Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T08:28:29.697Z Has data issue: false hasContentIssue false

Part II - Possible Chondrule-Forming Mechanisms

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Chondrules are the millimeter-scale previously molten droplets found in chondritic meteorites. These pervasive yet enigmatic particles hint at energetic processes at work in the nascent solar system. Chondrules and chondrites are well studied and many of the details about their compositions, ages, and thermal histories are well known. Without the proper context of a formation mechanism, however, we can only imagine what chondrules may reveal about the processes at work in the early solar system. In this chapter, we explore the hypothesis that chondrules were formed by impacts between growing planetary embryos. Specifically, we focus on shock heating associated with accretionary impacts as a means for melting chondrule precursor material. Although we discuss previous work on impact origin for chondrules, much of this chapter focuses on a new incarnation of this old idea, the impact jetting model. We explore the predictions of this model and its implications for our understanding of early solar system history and meteoritics. Throughout the chapter, we discuss potential issues and uncertainties with the model while identifying avenues for further development and testing of the impact origin hypothesis.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 341 - 436
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alexander, C. M. O’D., and Ebel, D. S. (2012). Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteoritics & Planetary Science 47, 11571175.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science 320, 16171619.CrossRefGoogle ScholarPubMed
Alexander, C. M. O’D., and Hewins, R. H. (2004). Mass fractionation of Fe and Ni isotopes in metal in Hammadah al Hamra 237 (abstract). Meteoritics & Planetary Science 39, A13.Google Scholar
Asphaug, E., Jutzi, M., and Movshovitz, N. (2011). Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters 308, 369379.CrossRefGoogle Scholar
Becker, M., Hezel, D. C., Schulz, T., Elfers, B., and Münker, C. (2015). Formation timescales of CV chondrites from component specific Hf–W systematics. Earth and Planetary Science Letters, 432, 472482.CrossRefGoogle Scholar
Bland, P. A., Alard, O., Benedix, G. K., et al. (2005). Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proceedings of the National Academy of Sciences 102, 1375513760.CrossRefGoogle ScholarPubMed
Bland, P. A., Collins, G. S., Davison, T. M., et al. (2014). Pressure–temperature evolution of primordial solar system solids during impact-induced compaction. Nature Communications 5, 5451.CrossRefGoogle ScholarPubMed
Bollard, J., Connelly, J. N., and Bizzarro, M. (2015). Pb-Pb dating of individual chondrules from the CB achondrite Gujba: Assessment of the impact plume formation model. Meteoritics & Planetary Science 50, 11971216.CrossRefGoogle Scholar
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017). Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances 3, e1700407.CrossRefGoogle ScholarPubMed
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016). Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences 113, 28862891.CrossRefGoogle ScholarPubMed
Campbell, A. J., Humayun, M., and Weisberg, M. K. (2002). Siderophile element constraints on the formation of metal in the metal-rich chondrites Bencubbin, Weatherford, and Gujba. Geochimica et Cosmochimica Acta 66, 647660.CrossRefGoogle Scholar
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., et al. (2011). Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proceedings of the National Academy of Sciences 108, 63866389.CrossRefGoogle Scholar
Cassen, P. (2001). Nebular thermal evolution and the properties of primitive planetary materials. Meteoritics & Planetary Science, 36, 671700.CrossRefGoogle Scholar
Chambers, J. E. (2004). Planetary accretion in the inner Solar System. Earth and Planetary Science Letters 223, 241252.CrossRefGoogle Scholar
Chiang, E., and Youdin, A. N. (2010). Forming planetesimals in solar and extrasolar nebulae. Annual Review of Earth and Planetary Sciences 38, 493522.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651655. doi:10.1126/science.1226919.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., and Alexander, C. M. O’D. (2006). Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature 441, 483485.CrossRefGoogle ScholarPubMed
Dauphas, N., and Pourmand, A. (2011). Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489492.CrossRefGoogle ScholarPubMed
Davis, A. M., Alexander, C. M., Nagahara, H., and Richter, F. M. (2005). Evaporation and condensation during CAI and chondrule formation. Chondrites and the Protoplanetary Disk 341, 432455.Google Scholar
Davison, T. M., O’Brien, D. P., Ciesla, F. J., and Collins, G. S. (2013). The early impact histories of meteorite parent bodies. Meteoritics & Planetary Science 48, 18941918.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C., and Boss, A. P. (2012). The importance of experiments: Constraints on chondrule formation models. Meteoritics & Planetary Science 47, 11391156.CrossRefGoogle Scholar
Dullemond, C. P., Stammler, S. M., and Johansen, A. (2014). Forming chondrules in impact splashes. I. Radiative cooling model. The Astrophysical Journal 794, 9112.CrossRefGoogle Scholar
Dullemond, C. P., Harsono, D., Stammler, S. M., and Johansen, A. (2016). Forming chondrules in impact splashes. II. Volatile retention. The Astrophysical Journal 832, 9119.CrossRefGoogle Scholar
Ebel, D. S., and Grossman, L. (2000). Condensation in dust-enriched systems. Geochimica et Cosmochimica Acta 64, 339366.CrossRefGoogle Scholar
Elkins-Tanton, L. T., Weiss, B. P., and Zuber, M. T. (2011). Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters 305, 110.CrossRefGoogle Scholar
Evans, N. J. I., Dunham, M. M., Jørgensen, J. K., et al. (2009). The Spitzer c2d legacy results: Star-formation rates and efficiencies; evolution and lifetimes. The Astrophysical Journal Supplement 181, 321350.CrossRefGoogle Scholar
Fedkin, A. V., and Grossman, L. (2013). Vapor saturation of sodium: Key to unlocking the origin of chondrules. Geochimica et Cosmochimica Acta 112, 226250.CrossRefGoogle Scholar
Friedrich, J. M., Weisberg, M. K., Ebel, D. S., and Biltz, A. E. (2015). Chondrule size and related physical properties: A compilation and evaluation of current data across all meteorite groups. Chemie der Erde - Geochemistry 75, 419443.CrossRefGoogle Scholar
Fu, R. R., and Elkins-Tanton, L. T. (2014). The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters 390, 128137.CrossRefGoogle Scholar
Fu, R. R., Weiss, B. P., Lima, E. A., et al. (2014). Solar nebula magnetic fields recorded in the Semarkona meteorite. Science 346, 10891092.CrossRefGoogle ScholarPubMed
Glass, B. P., and Simonson, B. M. (2012). Distal impact ejecta layers: spherules and more. Elements 8, 4348.CrossRefGoogle Scholar
Hasegawa, Y., Turner, N. J., Masiero, J., et al. (2016). Forming chondrites in a solar nebula with magnetically induced turbulence. The Astrophysical Journal Letters 820, L12.CrossRefGoogle Scholar
Hasegawa, Y., Wakita, S., Matsumoto, Y., and Oshino, S. (2015). Chondrule formation via impact jetting triggered by planetary accretion. The Astrophysical Journal 816, 114.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth and Planetary Science Letters 294, 8593.CrossRefGoogle Scholar
Hood, L. L., Ciesla, F. J., Artemieva, N. A., Marzari, F., and Weidenschilling, S. J. (2009). Nebular shock waves generated by planetesimals passing through Jovian resonances: Possible sites for chondrule formation. Meteoritics & Planetary Science 44, 327342.CrossRefGoogle Scholar
Johansen, A., Blum, J., Tanaka, H., et al. (2014). The multifaceted planetesimal formation process. In Beuther, H., Klessen, R. S., Dullemond, C. P., and Henning, T. (Eds.), Protostars and Planets VI, 547570. Tucson, AZ: University of Arizona Press.Google Scholar
