Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T13:25:48.313Z Has data issue: false hasContentIssue false

9 - The Development of Touch Perception and Body Representation

from Part II - Perceptual Development

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access

Summary

Touch occupies a greater extent of our bodies than all other senses put together (see Gallace & Spence, 2014, for a rich characterization of touch). The skin, our organ of cutaneous touch, is thought to account for 16–18% of body mass (Montagu, 1978). As such, touch can certainly be considered the bodily sense, being distributed not just in our haptic organs (typically our hands; see Radman, 2013), but throughout and covering our bodies. Partly as a result of this, touch is pervasive in sensory experience. It is also our first sense: At 7 weeks of gestation, a human fetus will move if its lips are touched (Hooker, 1952).

Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 238 - 262
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerley, R., Backlund Wasling, H., Liljencrantz, J., Olausson, H., Johnson, R. D., & Wessberg, J. (2014). Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. Journal of Neuroscience, 34, 28792883.Google Scholar
Adolph, K. E., Karasik, L. B., & Tamis-LeMonda, C. S. (2010). Motor skill. In Bornstein, M. (Ed.), Handbook of cultural developmental science (pp. 6189). New York, NY: Psychology Press.Google Scholar
Ang, J. Y., Lua, J. L., Mathur, A., Thomas, R., Asmar, B. I., Savasan, S., … Shankaran, S. (2012). A randomized placebo-controlled trial of massage therapy on the immune system of preterm infants. Pediatrics, 130, e1549e1558.CrossRefGoogle ScholarPubMed
Azañón, E., Camacho, K., Morales, M., & Longo, M. R. (2018). The sensitive period for tactile remapping does not include early infancy. Child Development, 89, 13941404.CrossRefGoogle Scholar
Bahrick, L. E., & Lickliter, R. (2012). The role of intersensory redundancy in early perceptual, cognitive, and social development. In Bremner, A. J., Lewkowicz, D. J., & Spence, C. (Eds.), Multisensory development (pp. 183205). Oxford: Oxford University Press.CrossRefGoogle Scholar
Bahrick, L. E., & Watson, J. S. (1985). Detection of intermodal proprioceptive-visual contingency as a potential basis of self-perception in infancy. Developmental Psychology, 21, 963973.CrossRefGoogle Scholar
Bartocci, M., Bergqvist, L. L., Lagercrantz, H., & Anand, K. J. S. (2006). Pain activates cortical areas in the preterm newborn brain. Pain, 122, 109117.Google Scholar
Begum Ali, J., Spence, C., & Bremner, A. J. (2015). Human infants’ ability to perceive touch in external space develops postnatally. Current Biology, 25, R978R979.Google Scholar
Begum Ali, J., Thomas, R. L., Mullen, S., & Bremner, A. J. (under review). Sensitivity to visual–tactile colocation on the body prior to skilled reaching in early infancy.Google Scholar
Botvinick, M., & Cohen, J. (1998). Rubber hands “feel” touch that eyes see. Nature, 391, 756.Google Scholar
Bremner, A. J. (2018). The origins of body representations in early life. In Alsmith, A. J. T. & de Vignemont, F. (Eds.), The subject’s matter: Self-consciousness and the body (pp. 332). Cambridge, MA: MIT Press.Google Scholar
Bremner, A. J., Lewkowicz, D. J., & Spence, C. (Eds.). (2012). Multisensory development. Oxford: Oxford University Press.CrossRefGoogle Scholar
Bremner, A. J., Mareschal, D., Lloyd-Fox, S., & Spence, C. (2008). Spatial localization of touch in the first year of life: Early influence of a visual code, and the development of remapping across changes in limb position. Journal of Experimental Psychology: General, 137, 149162.CrossRefGoogle ScholarPubMed
