). Washington, DC: American Psychological Association.Google Scholar
Rice, W. R., Friberg, U., & Gavrilets, S. (2016). Sexually antagonistic epigenetic marks that canalize sexually dimorphic development. Molecular Ecology, 25(8), 18121822.Google Scholar
Richardson, G. B., Placek, C., Srinivas, V., Jayakrishna, P., Quinlan, R., & Madhivanan, P. (2020). Environmental stress and human life history strategy development in rural and peri-urban South India. Evolution and Human Behavior, 41(3), 244252.CrossRefGoogle Scholar
Rieger, G., Holmes, L., Watts-Overall, T. M., Gruia, D. C., Bailey, J. M., & Savin-Williams, R. C. (2020). Gender nonconformity of bisexual men and women. Archives of Sexual Behavior, 49, 24812495.Google Scholar
Roselli, C. E., Larkin, K., Resko, J. A., Stellflug, J. N., & Stormshak, F. (2004). The volume of a sexually dimorphic nucleus in the ovine medial preoptic area/anterior hypothalamus varies with sexual partner preference. Endocrinology, 145(2), 478483.Google Scholar
Roselli, C. E., Meaker, M., Stormshak, F., & Estill, C. T. (2016). Effects of long-term flutamide treatment during development on sexual behaviour and hormone responsiveness in rams. Journal of Neuroendocrinology. https://doi.org/10.1111/jne.12389Google Scholar
Roselli, C. E., & Resko, J. A. (1993). Aromatase activity in the rat brain: Hormonal regulation and sex differences. Journal of Steroid Biochemistry and Molecular Biology, 44(4–6), 499508.Google Scholar
Roselli, C. E., Schrunk, J. M., Stadelman, H. L., Resko, J. A., & Stormshak, F. (2006). The effect of aromatase inhibition on the sexual differentiation of the sheep brain. Endocrine, 29(3), 501511.Google Scholar
Roselli, C. E., & Stormshak, F. (2009). The neurobiology of sexual partner preferences in rams. Hormones and Behavior, 55(5), 611620.Google Scholar
Rubika, A., Luoto, S., Krama, T., Trakimas, G., Rantala, M. J., Moore, F. R., … & Krams, I. A. (2020). Women’s socioeconomic position in ontogeny is associated with improved immune function and lower stress, but not with height. Scientific Reports. https://doi.org/10.1038/s41598–020-68217-6Google Scholar
Sabia, J. J., Wooden, M., & Nguyen, T. T. (2017). Sexual identity, same-sex relationships, and labour market dynamics: New evidence from longitudinal data in Australia. Southern Economic Journal, 83(4), 903931.Google Scholar
Sanders, S. A., & Reinisch, J. M. (1985). Behavioral effects on humans of progesterone-related compounds during development and in the adult. In Ganten, D. & Pfaff, D. (Eds.), Actions of progesterone on the brain (Vol. 5, pp. 175205). Berlin: Springer.Google Scholar
Santtila, P., Sandnabba, N. K., Harlaar, N., Varjonen, M., Alanko, K., & von der Pahlen, B. (2008). Potential for homosexual response is prevalent and genetic. Biological Psychology, 77(1), 102105.Google Scholar
Savin-Williams, R. C., Joyner, K., & Rieger, G. (2012). Prevalence and stability of self-reported sexual orientation identity during young adulthood. Archives of Sexual Behavior, 41, 103110.Google Scholar
Schieve, L. A., Tian, L., Dowling, N., Croen, L., Hoover-Fong, J., Alexander, A., & Shapira, S. K. (2018). Associations between the 2nd to 4th digit ratio and autism spectrum disorder in population-based samples of boys and girls: Findings from the Study to Explore Early Development. Journal of Autism and Developmental Disorders, 48(7), 23792395.Google Scholar
Schmitt, D. P. (2007). Sexual strategies across sexual orientations: How personality traits and culture relate to sociosexuality among gays, lesbians, bisexuals, and heterosexuals. Journal of Psychology & Human Sexuality, 18(2–3), 183214.Google Scholar
Schuler, M. S., & Collins, R. L. (2020). Sexual minority substance use disparities: Bisexual women at elevated risk relative to other sexual minority groups. Drug and Alcohol Dependence, 206, 107755.Google Scholar
Semenyna, S. W., Belu, C. F., Vasey, P. L., & Honey, L. (2018). Not straight and not straightforward: The relationships between sexual orientation, sociosexuality, and dark triad traits in women. Evolutionary Psychological Science, 4(1), 2437.Google Scholar
Simpson, P. L., Hardiman, D., & Butler, T. (2019). Understanding the over-representation of lesbian or bisexual women in the Australian prisoner population. Current Issues in Criminal Justice, 31(3), 365377.Google Scholar
Singh, D., Vidaurri, M., Zambarano, R. J., & Dabbs, J. M. (1999). Lesbian erotic role identification: Behavioral, morphological, and hormonal correlates. Journal of Personality and Social Psychology, 76(6), 10351049.Google Scholar
Smith, E. P., Boyd, J., Frank, G. R., Takahashi, H., Cohen, R. M., Specker, B., … & Korach, K. S. (1994). Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. New England Journal of Medicine, 331(16), 10561061.Google Scholar
Spencer, D., Pasterski, V., Neufeld, S., Glover, V., O’Connor, T. G., Hindmarsh, P. C., … & Hines, M. (2017). Prenatal androgen exposure and children’s aggressive behavior and activity level. Hormones and Behavior, 96(November), 156165.Google Scholar