Johnson, B. C., Bowling, T. J., and Melosh, H. J. (2014). Jetting during vertical impacts of spherical projectiles. Icarus 238, 1322.CrossRefGoogle Scholar
Johnson, B. C., Lisse, C. M., Chen, C. H., et al. (2012). A self-consistent model of the circumstellar debris created by a giant hypervelocity impact in the HD 172555 system. The Astrophysical Journal 761, 45.CrossRefGoogle Scholar
Johnson, B. C., and Melosh, H. J. (2014). Formation of melt droplets, melt fragments, and accretionary impact lapilli during a hypervelocity impact. Icarus 228, 347363.CrossRefGoogle Scholar
Johnson, B. C., and Melosh, H. J. (2012a). Formation of spherules in impact produced vapor plumes. Icarus 217, 416430.CrossRefGoogle Scholar
Johnson, B. C., and Melosh, H. J. (2012b). Impact spherules as a record of an ancient heavy bombardment of Earth. Nature 485, 7577.CrossRefGoogle ScholarPubMed
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature 517, 339341.CrossRefGoogle ScholarPubMed
Johnson, B. C., Walsh, K. J., Minton, D. A., Krot, A. N., and Levison, H. F. (2016). Timing of the formation and migration of giant planets as constrained by CB chondrites. Science Advances 2, e1601658.CrossRefGoogle ScholarPubMed
Jutzi, M., Asphaug, E., Gillet, P., Barrat, J. A., and Benz, W. (2013). The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature 494, 207210.CrossRefGoogle ScholarPubMed
Kieffer, S. W. (1975). Droplet Chondrules. Science 189, 333340.CrossRefGoogle ScholarPubMed
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005). Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature 436, 989992.CrossRefGoogle Scholar
Krot, A. N., Keil, K., Scott, E. R. D., Goodrich, C. A. and Weisberg, M. K. (2007). Classification of meteorites and their genetic relationships. In Holland, H. and Turekian, K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 163. Oxford, UK: Elsevier.Google Scholar
Kruijer, T. S., Touboul, M., Fischer-Godde, M., et al. (2014). Protracted core formation and rapid accretion of protoplanets. Science 344, 11501154.CrossRefGoogle ScholarPubMed
Kruijer, T. S., Burkhardt, C., Budde, G., and Kleine, T. (2017). Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences 312, 201704461–5.Google Scholar
Kurosawa, K., Nagaoka, Y., Senshu, H., et al. (2015). Dynamics of hypervelocity jetting during oblique impacts of spherical projectiles investigated via ultrafast imaging. Journal of Geophysical Research: Planets 120, 12371251.CrossRefGoogle Scholar
Levison, H. F., Duncan, M. J., and Thommes, E. (2012). A Lagrangian Integrator for Planetary Accretion and Dynamics (LIPAD). The Astronomical Journal 144, 119.CrossRefGoogle Scholar
Levison, H. F., Kretke, K. A., and Duncan, M. J. (2015). Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322324.CrossRefGoogle ScholarPubMed
Lofgren, G. (1989). Dynamic cyrstallization of chondrule melts of porphyritic olivine composition: Textures experimental and natural. Geochimica et Cosmochimica Acta 53, 461470.CrossRefGoogle Scholar
Minton, D. A., and Malhotra, R. (2010). Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System. Icarus 207, 744757.CrossRefGoogle Scholar
O’Brien, D. P., Morbidelli, A., and Bottke, W. F. (2007). The primordial excitation and clearing of the asteroid belt—Revisited. Icarus 191, 434452.CrossRefGoogle Scholar
Palme, H., Lodders, K., and Jones, A. (2014). Solar system abundances of the elements. In Holland, H. and Turekian, K. (Eds.), Treatise on Geochemistry (Second Edition), 2, 1536. Oxford, UK: Elsevier.CrossRefGoogle Scholar
Pierazzo, E., Vickery, A. M., and Melosh, H. J. (1997). A reevaluation of impact melt production. Icarus 127, 408423.CrossRefGoogle Scholar
Richter, F. M., Huss, G. R., and Mendybaev, R. A. (2014). Iron and nickel isotopic fractionation across metal grains from three CBb meteorites. Lunar Planet. Sci. Conf. XLV, #1346.Google Scholar
Roszjar, J., Whitehouse, M. J., Srinivasan, G., et al. (2016). Prolonged magmatism on 4 Vesta inferred from Hf–W analyses of eucrite zircon. Earth and Planetary Science Letters 452, 216226.CrossRefGoogle Scholar
Ruden, S. P., and Pollack, J. B. (1991). The dynamical evolution of the protosolar nebula. The Astrophysical Journal, 375, 740760.CrossRefGoogle Scholar
Sanders, I. S., and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics & Planetary Science 47, 21702192.CrossRefGoogle Scholar
Schmitz, B., Yin, Q. Z., Sanborn, M. E., et al. (2016). A new type of solar-system material recovered from Ordovician marine limestone. Nature Communications 7, ncomms11851.CrossRefGoogle ScholarPubMed
Schulte, P., Alegret, L., Arenillas, I., et al. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 12141218.CrossRefGoogle ScholarPubMed
Scott, E. R. D. (2007). Chondrites and the protoplanetary disk. Annual Review of Earth and Planetary Sciences 35, 577620.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2003). Chondrites and their components. In Holland, H. and Turekian, K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 65137. Oxford, UK: Elsevier.Google Scholar
Sorby, H. C. (1877). On the structure and origin of meteorites. Nature 15, 495498.Google Scholar
Taylor, G. J., Scott, E. R. D., and Keil, K. (1982). Cosmic setting for chondrule formation. Abstracts of Papers Presented to the Conference on Chrondrules and Their Origins, 493, 58. Houston, TX: Lunar and Planetary Institute.Google Scholar
Urey, H. C. (1952). Chemical fractionation in the meteorites and the abundance of the elements. Geochimica et Cosmochimica Acta 2, 269282.CrossRefGoogle Scholar
Van Kooten, E. M. M. E., Wielandt, D., Schiller, M., et al. (2016). Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proceedings of the National Academy of Sciences 113, 20112016.CrossRefGoogle ScholarPubMed
Vickery, A. M. (1993). The theory of jetting: Application to the origin of tektites. Icarus 105, 441453.CrossRefGoogle Scholar
Villeneuve, J., Libourel, G., and Soulié, C. (2015). Relationships between type I and type II chondrules: Implications on chondrule formation processes. Geochimica et Cosmochimica Acta 160, 277305.CrossRefGoogle Scholar
Walsh, J. M., Shreffler, R. G., and Willig, F. J. (1953). Limiting conditions for jet formation in high velocity collisions. Journal of Applied Physics 24, 349.CrossRefGoogle Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., and O’Brien, D. P. (2011). A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206209.CrossRefGoogle ScholarPubMed
Warren, P. H. (2011). Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters 311, 93100.CrossRefGoogle Scholar
Weidenschilling, S. J. (2011). Initial sizes of planetesimals and accretion of the asteroids. Icarus 214, 671684.CrossRefGoogle Scholar
Weidenschilling, S. J., Marzari, F., and Hood, L. L. (1998). The origin of chondrules at jovian resonances. Science 279, 681684.CrossRefGoogle ScholarPubMed
Weisberg, M. K., Prinz, M., Clayton, R. N., et al. (2001). A new metal-rich chondrite grouplet. Meteoritics & Planetary Science 36, 401418.CrossRefGoogle Scholar

References

Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 16171619.CrossRefGoogle ScholarPubMed
Asphaug, E., Jutzi, M., and Movshovitz, M. (2011). Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters 308, 369379.CrossRefGoogle Scholar
Bischoff, A., Wurm, G., Chaussidon, M., et al. (2017). The Allende multicompound chondrule (ACC) – Chondrule formation in a local super-dense region of the early solar system. Meteoritics and Planetary Science 52, 906924.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016a). Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences 113, 28862891.CrossRefGoogle ScholarPubMed
Budde, G., Burkhardt, C., Brennecks, G. A., et al. (2016b). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth and Planetary Science Letters 454, 293303.CrossRefGoogle Scholar