Bremner, A. J., & Spence, C. (2017). The development of tactile perception. In Benson, J. (Ed.), Advances in child development and behavior (Vol. 52, pp. 227268). Oxford: Elsevier.Google Scholar
Brownell, C. A., Nichols, S. R., Svetlova, M., Zerwas, S., & Ramani, G. (2010). The head bone’s connected to the neck bone: When do toddlers represent their own body topography? Child Development, 81, 797810.Google Scholar
Bushnell, E. W., & Boudreau, J. P. (1993). Motor development and the mind: The potential role of motor abilities as a determinant of aspects of perceptual development. Child Development, 64, 10051021.Google Scholar
Butterworth, G., & Hopkins, B. (1988). Hand–mouth coordination in the new-born baby. British Journal of Developmental Psychology, 6, 303314.CrossRefGoogle Scholar
Castiello, U., Becchio, C., Zoia, S., Nelini, C., Sartori, L., Blason, L., … Gallese, V. (2010). Wired to be social: The ontogeny of human interaction. PLoS ONE, 5, e13199.Google Scholar
Chinn, L. K., Hoffmann, M., Leed, J. E., & Lockman, J. J. (2019). Reaching with one arm to the other: Coordinating touch, proprioception, and action during infancy. Journal of Experimental Child Psychology, 183, 1932.CrossRefGoogle Scholar
Chinn, L. K., Noonan, C. F., Hoffmann, M., & Lockman, J. J. (2019). Development of infant reaching strategies to tactile targets on the face. Frontiers in Psychology, 10(9). https://doi.org/10.3389/fpsyg.2019.00009CrossRefGoogle Scholar
Classen, C. (Ed.). (2005). The book of touch. Oxford: Berg.Google Scholar
Cole, J., & Paillard, J. (1995). Living without touch and peripheral information about body position and movement: Studies with deafferented subjects. In Bermudez, J. L., Marcel, A., & Eilan, N. (Eds.), The body and the self (pp. 245266). Cambridge, MA: MIT Press.Google Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 5970.Google Scholar
Crucianelli, L., Wheatley, L., Filippetti, M. L., Jenkinson, P. M., Kirk, E., & Fotopoulou, A. K. (2019). The mindedness of maternal touch: An investigation of maternal mind-mindedness and mother–infant touch interactions. Developmental Cognitive Neuroscience, 35, 4756.Google Scholar
Demattè, M. L., Sanabria, D., Sugarman, R., & Spence, C. (2006). Cross-modal interactions between olfaction and touch. Chemical Senses, 31, 291300.Google Scholar
de Vignemont, F., Majid, A., Jola, C., & Haggard, P. (2009). Segmenting the body into parts: evidence from biases in tactile perception. Quarterly Journal of Experimental Psychology, 62, 500512.Google Scholar
de Vries, J. I. P., Visser, G. H. A., & Prechtl, H. F. R. (1984). Fetal motility in the first half of pregnancy. Clinics in Developmental Medicine, 94, 4664.Google Scholar
Diego, M. A., Field, T., & Hernandez-Reif, M. (2005). Vagal activity, gastric motility, and weight gain in massaged preterm neonates. Journal of Pediatrics, 147, 5055.Google Scholar
Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429433.Google Scholar
Fabrizi, L., Slater, R., Worley, A., Meek, J., Boyd, S., Olhede, S., & Fitzgerald, M. (2011). A shift in sensory processing that enables the developing human brain to discriminate touch from pain. Current Biology, 21, 15521558.Google Scholar
Fairhurst, M. T., Löken, L., & Grossmann, T. (2014). Physiological and behavioral responses reveal 9-month-old infants’ sensitivity to pleasant touch. Psychological Science, 25, 11241131.Google Scholar
Field, T. (2001). Touch. Cambridge, MA: MIT Press.Google Scholar
Field, T., & Hernandez-Reif, M. (2001). Sleep problems in infants decrease following massage therapy. Early Child Development & Care, 168, 95104.Google Scholar
Filippetti, M. L., Johnson, M. H., Lloyd-Fox, S., Dragovic, D., & Farroni, T. (2013). Body perception in newborns. Current Biology, 23, 24132416.Google Scholar