Stief, M. C., Rieger, G., & Savin-Williams, R. C. (2014). Bisexuality is associated with elevated sexual sensation seeking, sexual curiosity, and sexual excitability. Personality and Individual Differences, 66, 193198.Google Scholar
Stolarski, M., Czarna, A. Z., Malesza, M., & Szymańska, A. (2017). Here and now: Sociosexuality mediates the associations between Dark Triad and time perspectives (in females). Personality and Individual Differences, 111, 119123.Google Scholar
Sugiyama, N., Barros, R. P. A., Warner, M., & Gustafsson, J. Å. (2010). ERβ: Recent understanding of estrogen signaling. Trends in Endocrinology and Metabolism, 21(9), 545552.Google Scholar
Swaab, D. F., & Garcia-Falgueras, A. (2009). Sexual differentiation of the human brain in relation to gender identity and sexual orientation. Functional Neurology, 24(1), 1728.Google Scholar
Swartz, S. K., & Soloff, M. S. (1974). The lack of estrogen binding by human α-fetoprotein. Journal of Clinical Endocrinology and Metabolism, 39(3), 589591.Google Scholar
Tal, R., Taylor, H. S., Burney, R. O., Mooney, S. B., & Giudice, L. C. (2015). Endocrinology of pregnancy. In Feingold, K. R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W. W., Dhatariya, K., … & Wilson, D. P. (Eds.), Endotext. Dartmouth, MA: MDText. www.ncbi.nlm.nih.gov/books/NBK278962/Google Scholar
Terentiev, A. A., & Moldogazieva, N. T. (2013). Alpha-fetoprotein: A renaissance. Tumor Biology, 34(4), 20752091.Google Scholar
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift Für Tierpsychologie, 20(4), 410433.Google Scholar
Trivers, R. (1972). Parental investment and sexual selection. In Campbell, B. (Ed.), Sexual selection & the descent of man (pp. 136179). Chicago: Aldine.Google Scholar
Trocki, K. F., Drabble, L. A., & Midanik, L. T. (2009). Tobacco, marijuana, and sensation seeking: Comparisons across gay, lesbian, bisexual, and heterosexual groups. Psychology of Addictive Behaviors, 23, 620631.Google Scholar
Troisi, R., Palmer, J. R., Hatch, E. E., Strohsnitter, W. C., Huo, D., Hyer, M., … & Titus, L. (2020). Gender identity and sexual orientation identity in women and men prenatally exposed to diethylstilbestrol. Archives of Sexual Behavior, 49(2), 447454.Google Scholar
Van Griensven, F., Kilmarx, P. H., Jeeyapant, S., Manopaiboon, C., Korattana, S., Jenkins, R. A., … & Mastro, T. D. (2004). The prevalence of bisexual and homosexual orientation and related health risks among adolescents in northern Thailand. Archives of Sexual Behavior, 33(2), 137147.Google Scholar
Vasey, P. L., & Terry, L. (2009). Sexual fluidity: Understanding women’s love and desire. Archives of Sexual Behavior, 38, 1064.Google Scholar
Wagner, C. K., & Morrell, J. I. (1996). Distribution and steroid hormone regulation of aromatase mRNA expression in the forebrain of adult male and female rats: A cellular-level analysis using in situ hybridization. Journal of Comparative Neurology, 370(1), 7184.Google Scholar
Wagner, C. K., & Morrell, J. I. (1997). Neuroanatomical distribution of aromatase mRNA in the rat brain: Indications of regional regulation. Journal of Steroid Biochemistry and Molecular Biology, 61(3–6), 307314.Google Scholar
Wallen, K. (2005). Hormonal influences on sexually differentiated behavior in nonhuman primates. Frontiers in Neuroendocrinology, 26(1), 726.Google Scholar
Wells, J. C. K., & Stock, J. T. (2020). Life history transitions at the origins of agriculture: A model for understanding how niche construction impacts human growth, demography and health. Frontiers in Endocrinology, 11, 325.Google Scholar
Wood, C. E. (2014). Estrogen in the fetus. In Zhang, L. & Ducsay, C. (Eds.), Advances in fetal and neonatal physiology (pp. 217228). New York: Springer.CrossRefGoogle Scholar
Worthman, C. M., & Trang, K. (2018). Dynamics of body time, social time and life history at adolescence. Nature, 554(7693), 451457.Google Scholar
Wright, C. L., & McCarthy, M. M. (2009). Prostaglandin E2-induced masculinization of brain and behavior requires protein kinase A, AMPA/kainate, and metabotropic glutamate receptor signaling. Journal of Neuroscience, 29(42), 1327413282.Google Scholar
Yalom, I. D., Green, R., & Fisk, N. (1973). Prenatal exposure to female hormones: Effect on psychosexual development in boys. Archives of General Psychiatry, 28(4), 554561.Google Scholar
Young, L. C., Zaun, B. J., & VanderWerf, E. A. (2008). Successful same-sex pairing in Laysan albatross. Biology Letters, 4, 323325.Google Scholar
Zheng, L., Wen, G., & Zheng, Y. (2018). Butch–femme identity and visuospatial performance among lesbian and bisexual women in China. Archives of Sexual Behavior, 47(4), 10151024.Google Scholar
Zietsch, B. P., Morley, K. I., Shekar, S. N., Verweij, K. J. H., Keller, M. C., Macgregor, S., … & Martin, N. G. (2008). Genetic factors predisposing to homosexuality may increase mating success in heterosexuals. Evolution and Human Behavior, 29, 424433.Google Scholar
Zietsch, B. P., Sidari, M. J., Murphy, S. C., Sherlock, J. M., & Lee, A. J. (2020). For the good of evolutionary psychology, let’s reunite proximate and ultimate explanations. Evolution and Human Behavior. https://doi.org/10.1016/j.evolhumbehav.2020.06.009Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×