Budde, G., Kruijer, T. S., and Kleine, T. (2018). Hafnium-tungsten chronology of CR chon- drites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochimica et Cosmochimica Acta 222, 284–304.CrossRefGoogle Scholar
Chen, J. H., Papanastassiou, D. A., and Wasserburg, G. J. (1998). Re-Os systematics in chondrites and the fractionation of the platinum group elements in the early solar system. Geochimica et Cosmochimica Acta 62, 33793392.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651655.CrossRefGoogle ScholarPubMed
Dullemond, C. P., Stammler, S. M., and Johansen, A. (2014). Forming chondrules in impact splashes. I. Radiative cooling model. The Astrophysical Journal 794, 91.CrossRefGoogle Scholar
Dullemond, C. P., Harsono, D., Stammler, S. M., and Johansen, A. (2016). Forming Chondrules in Impact Splashes II Volatile Retention. The Astrophysical Journal, 832, article id. 91.CrossRefGoogle Scholar
Faure, F., Tissandier, L., Libourel, G., Romain, M., and Welsch, B. (2012). Origin of glass inclusions hosted in magnesian porphyritic olivine chondrules: Deciphering planetesimal compositions. Earth and Planetary Science Letters 319, 18.CrossRefGoogle Scholar
Faure, F., Tissandier, L., Florentin, L., and Devineau, K. (2017). A magmatic origin for silica-rich glass inclusions hosted in porphyritic magnesian olivines in chondrules: An experimental study. Geochimica et Cosmochimica Acta 204, 1931.CrossRefGoogle Scholar
Florentin, L., Faure, F., Deloule, E., et al. (2017). Origin of Na in glass inclusions hosted in olivine from Allende CV3 and Jbilet Winselwan CM2: Implications for chondrule formation. Earth and Planetary Science Letters 474, 160171.CrossRefGoogle Scholar
Gerber, S., Burkhardt, C., Budde, G., Metzler, K., and Kleine, T. (2017). Mixing and transport of dust in the early solar nebula as inferred from titanium isotope variations among chondrules. The Astrophysical Journal Letters, 841, L17.CrossRefGoogle Scholar
Grossman, J. N. (1988). Origin of chondrules. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the early Solar System, 680696. Tucson, AZ: University of Arizona Press.Google Scholar
Grossman, L., Fedkin, A. V., and Simon, S. B. (2012). Formation of the first oxidized iron in the solar system. Meteoritics and Planetary Science 47, 21602169.CrossRefGoogle Scholar
Hevey, P. J., and Sanders, I. S. (2006). A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics and Planetary Science 41, 95106.CrossRefGoogle Scholar
Hewins, R. H., Zanda, B., and Bendersky, C. (2012). Evaporation and recondensation of sodium in Semarkona Type II chondrules. Geochimica et Cosmochimica Acta 78, 117.CrossRefGoogle Scholar
Hutcheon, I. D., and Hutchison, R. (1989). Evidence from the Semarkona ordinary chondrite for 26Al heating of small planets. Nature 337, 238241.CrossRefGoogle Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature 517, 339341.CrossRefGoogle ScholarPubMed
Kennedy, A. K., Hutchison, R., Hutcheon, I. D., and Agrell, S. O. (1992). A unique high Mn/Fe microgabbro in the Parnallee (LL3) ordinary chondrite: Nebular mixture or planetary differentiate from a previously unrecognized planetary body? Earth and Planetary Science Letters 113, 191205.CrossRefGoogle Scholar
Kiefer, W. S., and Mittlefehldt, D. W. (2017). Differentiation of asteroid 4 Vesta: Core formation by iron rain in a silicate magma ocean. Lunar and Planetary Science Conference XLVIII, abstract # 1798.Google Scholar
Kita, N. T., Nagahara, H., Tachibana, S., et al. (2010). High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochimica et Cosmochimica Acta 74, 66106635.CrossRefGoogle Scholar
Kita, N. T., Tenner, T. J., Defouilloy, C., et al. (2015). Oxygen isotope systematics of chondrules in R3 clasts: A genetic link to ordinary chondrites. Lunar and Planetary Science Conference XLVI, abstract #2053.Google Scholar
Kleine, T., Mezger, K., Palme, H., Scherer, E., and Münker, C. (2005). Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites. Geochimica et Cosmochimica Acta 69, 58055818.CrossRefGoogle Scholar
Kleine, T., and Wadhwa, M. (2017). Chronology of Planetesimal Differentiation. In Elkins-Tanton, L. T. and Weiss, B. P. (Eds.), Planetesimals: Early differentiation and Consequences for Planets, 224245. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Kruijer, T. S., Burkhardt, C., Budde, G., and Kleine, T. (2017). Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences 114, 67126716.CrossRefGoogle ScholarPubMed
Larsen, K. K., Trinquier, A., Paton, C., et al. (2011). Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. The Astrophysical Journal Letters 735, L37L43.CrossRefGoogle Scholar
LaTourrette, T., and Wasserburg, G. J. (1998). Mg diffusion in anorthite: Implications for the formation of early solar system planetesimals. Earth and Planetary Science Letters 158, 91108.CrossRefGoogle Scholar
Lichtenberg, T., Golabek, G. J., Gerya, T. V., and Meyer, M. R. (2016). The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus 274, 350365.CrossRefGoogle Scholar
Lichtenberg, T., Golabek, G. J., Dullemond, C. P., Schönbãchler, M., Gerya, T. V., and Meyer, M. B. (2018). Impact splash chondrule formation during planetesimal recycling. Icarus, 302, 2743.CrossRefGoogle Scholar
Lugmair, G. W., and Shukolyukov, A. (2001). Early solar system events and timescales. Meteoritics and Planetary Science 36, 10171026.CrossRefGoogle Scholar
Metzler, K. (2012). Ultra-rapid chondrite formation by hot chondrule accretion? Evidence from unequilibrated ordinary chondrites. Meteoritics and Planetary Science 47, 21932217.CrossRefGoogle Scholar
Nagahara, H. (1981). Evidence for secondary origin of chondrules. Nature 292, 135136.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2015). Oxygen-isotope compositions of chondrule phenocrysts and matrix grains in Kakangari K-grouplet chondrite: Implication to a chondrule-matrix genetic relationship. Geochimica et Cosmochimica Acta 151, 4967.CrossRefGoogle Scholar
Niemeyer, S. (1985). Systematics of Ti isotopes in carbonaceous chondrites. Geophysical Research Letters, 12, 733736.CrossRefGoogle Scholar
Olsen, M. B., Wielandt, D., Schiller, M., Van Kooten, E. M. M. E., and Bizzarro, M. (2016). Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules – Insights into early disk processes. Geochimica et Cosmochimica Acta 191, 118138.CrossRefGoogle ScholarPubMed
Palme, H., Hezel, D. C., and Ebel, D. S. (2015). The origin of chondrules: Constraints from matrix composition and matrix-chondrule complementarity. Earth and Planetary Science Letters 411, 1119.CrossRefGoogle Scholar
Rambaldi, E. R. (1981). Relict grains in chondrules. Nature 293:558561.CrossRefGoogle Scholar
Schiller, M., Connelly, J. N., Aslaug, C. G., Mikouchi, T., and Bizzarro, M. (2015). Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth and Planetary Science Letters 420, 4554.CrossRefGoogle ScholarPubMed
Sanders, I. S. (1996). A chondrule-forming scenario involving molten planetesimals. In Hewins, R. H., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 327334. Cambridge, UK: Cambridge University Press.Google Scholar
Sanders, I. S., and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics and Planetary Sciences 47, 21702192.CrossRefGoogle Scholar
Sanders, I. S., and Taylor, G. J. (2005). Implications of 26Al in nebular dust: Formation of chondrules by disruption of molten planetesimals. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk. Astronomical Society of the Pacific Conference Series 341, 821–838. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Schrader, D. L., Nagashima, K., Fu, R. R., Davidson, J., and Ogliore, R. C. (2017). Evidence for chondrule migration from dusty olivine chondrules. Lunar and Planetary Science Conference XLVIII, abstract# 1271.Google Scholar
Soulié, C., Libourel, G., and Tissandier, L. (2017). Olivine dissolution in molten silicates: An experimental study with application to chondrule formation. Meteoritics and Planetary Sciences 52, 225250.CrossRefGoogle Scholar