Filippetti, M. L., Lloyd-Fox, S., Longo, M. R., Farroni, T., & Johnson, M. H., (2014). Neural mechanisms of body awareness in infants. Cerebral Cortex, 25(1), 19.Google ScholarPubMed
Filippetti, M. L., Orioli, G., Johnson, M. H., & Farroni, T. (2015). Newborn body perception: Sensitivity to spatial congruency. Infancy, 20, 455465.Google Scholar
Freier, L., Mason, L., & Bremner, A. J. (2016). Perception of visual-tactile colocation in the first year of life. Developmental Psychology, 52, 21842190.Google Scholar
Gallace, A., & Spence, C. (2014). In touch with the future: The sense of touch from cognitive neuroscience to virtual reality. Oxford: Oxford University Press.Google Scholar
Gallagher, S. (2005). How the body shapes the mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
Gibson, J. J. (1966). The senses considered as perceptual systems. Oxford: Houghton-Mifflin.Google Scholar
Goksan, S., Hartley, C., Emery, F., Cockrill, N., Poorun, R., Moultrie, F., … Clare, S. (2015). fMRI reveals neural activity overlap between adult and infant pain. ELIFE, 4, e06356.Google Scholar
Gori, M., Del Viva, M. M., Sandini, G., & Burr, D. C. (2008). Young children do not integrate visual and haptic form information. Current Biology, 18, 694698.Google Scholar
Gori, M., Sandini, G., Martinoli, C., & Burr, D. (2010). Poor haptic orientation discrimination in nonsighted children may reflect disruption of cross-sensory calibration. Current Biology, 20, 223225.CrossRefGoogle ScholarPubMed
Gottlieb, G. (1971). Ontogenesis of sensory function in birds and mammals. In Tobach, E., Aronson, L. R., & Shaw, E. (Eds.), The biopsychology of development (pp. 67128). New York, NY: Academic Press.Google Scholar
Gray, L., Watt, L., & Blass, E. M. (2000). Skin-to-skin contact is analgesic in healthy newborns. Pediatrics, 105, e14.Google Scholar
Harlow, H. F., & Zimmerman, R. R. (1959). Affectional response in the infant monkey. Science, 130, 421431.CrossRefGoogle ScholarPubMed
Hart, S., Field, T., Hernandez-Reif, M., & Lundy, B. (1998). Preschoolers’ cognitive performance improves following massage. Early Child Development & Care, 143, 5964.Google Scholar
Held, R., Ostrovsky, Y., de Gelder, B., Gandhi, T., Ganesh, S., Mathur, U., & Sinha, P. (2011). The newly sighted fail to match seen with felt. Nature Neuroscience, 14, 551553.Google Scholar
Hoffmann, M., Chinn, L. K., Somogyi, E., Heed, T., Fagard, J., Lockman, J. J., & O’Regan, J. K. (2017). Development of reaching to the body in early infancy: From experiments to robotic models. Paper presented at the 2017 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Lisbon, Portugal.CrossRefGoogle Scholar
Holmes, N. P., & Spence, C. (2004). The body schema and multisensory representation(s) of peripersonal space. Cognitive Processing, 5, 94105.Google Scholar
Hooker, D. (1952). The prenatal origin of behavior. Lawrence: University of Kansas Press.Google Scholar
Hopkins, B., & Westra, T. (1988). Maternal handling and motor development: An intracultural study. Genetic, Social, and General Psychology Monographs, 114, 377408.Google Scholar
Humphrey, T. (1964). Some correlations between the appearance of human fetal reflexes and the development of the nervous system. Progress in Brain Research, 4, 93135.CrossRefGoogle Scholar
Jönsson, E. H., Kotilahti, K., Heiskala, J., Backlund Wasling, H., Olausson, H., Croy, I., … Karlsson, L. (2018). Affective and non-affective touch evoke differential brain responses in 2-month-old infants. NeuroImage, 169, 162171.Google Scholar
Jouen, F., & Molina, M. (2005). Exploration of the newborn’s manual activity: A window onto early cognitive processes. Infant Behavior & Development, 28, 227239.CrossRefGoogle Scholar