Tachibana, S., Nagahara, H., Mostefaoui, S., and Kita, N. T. (2003). Correlation between relative ages inferred from 26Al and bulk compositions of ferromagnesian chondrules in least equilibrated ordinary chondrites. Meteoritics and Planetary Science 38, 939962.CrossRefGoogle Scholar
Taylor, G. J., Scott, E. R. D., and Keil, K. (1983). Cosmic setting for chondrule formation. In King, E. A. (Ed.), Chondrules and their origins, 262278. Houston, TX: Lunar and Planetary Institute.Google Scholar
Tenner, T. J., Nakashima, D. N., Ushikubo, T., Kita, N. T., and Weisberg, M. K. (2015). Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochimica et Cosmochimica Acta 148, 228250.CrossRefGoogle Scholar
Trinquier, A., Birck, J. -L., and Allègre, C. J. (2007). Widespread 54Cr heterogeneity in the inner Solar System. The Astrophysical Journal 655, 11791185.CrossRefGoogle Scholar
Villeneuve, J., Chaussidon, M., and Libourel, G. (2012). Absence de relation entre les âges 26Al de cristallisation des chondres et leurs compositions minéralogiques et chimiques. Comptes Rendus Geoscience 344, 423431.CrossRefGoogle Scholar
Villeneuve, J., Libourel, G., and Soulié, C. (2015). Relationships between type I and type II chondrules: Implications on chondrule formation processes. Geochimica et Cosmochimica Acta 160, 277305.CrossRefGoogle Scholar
Wänke, H., Dreibus, G., Jagoutz, E., Palme, H., and Rammensee, W. (1981). Chemistry of the Earth and the significance of primary and secondary objects for the formation of planets and meteorite parent bodies (abstract). Lunar and Planetary Science Conference XII, 1139–1141.Google Scholar
Wänke, H., Dreibus, G., and Jagoutz, E. (1984). Mantle chemistry and accretion history of the Earth. In Kroner, A., Hanson, G. N., and Goodwin, A. M. (Eds.), Archaean Geochemistry, 124. Berlin, Germany: Springer Verlag.Google Scholar
Warren, P. H. (2011). Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters 311, 93100CrossRefGoogle Scholar
Wilson, L., and Keil, K. (2012). Volcanic activity on differentiated asteroids: A review and analysis. Chemie der Erde 72, 289322.CrossRefGoogle Scholar
Zook, H. A. (1980). A new impact model for the generation of ordinary chondrites (abstract). Meteoritics 15, 390391.Google Scholar
Zook, H. A. (1981). On a new model for the generation of chondrules (abstract). Lunar and Planetary Science Conference XII, 1242–1244.Google Scholar

References

Adachi, I., Hayashi, C., and Nakazawa, K. (1976). The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Progress of Theoretical Physics, 56, 17561771.CrossRefGoogle Scholar
Alexander, C. M. O’D., Boss, A. P., and Carlson, R. W. (2001). The early evolution of the inner Solar System: a meteoritic perspective. Science, 293, 6469.CrossRefGoogle Scholar
Alexander, C. M. O’D. (2005). From supernovae to planets: the view from meteorites and interplanetary dust particles. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, Astronomical Society of the Pacific Conference Series 341, 972. (San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Alexander, C. M. O.’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 16171619.CrossRefGoogle ScholarPubMed
Alexander, C. M. O’D., and Ebel, D. S. (2012). Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteoritics and Planetary Science, 47, 11571175.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D., and Ulyanov, A. A. (2002). Lead Isotopic Ages of Chondrules and Calcium-Aluminum-Rich Inclusions. Science, 297, 16781683.CrossRefGoogle ScholarPubMed
Amelin, Y., Kaltenbach, A., Iizuka, T., et al. (2010). U-Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343350.CrossRefGoogle Scholar
Boley, A. C., and Durisen, R. H. (2008). Gravitational instabilities, chondrule formation, and the FU Orionis phenomenon. The Astrophysical Journal, 685, 11931209.CrossRefGoogle Scholar
Boley, A. C., Morris, M. A., & Desch, S. J. (2013). High-temperature processing of solids through solar nebular bow shocks: 3D radiation hydrodynamics simulations with particles. The Astrophysical Journal, 776, 101124.CrossRefGoogle Scholar
Bollard, J., Connelly, J. N., and Bizzarro, M. (2014). The Absolute Chronology of the Early Solar System Revisited. 77th Annual Meeting of the Meteoritical Society, 1800, 5234.Google Scholar
Boss, A. P., and Durisen, R. H. (2005). Chondrule-forming shock fronts in the solar nebula: a possible unified scenario for planet and chondrite formation. The Astrophysical Journal, 621, L137-L140.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016). Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences, 113, 28862891.CrossRefGoogle ScholarPubMed
Ciesla, F. J. (2005). Chondrule-forming Processes – An Overview. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, Astronomical Society of the Pacific Conference Series, 341, 811820. (San Francisco, CA: Astronomical Society of the Pacific).Google Scholar
Connolly, H. C. Jr., and Love, S. G. (1998). The formation of chondrules: Petrologic tests of the shock wave model. Science, 280, 6267.CrossRefGoogle Scholar
Connolly, H. C. Jr., Jones, B. D., and Hewins, R. H. (1998). The flash melting of chondrules: An experimental investigation into the melting history and physical nature of chondrule precursors. Geochimica et Cosmochimica Acta, 62, 27252735.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Desch, S. J. (2004). On the origin of the “kleine Kügelchen” called Chondrules. Chemie der Erde / Geochemistry, 64, 95125.CrossRefGoogle Scholar
Connolly, H. C. Jr., Desch, S. J., Ash, R. D., and Jones, R. H. (2006). Transient heating events in the protoplanetary nebula. In Lauretta, D. S. and McSween, H. Y. Jr. (Eds.), Meteorites and the Early Solar System II, 383397. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Connelly, J. N., Amelin, Y., Krot, A. N., and Bizzarro, M. (2008). Chronology of the Solar System’s Oldest Solids. The Astrophysical Journal Letters, 675, L121L124.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.CrossRefGoogle ScholarPubMed
Connolly, H. C., and Jones, R. H. (2016). Chondrules: The canonical and noncanonical views. Journal of Geophysical Research (Planets), 121, 8851899.Google Scholar
Cuzzi, J. N., and Alexander, C. M. O’D. (2006). Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature, 441, 483485.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., Hogan, R. C., and Shariff, K. (2008). Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. The Astrophysical Journal, 687, 14321447.CrossRefGoogle Scholar
Desch, S. J., and Connolly, H. C. Jr.(2002). A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics and Planetary Science, 37, 183207.CrossRefGoogle Scholar
Desch, S. J., and Cuzzi, J. N. (2000). The generation of lightning in the solar nebula. Icarus, 143, 87105.CrossRefGoogle Scholar
Desch, S. J. (2007). Mass distribution and planet formation in the solar nebula. The Astrophysical Journal, 671, 878893.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C., and Boss, A. P. (2012). The importance of experiments: Constraints on chondrule formation models. Meteoritics and Planetary Science, 47, 11391156.CrossRefGoogle Scholar
Durisen, R. H., Boss, A. P., Mayer, L., et al. (2007). Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation. In Reipurth, B., Jewitt, D., and Keil, K. (Eds.), Protostars and Planets V, 607622. Tucson, AZ: University of Arizona Press.Google Scholar
Ebel, D. S., and Grossman, L. (2000). Condensation in dust-enriched systems. Geochimica et Cosmochimica Acta, 64, 339366.CrossRefGoogle Scholar
Farrington, O. C. (1915). Meteorites, their structure, composition, and terrestrial relations. Chicago, IL: Lakeside Press.Google Scholar
Fedkin, A. V., and Grossman, L. (2013). Vapor saturation of sodium: Key to unlocking the origin of chondrules. Geochimica et Cosmochimica Acta, 112, 226250.CrossRefGoogle Scholar
Fedkin, A. V., and Grossman, L. (2016). Effects of dust enrichment on oxygen fugacity of cosmic gases. Meteoritics and Planetary Science, 51, 843850.CrossRefGoogle Scholar
Gammie, C. F. (1996). Linear Theory of magnetized, viscous, self-gravitating gas disks. The Astrophysical Journal, 462, 725731.CrossRefGoogle Scholar
Gooding, J. L., and Keil, K. (1981). Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation. Meteoritics, 16, 1743.CrossRefGoogle Scholar
Grossman, L., Fedkin, A. V., and Simon, S. B. (2012). Formation of the first oxidized iron in the solar system. Meteoritics and Planetary Science, 47, 21602169.CrossRefGoogle Scholar
Haisch, K. E. Jr., Lada, E. A., and Lada, C. J. (2001). Disk frequencies and lifetimes in young clusters. The Astrophysical Journal Letters, 553, L153-L156.CrossRefGoogle Scholar
Hayashi, C. (1981). Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Progress of Theoretical Physics Supplement, 70, 3553.CrossRefGoogle Scholar
Helled, R., Bodenheimer, P., Podolak, M., et al. (2014). Giant planet formation, evolution, and internal structure. In Beuther, H., Klessen, R. S., Dullemond, C. P., and Henning, T. (Eds.), Protostars and Planets VI, 643665. Tucson, AZ: University of Arizona Press.Google Scholar
Hewins, R. H., and Connolly, H. C. Jr. (1996). Peak temperatures of flash-melted chondrules. In Hewins, R. H., Scott, E., and Jones, R. (Eds.), Chondrules and the Protoplanetary Disk, 197204. Cambridge, UK: Cambridge University Press.Google Scholar
Hewins, R. H. (1997). Chondrules. Annual Review of Earth and Planetary Sciences, 25, 6183.CrossRefGoogle Scholar
Hewins, R. H., Connolly, H. C., Lofgren, G. E. Jr., and Libourel, G. (2005). Experimental Constraints on Chondrule Formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, Astronomical Society of the Pacific Conference Series, 341, 286316. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hewins, R. H., Zanda, B., and Bendersky, C. (2012). Evaporation and recondensation of sodium in Semarkona Type II chondrules. Geochimica et Cosmochimica Acta, 78, 117.CrossRefGoogle Scholar
Hezel, D. C., Palme, H., Brenker, F. E., and Nasdala, L. (2003). Evidence for fractional condensation and reprocessing at high temperatures in CH chondrites. Meteoritics and Planetary Science, 38, 1199.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2008). Constraints for chondrule formation from Ca-Al distribution in carbonaceous chondrites. Earth and Planetary Science Letters, 265, 716725.CrossRefGoogle Scholar
Hood, L. L. (1998). Thermal processing of chondrule and CAI precursors in planetesimal bow shocks. Meteoritics and Planetary Science, 33, 97107.CrossRefGoogle Scholar
Hood, L. L., Ciesla, F. J., Artemieva, N. A., Marzari, F., and Weidenschilling, S. J. (2009). Nebular shock waves generated by planetesimals passing through Jovian resonances: Possible sites for chondrule formation. Meteoritics and Planetary Science, 44, 327342.CrossRefGoogle Scholar
Hood, L. L., and Weidenschilling, S. J. (2012). The planetesimal bow shock model for chondrule formation: A more quantitative assessment of the standard (fixed Jupiter) case. Meteoritics and Planetary Science, 47, 17151727.CrossRefGoogle Scholar
Jones, R. H., Lee, T., Connolly, H. C. Jr., Love, S. G., and Shang, H. (2000). Formation of chondrules and CAIs: Theory vs. observation. In Mannings, V., Boss, A. P., and Russell, S. S. (Eds.), Protostars and Planets IV, 927962. Tucson, AZ: University of Arizona Press.Google Scholar
Kita, N. T., Huss, G. R., Tachibana, S., et al. (2005). constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, Astronomical Society of the Pacific Conference Series, 341, 558587. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Kita, N. T., and Ushikubo, T. (2012). Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteoritics and Planetary Science, 47, 11081119.CrossRefGoogle Scholar
Klerner, S., and Palme, H. (1999). Origin of Chondrules and Matrix in Carbonaceous Chondrites. Lunar and Planetary Science Conference, 30, 1272.Google Scholar
Krot, A. N., Fegley, B. Jr., Lodders, K., and Palme, H. (2000). Meteoritical and astrophysical constraints on the oxidation state of the solar nebula. In Mannings, V., Boss, A. P., and Russell, S. S. (Eds.), Protostars and Planets IV, 10191054. Tucson, AZ: University of Arizona Press.Google Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005). Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature, 436, 989992.CrossRefGoogle Scholar
Kruijer, T. S., Kleine, T., Fischer-Gödde, M., Burkhardt, C., and Wieler, R. (2014). Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions. Earth and Planetary Science Letters, 403, 317327.CrossRefGoogle Scholar
Kurahashi, E., Kita, N. T., Nagahara, H., and Morishita, Y. (2008). 26Al-26Mg systematics of chondrules in a primitive CO chondrite. Geochimica et Cosmochimica Acta, 72, 3865.CrossRefGoogle Scholar
Lauretta, D. S., Buseck, P. R., and Zega, T. J. (2001). Opaque minerals in the matrix of the Bishunpur (LL3.1) chondrite: Constraints on the chondrule formation environment. Geochimica et Cosmochimica Acta, 65, 13371353.CrossRefGoogle Scholar
Lauretta, D. S., Nagahara, H., and Alexander, C. M. O’D. (2006). Petrology and origin of ferromagnesian silicate chondrules. In Lauretta, D. S. and McSween, H. Y. Jr. (Eds.), Meteorites and the Early Solar System II, 431459. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal, 591, 12201247.CrossRefGoogle Scholar
Lofgren, G. E. (1982). The importance of heterogeneous nucleation for the formation of microporphyritic chondrules. Chrondrules and their Origins, 493, 41.Google Scholar
Lofgren, G. (1989). Dynamic crystallization of chondrule melts of porphyritic olivine composition: Textures experimental and natural. Geochimica et Cosmochimica Acta, 53, 461470.CrossRefGoogle Scholar
Lofgren, G., and Lanier, A. B. (1990). Dynamic crystallization study of barred olivine chondrules. Geochimica et Cosmochimica Acta, 54, 35373551.CrossRefGoogle Scholar
Lofgren, G. E. (1996). A dynamic crystallization model for chondrule melts. In Hewins, R. H., Scott, E., and Jones, R. (Eds.), Chondrules and the Protoplanetary Disk, 187196. Cambridge, UK: Cambridge University Press.Google Scholar
Mann, C. R., Boley, A. C., and Morris, M. A. (2016). Planetary embryo bow shocks as a mechanism for chondrule formation. The Astrophysical Journal, 818, 103123.CrossRefGoogle Scholar
Mihalas, D. (1978). Stellar atmospheres, 2nd edition. San Francisco, CA: W. H. Freeman and Co.Google Scholar
Mihalas, D., and Mihalas, B. W. (1984). Foundations of Radiation Hydrodynamics. New York, NY: Oxford University Press.Google Scholar
Miura, H., and Yamamoto, T. (2014). A new estimate of the chondrule cooling rate deduced from an analysis of compositional zoning of relict olivine. The Astronomical Journal, 147, 5463.CrossRefGoogle Scholar
Morris, M. A., Boley, A. C., Desch, S. J., and Athanassiadou, T. (2012). Chondrule formation in bow shocks around eccentric planetary embryos. The Astrophysical Journal, 752, 2744.CrossRefGoogle Scholar
Morris, M. A., and Desch, S. J. (2010). Thermal histories of chondrules in solar nebula shocks. The Astrophysical Journal, 722, 14741494.CrossRefGoogle Scholar
Morris, M. A., Desch, S. J., and Ciesla, F. J. (2009). Cooling of dense gas by H2O line emission and an assessment of its effects in chondrule-forming shocks. The Astrophysical Journal, 691, 320331.CrossRefGoogle Scholar
Morris, M. A., Garvie, L. A. J., and Knauth, L. P. (2015). New insight into the solar system’s transition disk phase provided by the metal-rich carbonaceous chondrite isheyevo. The Astrophysical Journal, 801, L22L27.CrossRefGoogle ScholarPubMed
Morris, M. A., Weidenschilling, S. J., and Desch, S. J. (2016). The effect of multiple particle sizes on cooling rates of chondrules produced in large-scale shocks in the solar nebula. Meteoritics and Planetary Science, 51, 870883.CrossRefGoogle Scholar