Jousmäki, V., & Hari, R. (1998). Parchment-skin illusion: Sound-biased touch. Current Biology, 8, R190-R191.CrossRefGoogle ScholarPubMed
Kahrimanovic, M., Bergmann Tiest, W. M., & Kappers, A. M. (2010). Haptic perception of volume and surface area of 3-D objects. Attention, Perception, & Psychophysics, 72, 517527.Google Scholar
Kalagher, H., & Jones, S. S. (2011a). Developmental change in young children’s use of haptic information in a visual task: The role of hand movements. Journal of Experimental Child Psychology, 108, 293307.Google Scholar
Kalagher, H., (2011b). Young children’s haptic exploratory procedures. Journal of Experimental Child Psychology, 110, 592602.Google Scholar
Karasik, L. B., Tamis-LeMonda, C. S., Ossmy, O., & Adolph, K. E. (2018). The ties that bind: Cradling in Tajikistan. PLoS ONE, 13, e0204428.CrossRefGoogle ScholarPubMed
Kida, T., & Shinohara, K. (2013). Gentle touch activates the prefrontal cortex in infancy: A NIRS study. Neuroscience Letters, 541, 6366.Google Scholar
Kisilevsky, B. S., & Muir, D. W. (1984). Neonatal habituation and dishabituation to tactile stimulation during sleep. Developmental Psychology, 20, 367373.Google Scholar
Krsnik, Ž., Majić, V., Vasung, L., Huang, H., & Kostović, I. (2017). Growth of thalamocortical fibers to the somatosensory cortex in the human fetal brain. Frontiers in Neuroscience, 11, 233.CrossRefGoogle Scholar
Le Cornu Knight, F., Bremner, A. J., & Cowie, D. (2020). Does the language we use to segment the body, shape the way we perceive it? A study of tactile perceptual distortions. Cognition, 197, 104127. doi:10.1016/j.cognition.2019.104127Google Scholar
Le Cornu Knight, F., Cowie, D., & Bremner, A. J. (2016). Part-based representations of the body in early childhood: Evidence from perceived distortions of tactile space across limb boundaries. Developmental Science, 20(6), e12439.Google Scholar
Le Cornu Knight, F., Longo, M., & Bremner, A. J. (2014). Categorical perception of tactile distance. Cognition, 131, 254262.Google Scholar
Lederman, S. J., & Klatzky, R. L. (2009). Haptic perception: A tutorial. Attention, Perception, & Psychophysics, 71, 14391459.Google Scholar
Lee, H. K. (2005). The effect of infant massage on weight gain: Physiological and behavioral responses in premature infants. Taehan Kanho Hakhoe Chi, 35, 14511460.Google Scholar
Ley, P., Bottari, D., Shenoy, B. H., Kekunnaya, R., & Röder, B. (2013). Partial recovery of visual–spatial remapping of touch after restoring vision in a congenitally blind man. Neuropsychologia, 51, 11191123.Google Scholar
Lipsitt, L. P. (2002). The newborn as informant. In Fagan, J. W. & Hayne, H. (Eds.), Progress in infancy research, vol. 2 (pp. 2750). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Löken, L. S., Wessberg, J., Morrison, I., McGlone, F., & Olausson, H. (2009). Coding of pleasant touch by unmyelinated afferents in humans. Nature Neuroscience, 12, 547548.Google Scholar
Maister, L., Tang, T., & Tsakiris, M. (2017). Neurobehavioral evidence of interoceptive sensitivity in early infancy. ELIFE, 6, e25318.CrossRefGoogle ScholarPubMed
Maitre, N. L., Key, A. P., Chorna, O. D., Slaughter, J. C., Matusz, P. J., Wallace, M. T., & Murray, M. M. (2017). The dual nature of early-life experience on somatosensory processing in the human infant brain. Current Biology, 27, 10481054.CrossRefGoogle ScholarPubMed
Majid, A. (2010). Words for parts of the body. In Malt, B., & Wolff, P. (Eds.), Words and the mind: How words capture human experience (pp. 5871). Oxford: Oxford University Press.Google Scholar
Ma-Kellams, C., Blascovich, J., & McCall, C. (2012). Culture and the body: East–West differences in visceral perception. Journal of Personality and Social Psychology, 102, 718–28.Google Scholar