Nakamoto, T., Hayashi, M. R., Kita, N. T., and Tachibana, S. (2005). Chondrule-forming shock waves in the solar nebula by x-ray flares. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, Astronomical Society of the Pacific Conference Series, 341, 883892. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Nelson, A. F., and Ruffert, M. (2005). A proposed origin for chondrule-forming shocks in the solar nebula. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk. Astronomical Society of the Pacific Conference Series, 341, 903912. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Palme, H., Spettel, B., and Ikeda, Y. (1993). Origin of chondrules and matrix in carbonaceous chondrites. Meteoritics, 28, 417.Google Scholar
Pollack, J. B., Hollenbach, D., Beckwith, S., et al. (1994). Composition and radiative properties of grains in molecular clouds and accretion disks. The Astrophysical Journal, 421, 615639.CrossRefGoogle Scholar
Radomsky, P. M., and Hewins, R. H. (1990). Formation conditions of pyroxene-olivine and magnesian olivine chondrules. Geochimica et Cosmochimica Acta, 54, 34753490.CrossRefGoogle Scholar
Raymond, S. N., Kokubo, E., Morbidelli, A., Morishima, R., and Walsh, K. J. (2014). Terrestrial planet formation at home and abroad. In Beuther, H., Klessen, R. S., Dullemond, C. P., and Henning, T. (Eds.), Protostars and Planets VI, 595618. Tucson, AZ: University of Arizona Press.Google Scholar
Rubin, A. E., Sailer, A. L., and Wasson, J. T. (1999). Troilite in the chondrules of type-3 ordinary chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta, 63, 22812298.CrossRefGoogle Scholar
Rubin, A. E., Kallemeyn, G. W., Wasson, J. T., et al. (2003). Troilite in the chondrules of type-3 ordinary chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta, 67, 3283.CrossRefGoogle Scholar
Russell, S. S., Hartmann, L., Cuzzi, J., et al. (2006). Timescales of the solar protoplanetary disk. In Lauretta, D. S. and McSween, H. Y. Jr. (Eds.), Meteorites and the Early Solar System II, 233251. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Sanders, I. S., and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics and Planetary Science, 47, 21702192.CrossRefGoogle Scholar
Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S., and Masarik, J. (2006). Hf W evidence for rapid differentiation of iron meteorite parent bodies. Earth and Planetary Science Letters, 241, 530542.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C., Lauretta, D. S., et al. (2013). The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine. Geochimica et Cosmochimica Acta, 101, 302327.CrossRefGoogle Scholar
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017). Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochimica et Cosmochimica Acta, 201, 275302.CrossRefGoogle Scholar
Schoelmerich, M. O., Seitz, H.-M., and Klimm, K. (2016). Evaporational loss of lithium during high temperature experiments: Implications for chondrule formation. Lunar and Planetary Science Conference XLVII, abstract #1461.Google Scholar
Smith, K. T. (2016). Spiral arms in a disk around a young star. Science, 353, 15091511.CrossRefGoogle Scholar
Stammler, S. M., and Dullemond, C. P. (2014). A critical analysis of shock models for chondrule formation. Icarus, 242, 110.CrossRefGoogle Scholar
Shu, F. H., Shang, H., and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science, 271, 15451552.CrossRefGoogle Scholar
Tachibana, S., Huss, G. R., Miura, H., and Nakamoto, T. (2004). Evaporation and accompanying isotopic fractionation of sulfur from Fe-S melt during shock wave heating. Lunar and Planetary Science Conference, 35, 1549.Google Scholar
Tachibana, S., and Huss, G. R. (2005). Sulfur isotope composition of putative primary troilite in chondrules from Bishunpur and Semarkona. Geochimica et Cosmochimica Acta, 69, 30753097.CrossRefGoogle Scholar
Verigin, M., Slavin, J., Szabo, A., et al. (2003). Planetary bow shocks: Gasdynamic analytic approach. Journal of Geophysical Research, 108, 1323.CrossRefGoogle Scholar
Villeneuve, J., Chaussidon, M., and Libourel, G. (2009). Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules. Science, 325, 985.CrossRefGoogle ScholarPubMed
Villeneuve, J., Libourel, G., and Soulié, C. (2015). Relationships between type I and type II chondrules: Implications on chondrule formation processes. Geochimica et Cosmochimica Acta, 160, 277305.CrossRefGoogle Scholar
Wadhwa, M., Amelin, Y., Davis, A. M., et al. (2007). From dust to planetesimals: implications for the solar protoplanetary disk from short-lived radionuclides. In Reipurth, V. B., Jewitt, D., and Keil, K. (Eds.), Protostars and Planets V, 835848. Tucson, AZ: University of Arizona Press.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. (2011). A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.CrossRefGoogle ScholarPubMed
Weidenschilling, S. J. (1977). The distribution of mass in the planetary system and solar nebula. Astrophysics and Space Science, 51, 153158.CrossRefGoogle Scholar
Weidenschilling, S. J. (1980). Dust to planetesimals: Settling and coagulation in the solar nebula. Icarus, 44, 172189.CrossRefGoogle Scholar
Weidenschilling, S. J., Marzari, F., and Hood, L. L. (1998). The Origin of Chondrules at Jovian Resonances. Science, 279, 681684.CrossRefGoogle ScholarPubMed
Wick, M. J., and Jones, R. H. (2012). Formation conditions of plagioclase-bearing type I chondrules in CO chondrites: A study of natural samples and experimental analogs. Geochimica et Cosmochimica Acta, 98, 140159.CrossRefGoogle Scholar
Williams, J. P., and Cieza, L. A. (2011). Protoplanetary disks and their evolution. Annual Review of Astronomy and Astrophysics, 49, 67117.CrossRefGoogle Scholar
Wood, J. A. (1985). Meteoritic constraints on processes in the solar nebula. In Black, D. C. and Mathews, M. S., Protostars and Planets II, 687702. Tucson, AZ: University of Arizona Press.Google Scholar
Yu, Y., and Hewins, R. H. (1998). Transient heating and chondrite formation: Evidence from sodium loss in flash heating simulation experiments. Geochimica et Cosmochimica Acta, 62, 159172.CrossRefGoogle Scholar
Zanda, B., Le Guillou, C., and Hewins, R. H. (2009). The relationship between chondrules and matrix in chondrites. Meteoritics and Planetary Science Supplement, 72, 5280.Google Scholar

References

Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 1617.CrossRefGoogle ScholarPubMed
Bai, X. -N., and Stone, J. M. (2013). Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. Astrophys. J., 769, 76.CrossRefGoogle Scholar
Balbus, S. A., and Hawley, J. F. (1991). A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution, Astrophys. J., 376, 214.CrossRefGoogle Scholar
Balbus, S. A., and Hawley, J. F. (1998). Instability, turbulence, and enhanced transport in accretion disks, Rev. Mod. Phys., 70, 1.CrossRefGoogle Scholar
Boley, A. C., Morris, M. A., and Ford, E. B. (2014). Overcoming the meter barrier and the formation of systems with tightly packed inner planets (STIPs), Astrophys. J. Lett., 792, L27.CrossRefGoogle Scholar
Boss, A. P. (1996). A concise guide to chondrule formation models. In Hewins, R. H., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 257263. Cambridge, UK: Cambridge University Press.Google Scholar
Brandenburg, A. (2009). Large-scale dynamos at low magnetic prandtl numbers. Astrophys. J., 697, 1206.CrossRefGoogle Scholar
Brown, J. M., Pontoppidan, K. M., van Dishoeck, E. F., et al. (2013). VLT-CRIRES survey of rovibrational CO emission from protoplanetary disks, Astrophys. J., 770, 94.CrossRefGoogle Scholar
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016a). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites, Earth Planet. Sci. Lett., 454, 293.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016b). Tungsten isotopic constraints on the age and origin of chondrules, Proc. Natl. Acad. Sci., 113, 2886.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., and Alexander, C. M. O’D. (2006). Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across, Nature, 441, 483.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., Hogan, R. C., and Bottke, W. F. (2010). Towards initial mass functions for asteroids and Kuiper Belt Objects, Icarus, 208, 518.CrossRefGoogle Scholar
Desch, S. J. (2007). Mass distribution and planet formation in the solar nebula, Astrophys. J., 671, 878.CrossRefGoogle Scholar
Desch, S. J., and Connolly, H. C. Jr. (2002). A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules, Meteorit. Planet. Sci., 37, 183.CrossRefGoogle Scholar
Desch, S. J., and Cuzzi, J. N. (2000). The generation of lightning in the solar nebula. Icarus, 143, 87.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C., and Boss, A. P. (2012). The importance of experiments: Constraints on chondrule formation models, Meteorit. Planet. Sci., 47, 1139.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C. Jr., and Boss, A. P. (2010). A critical examination of the X-wind model for chondrule and calcium-rich, aluminum-rich inclusion formation and radionuclide production. Astrophys. J., 725, 692.CrossRefGoogle Scholar
Ebel, D. S. (2006). Condensation of Rocky Material in Astrophysical Environments. In Lauretta, D. S. and McSween, H. Y. (Eds.), Meteorites and the Early Solar System II, 253277. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Ebel, D. S., Brunner, C., Konrad, K., et al. (2016). Abundance, major element composition and size of components and matrix in CV, CO and Acfer 094 chondrites. Geochim. Cosmochim. Acta, 172, 322.CrossRefGoogle Scholar
Ebel, D. S., and Grossman, L. (2000). Condensation in dust-enriched systems. Geochim. Cosmochim. Acta, 64, 339.CrossRefGoogle Scholar
Fessler, J. R., Kulick, J. D., and Eaton, J. K. (1994). Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids, 6, 3742.CrossRefGoogle Scholar
Flynn, G. J., Wirick, S., and Keller, L. P. (2013). Organic grain coatings in primitive interplanetary dust particles: Implications for grain sticking in the Solar Nebula. Earth, Planets Space, 65, 1159.CrossRefGoogle Scholar
Frank, J., King, A., and Raine, D. J. (2002). Accretion Power in Astrophysics: Third Edition, Cambridge UK: Cambridge University Press.CrossRefGoogle Scholar
Friedrich, J. M., Weisberg, M. K., Ebel, D. S., et al. (2015). Chondrule size and related physical properties: A compilation and evaluation of current data across all meteorite groups. Chem Erde, 75, 419.CrossRefGoogle Scholar
Fu, R. R., Lima, E. A., and Weiss, B. P. (2014). No nebular magnetization in the Allende CV carbonaceous chondrite. Earth Planet. Sci. Lett., 404, 54.CrossRefGoogle Scholar
Gammie, C. F. (1996). Layered accretion in T Tauri disks. Astrophys. J., 457, 355.CrossRefGoogle Scholar
Gibbard, S. G., Levy, E. H., and Morfill, G. E. (1997). On the possibility of lightning in the protosolar nebula. Icarus, 130, 517.CrossRefGoogle Scholar
Goldberg, A. Z., Owen, J. E., and Jacquet, E. (2015) Chondrule transport in protoplanetary discs. Mon. Notices Royal Astron. Soc., 452, 4054.CrossRefGoogle Scholar
Gounelle, M., Shu, F. H., Shang, H., et al. (2001). Extinct radioactivities and protosolar cosmic rays: self-shielding and light elements. Astrophys. J., 548, 1051.CrossRefGoogle Scholar
Greenwood, R. C., Franchi, I. A., Jambon, A., and Buchanan, P. C. (2005). Widespread magma oceans on asteroidal bodies in the early Solar System. Nature, 435, 916.CrossRefGoogle ScholarPubMed
Gressel, O., Turner, N. J., Nelson, R. P., and McNally, C. P. (2015). Global simulations of protoplanetary disks with ohmic resistivity and ambipolar diffusion. Astrophys. J., 801, 84.CrossRefGoogle Scholar
Grossman, J. N., and Wasson, J. T. (1982). Evidence for primitive nebular components in chondrules from the Chainpur chondrite. Geochim. Cosmochim. Acta, 46, 1081.CrossRefGoogle Scholar
Güttler, C., Blum, J., Zsom, A., Ormel, C. W., and Dullemond, C. P. (2010). The outcome of protoplanetary dust growth: Pebbles, boulders, or planetesimals?. I. Mapping the zoo of laboratory collision experiments. Astron. Astrophys, 513, A56.CrossRefGoogle Scholar
Hayashi, C. (1981). Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Progr. Theoret. Phys. Suppl., 70, 35.CrossRefGoogle Scholar
Herbst, W., and Greenwood, J. P. (2016). A new mechanism for chondrule formation: Radiative heating by hot planetesimals. Icarus, 267, 364.CrossRefGoogle Scholar
Hewins, R. H. (1991). Retention of sodium during chondrule melting, Geochim. Cosmochim. Acta, 55, 935.CrossRefGoogle Scholar
Hewins, R. H. (1997). Chondrules. Ann. Rev. Earth Planet. Sci., 25, 61.CrossRefGoogle Scholar
Hewins, R. H., Connolly, H. C. Jr., Lofgren, G. E., and Libourel, G. (2005). Experimental constraints on chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk. ASP Conf. Ser., 341, 286. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth Planet. Sci. Lett., 294, 85.CrossRefGoogle Scholar
Hill, H. G. M., and Nuth, J. A. III, (2000). Nebular hydrocarbon synthesis in the laboratory: the catalytic potential of synthetic silicate dust. Meteorit. Planet. Sci. Supp., 35, A73.Google Scholar
Hu, R. (2010). Transport of the first rocks of the solar system by X-winds. Astrophys. J., 725, 1421.CrossRefGoogle Scholar
Hubbard, A. (2013). Turbulence-induced collision velocities and rates between different sized dust grains. Mon. Notices Royal Astron. Soc., 432, 1274.CrossRefGoogle Scholar
Hubbard, A. (2016a), Ferromagnetism and particle collisions: Applications to protoplanetary disks and the meteoritical record. Astrophys. J., 826, 152.CrossRefGoogle Scholar
Hubbard, A. (2016b). Generating potassium abundance variations in the Solar Nebula. Mon. Notices Royal Astron. Soc., 460, 1163.CrossRefGoogle Scholar
Hubbard, A. (2016c). Partitioning tungsten between matrix precursors and chondrule precursors through relative settling. Astrophys. J., 826, 151.CrossRefGoogle Scholar
Hubbard, A. (2017). Making terrestrial planets: high temperatures, FU Orionis outbursts, earth, and planetary system architectures. Astrophys. J. Lett., 840, L5.CrossRefGoogle Scholar
Hubbard, A., and Ebel, D. S. (2015). Semarkona: Lessons for chondrule and chondrite formation. Icarus, 245, 32.CrossRefGoogle Scholar
Hubbard, A., Mac Low, M.-M., and Ebel, D. S. (2018). Dust concentration and chondrule formation, Meteoritics and Planetary Sciences, ArXiv e-prints arXiv:1803.10047.Google Scholar
Hubbard, A., McNally, C. P., and Mac Low, M.-M. (2012). Short circuits in thermally ionized plasmas: a mechanism for intermittent heating of protoplanetary disks. Astrophys. J., 761, 58.CrossRefGoogle Scholar
Humayun, M. (2012). Chondrule cooling rates inferred from diffusive profiles in metal lumps from the Acfer 097 CR2 chondrite. Meteorit. Planet. Sci., 47, 1191.CrossRefGoogle Scholar
Huss, G. R., and Lewis, R. S. (1994). Noble gases in presolar diamonds II: Component abundances reflect thermal processing. Meteoritics, 29, 811.CrossRefGoogle Scholar
Inutsuka, S. -i., and Sano, T. (2005). Self-sustained ionization and vanishing dead zones in protoplanetary disks. Astrophys. J. Lett., 628, L155.CrossRefGoogle Scholar
Jacquet, E. (2013). On vertical variations of gas flow in protoplanetary disks and their impact on the transport of solids. Astron. Astrophys., 551, A75.CrossRefGoogle Scholar
Jacquet, E. (2014). The quasi-universality of chondrule size as a constraint for chondrule formation models. Icarus, 232, 176.CrossRefGoogle Scholar
Jacquet, E., Alard, O., and Gounelle, M. (2015). Trace element geochemistry of ordinary chondrite chondrules: The type I/type II chondrule dichotomy. Geochim. Cosmochim. Acta, 155, 47.CrossRefGoogle Scholar
Jacquet, E., Gounelle, M., and Fromang, S. (2012). On the aerodynamic redistribution of chondrite components in protoplanetary disks. Icarus, 220, 162.CrossRefGoogle Scholar