Marcus, L., Lejeune, F., Berne-Audéoud, F., Gentaz, E., & Debillon, T. (2012). Tactile sensory capacity of the preterm infant: Manual perception of shape from 28 gestational weeks. Pediatrics, 130, e88e94.Google Scholar
Markus, H. R., & Kitayama, S. (1991). Culture and the self: Implications for cognition, emotion, and motivation. Psychological Review, 98, 224253.CrossRefGoogle Scholar
Marshall, P. J., & Meltzoff, A. N. (2015). Body maps in the infant brain. Trends in Cognitive Sciences, 19, 499505.Google Scholar
Maurer, D., Stager, C. L., & Mondloch, C. J. (1999). Cross-modal transfer of shape is difficult to demonstrate in one-month-olds. Child Development, 70, 10471057.Google Scholar
Meins, E., Fernyhough, C., Fradley, E., & Tuckey, M. (2001). Rethinking maternal sensitivity: Mothers’ comments on infants’ mental processes predict security of attachment at 12 months. Journal of Child Psychology and Psychiatry and Allied Disciplines, 42, 637648.Google Scholar
Meltzoff, A. N., & Borton, R. W. (1979). Intermodal matching by human neonates. Nature, 282, 403404.Google Scholar
Meltzoff, A. N., Ramírez, R. R., Saby, J. N., Larson, E., Taulu, S., & Marshall, P. J. (2018). Infant brain responses to felt and observed touch of hands and feet: An MEG study. Developmental Science, 21, e12651.Google Scholar
Meltzoff, A. N., Saby, J. N., & Marshall, P. J. (2019). Neural representations of the body in 60-day-old human infants. Developmental Science, 22, e12698.Google Scholar
Miguel, H. O., Lisboa, I. C., Gonçalves, Ó. F., & Sampaio, A. (2019). Brain mechanisms for processing discriminative and affective touch in 7-month-old infants. Developmental Cognitive Neuroscience, 35, 2027.CrossRefGoogle ScholarPubMed
Milh, M., Kaminska, A., Huon, C., Lapillonne, A., Ben-Ari, Y., & Khazipov, R. (2007). Rapid cortical oscillations and early motor activity in premature human neonate. Cerebral Cortex, 17, 15821594.Google Scholar
Montagu, A. (1978). Touching: The human significance of the skin. New York, NY: Harper & Row.Google Scholar
Moreau, T., Helfgott, E., Weinstein, P., & Milner, P. (1978). Lateral differences in habituation of ipsilateral head-turning to repeated tactile stimulation in the human newborn. Perceptual & Motor Skills, 46, 427436.Google Scholar
Murphy, J., Brewer, R., Catmur, C., & Bird, G. (2017). Interoception and psychopathology: A developmental neuroscience perspective. Developmental Cognitive Neuroscience, 23, 4556.Google Scholar
Nevalainen, P., Lauronen, L., & Pihko, E. (2014). Development of human somatosensory cortical functions – what have we learned from magnetoencephalography: A review. Frontiers in Human Neuroscience, 8, 158.CrossRefGoogle ScholarPubMed
Norris, S., Campbell, L. A., & Brenkert, S. (1981). Nursing procedures and alterations in transcutaneous oxygen tension in premature infants. Nursing Research, 31, 330336.Google Scholar
Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man: A clinical study of localization. Oxford: Macmillan.Google Scholar
Pirazzoli, L., Lloyd-Fox, S., Braukmann, R., Johnson, M. H., & Gliga, T. (2019). Hand or spoon? Exploring the neural basis of affective touch in 5-month-old infants. Developmental Cognitive Neuroscience, 35, 2835.Google Scholar
Quattrocki, E., & Friston, K. (2014). Autism, oxytocin and interoception. Neuroscience & Biobehavioral Reviews, 47, 410430.Google Scholar
Radman, Z. (2013). The hand, an organ of the mind: What the manual tells the mental. Cambridge, MA: MIT Press.Google Scholar
Rigato, S., Begum Ali, J., van Velzen, J., & Bremner, A. J. (2014). The neural basis of somatosensory remapping develops in human infancy. Current Biology, 24, 12221226.Google Scholar
Rochat, P. (1998). Self-perception and action in infancy. Experimental Brain Research, 123, 102109.Google Scholar
Rochat, P. (2010). The innate sense of the body develops to become a public affair by 2–3 years. Neuropsychologia, 48, 738745.Google Scholar
Rochat, P., & Hespos, S. J. (1997). Differential rooting response by neonates: Evidence for an early sense of self. Early Development & Parenting, 64, 153188.Google Scholar
Rochat, P., & Senders, S. J. (1991). Active touch in infancy: Action systems in development. In Weiss, M. J. S. & Zelazo, P. R. (Eds.), Newborn attention: Biological constraints and the influence of experience (pp. 412442). Westport, CT: Ablex.Google Scholar
Röder, B., Rösler, F., & Spence, C. (2004). Early vision impairs tactile perception in the blind. Current Biology, 14, 121124.Google Scholar
Rose, S. A. (1994). From hand to eye: Findings and issues in infant cross-modal transfer. In Lewkowicz, D.J., & Lickliter, R. (Eds.), The development of intersensory perception: Comparative perspectives (pp. 265284). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Rose, S. A., Gottfried, A. W., & Bridger, W. H. (1981). Cross-modal transfer in 6-month-old infants. Developmental Psychology, 17, 661669.Google Scholar
Saby, J. N., Meltzoff, A. N., & Marshall, P. J. (2015). Neural body maps in human infants: Somatotopic responses to tactile stimulation in 7-month-olds. NeuroImage, 118, 7478.CrossRefGoogle ScholarPubMed
Schicke, T., & Röder, B. (2006). Spatial remapping of touch: Confusion of perceived stimulus order across hand and foot. Proceedings of the National Academy of Sciences of the United States of America, 103, 1180811813.CrossRefGoogle ScholarPubMed
Shen, G., Weiss, S. M., Meltzoff, A. N., & Marshall, P. J. (2018). The somatosensory mismatch negativity as a window into body representations in infancy. International Journal of Psychophysiology, 134, 144150.CrossRefGoogle ScholarPubMed
Somogyi, E., Jacquey, L., Heed, T., Hoffmann, M., Lockman, J. J., Granjon, L., … O’Regan, J. K. (2018). Which limb is it? Responses to vibrotactile stimulation in early infancy. British Journal of Developmental Psychology, 36, 384401.Google Scholar
Stein, B. E. (Ed.) (2012). The new handbook of multisensory processes. Cambridge, MA: MIT Press.Google Scholar
Streri, A. (2012). Crossmodal interactions in the human newborn: New answers to Molyneux’s question. In Bremner, A. J., Lewkowicz, D. J., & Spence, C. (Eds.), Multisensory development (pp. 88112). Oxford: Oxford University Press.Google Scholar
Streri, A., Lhote, M., & Dutilleul, S. (2000). Haptic perception in newborns. Developmental Science, 3, 319327.Google Scholar
Thomas, R. L., Misra, R., Akkunt, E., Ho, C., Spence, C., & Bremner, A. J. (2018). Sensitivity to auditory-tactile colocation in early infancy. Developmental Science, 21, e12597.Google Scholar
Tiriac, A., Sokoloff, G., & Blumberg, M. S. (2015). Myoclonic twitching and sleep-dependent plasticity in the developing sensorimotor system. Current Sleep Medicine Reports, 1, 7479.Google Scholar
Turkewitz, G. (1994). Sources of order for intersensory functioning. In Lewkowicz, D. J., & Lickliter, R. (Eds.), The development of intersensory perception: Comparative perspectives (pp. 318). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Tuulari, J. J., Scheinin, N. M., Lehtola, S., Merisaari, H., Saunavaara, J., Parkkola, R., … Björnsdotter, M. (2019). Neural correlates of gentle skin stroking in early infancy. Developmental Cognitive Neuroscience, 35, 3641.Google Scholar
Zappella, M., & Simopoulos, A. (1966). The crossed-extension reflex in the newborn. Annales Paediatriae Fenniae, 12, 3033.Google Scholar
Zmyj, N., Jank, J., Schütz-Bosbach, S., & Daum, M. M. (2011). Detection of visual-tactile contingency in the first year after birth. Cognition, 120, 8289.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×