Jacquet, E., and Thompson, C. (2014). Chondrule destruction in nebular shocks. Astrophys. J., 797, 30.CrossRefGoogle Scholar
Jones, R. H. (2012). Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteorit. Planet. Sci, 47, 1176.CrossRefGoogle Scholar
Joung, M. K. R., Mac Low, M. -M., and Ebel, D. S. (2004). Chondrule formation and protoplanetary disk heating by current sheets in nonideal magnetohydrodynamic turbulence. Astrophys. J., 606, 532.CrossRefGoogle Scholar
King, A. R., and Pringle, J. E. (2010). The accretion disc dynamo in the solar nebula, Mon. Notices Royal Astron. Soc.. 404, 1903.Google Scholar
Klahr, H., and Hubbard, A. (2014). Convective overstability in radially stratified accretion disks under thermal relaxation. Astrophys. J., 788, 21.CrossRefGoogle Scholar
Kley, W., and Lin, D. N. C. (1992). Two-dimensional viscous accretion disk models. I – On meridional circulations in radiative regions. Astrophys. J., 397, 600.CrossRefGoogle Scholar
Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. Astrophys. J., 591, 1220.CrossRefGoogle Scholar
Maxey, M. R. (1987). The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174, 441.CrossRefGoogle Scholar
McNally, C. P., and Hubbard, A. (2015). Photophoresis in a dilute, optically thick medium and dust motion in protoplanetary disks. Astrophys. J., 814, 37.CrossRefGoogle Scholar
McNally, C. P., Hubbard, A., Mac Low, M. -M., Ebel, D. S., and D’Alessio, P. (2013). Mineral processing by short circuits in protoplanetary disks. Astrophys. J. Lett., 767, L2.CrossRefGoogle Scholar
McNally, C. P., Hubbard, A., Yang, C. -C., and Mac Low, M.-M. (2014). Temperature fluctuations driven by magnetorotational instability in protoplanetary disks. Astrophys. J., 791, 62.CrossRefGoogle Scholar
Muranushi, T. (2010). Dust-dust collisional charging and lightning in protoplanetary discs. Mon. Notices Royal Astron. Soc., 401, 2641.CrossRefGoogle Scholar
Muranushi, T., Akiyama, E., Inutsuka, S. -i., Nomura, H., and Okuzumi, S. (2015). Development of a method for the observation of lightning in protoplanetary disks using ion lines. Astrophys. J., 815, 84.CrossRefGoogle Scholar
Nelson, R. P., Gressel, O., and Umurhan, O. M. (2013). Linear and non-linear evolution of the vertical shear instability in accretion discs. Mon. Notices Royal Astron. Soc., 435, 2610.CrossRefGoogle Scholar
Oishi, J. S., and Mac Low, M. -M. (2009). On hydrodynamic motions in dead zones. Astrophys. J., 704, 1239.CrossRefGoogle Scholar
Okuzumi, S., and Inutsuka, S. -i. (2015). The nonlinear Ohm’s Law: Plasma heating by strong electric fields and its effects on the ionization balance in protoplanetary disks. Astrophys. J., 800, 47.CrossRefGoogle Scholar
Ormel, C. W., and Klahr, H. H. (2010). The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys., 520, A43.CrossRefGoogle Scholar
Pilipp, W., Hartquist, T. W., and Morfill, G. E. (1992). Large electric fields in acoustic waves and the stimulation of lightning discharges. Astrophys. J., 387, 364.CrossRefGoogle Scholar
Pilipp, W., Hartquist, T. W., Morfill, G. E., and Levy, E. H. (1998). Chondrule formation by lightning in the Protosolar Nebula? Astron. Astrophys., 331, 121.Google Scholar
Rubin, A. E., Sailer, A. L., and Wasson, J. T. (1999). Troilite in the chondrules of type-3 ordinary chondrites: Implications for chondrule formation. Geochim. Cosmochim. Acta, 63, 2281.CrossRefGoogle Scholar
Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S., and Masarik, J. (2006). Hf W evidence for rapid differentiation of iron meteorite parent bodies. Earth Planet. Sci. Lett., 241, 530,CrossRefGoogle Scholar
Schrader, D. L., Fu, R. R., and Desch, S. J. (2016). Evaluating chondrule formation models and the protoplanetary disk background temperature with low-temperature, sub-silicate solidus chondrule cooling rates. Lunar and Planetary Science Conference XLVII, 1180.Google Scholar
Semenov, D., Henning, T., Helling, C., Ilgner, M., and Sedlmayr, E. (2003). Rosseland and Planck mean opacities for protoplanetary discs. Astron. Astrophys., 410, 611.CrossRefGoogle Scholar
Shakura, N. I., and Sunyaev, R. A. (1973). Black holes in binary systems. Observational appearance. Astron. Astrophys., 24, 337.Google Scholar
Shu, F., Najita, J., Ostriker, E., et al. (1994). Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model. Astrophys. J., 429, 781.CrossRefGoogle Scholar
Shu, F. H., Shang, H., and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science, 271, 1545.CrossRefGoogle Scholar
Takeuchi, T., and Lin, D. N. C. (2002). Radial flow of dust particles in accretion disks. Astrophys. J., 581, 1344.CrossRefGoogle Scholar
Tenner, T. J., Nakashima, D., Ushikubo, T., Kita, N. T., and Weisberg, M. K. (2015). Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochim. Cosmochim. Acta, 148, 228.CrossRefGoogle Scholar
Uesugi, M., Sekiya, M., and Nakamura, T. (2008). Kinetic stability of a melted iron globule during chondrule formation. I. Non-rotating model. Meteorit. Planet. Sci, 43, 717.CrossRefGoogle Scholar
Wadhwa, M., Srinivasan, G., and Carlson, R. W. (2006). Timescales of planetesimal differentiation in the early solar system, In Lauretta, D. S. and McSween, H. Y. (Eds.), Meteorites and the Early Solar System II, 715731. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Wasson, J. T. (1996). Chondrule formation: Energetics and length scales. In Hewins, R., Jones, R., and Scott, E. (Eds.), Chondrules and the Protoplanetary Disk, 4554. Cambridge, UK: Cambridge University Press.Google Scholar
Wood, J. A. (1963). On the origin of chondrules and chondrites. Icarus, 2, 152.CrossRefGoogle Scholar
Wurm, G., Trieloff, M., and Rauer, H. (2013). Photophoretic separation of metals and silicates: The formation of mercury-like planets and metal depletion in chondrites. Astrophys. J., 769, 78.CrossRefGoogle Scholar
Yu, Y., Hewins, R. H., Alexander, C. M. O’D., and Wang, J. (2003). Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts. Geochim. Cosmochim. Acta, 67, 773.CrossRefGoogle Scholar
Zanda, B., Zanetta, P. -M., Leroux, H., et al. (2017). The chondritic assemblage. LPI Contributions, 1963, 2035.Google Scholar
Zsom, A., Ormel, C. W., Güttler, C., Blum, J., and Dullemond, C. P. (2010). The outcome of protoplanetary dust growth: Pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astron. Astrophys., 513, A57.CrossRefGoogle Scholar

References

Asphaug, E., Jutzi, M., and Movshovitz, M. (2011). Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters, 308, 369379.CrossRefGoogle Scholar
Boley, A. C., Morris, M. A., and Desch, S. J. (2013). High-temperature processing of solids through solar nebular bow shocks: 3D radiation hydrodynamics simulations with particles. Astrophysical Journal, 776, 101‒124.CrossRefGoogle Scholar
Bollard, J., Connelly, J., and Bizzarro, M. (2015). Pb-Pb dating of individual chondrules from the CBa chondrite Gujba: Assessment of the impact plume formation model. Meteoritics and Planetary Science, 50, 1197‒1216.CrossRefGoogle ScholarPubMed
Connolly, H. C. Jr., and Desch, S. J. (2004). On the origin of the “Kleine Kügelchen” Called chondrules. Chemie der Erde-Geochemistry, 64, 95‒125.CrossRefGoogle Scholar
Hewins, R., Jones, R. H., and Scott, E. R. D. (Eds.). (1996). Chondrules and the Protoplanetary Disk. Cambridge, UK: Cambridge University Press.Google Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature, 517, 339341.CrossRefGoogle ScholarPubMed
Kargel, J. S., Fegley, B. Jr., and Schaefer, L. (2003). Ceramic volcanism on refractory worlds: The cases of Io and chondrite CAIs. Lunar and Planetary Science Conference XXXIV, abstract #1964.Google Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005). Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature, 436, 989–92.CrossRefGoogle Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brian, P., and Mandell, A. M. (2011). A low mass for Mars from Jupiter’s gas-driven migration. Nature, 475, 206209.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×