Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T23:43:33.441Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  28 March 2024

Andrew Grimsdale
Affiliation:
Nanyang Technological University, Singapore
Paul Dastoor
Affiliation:
University of Newcastle, New South Wales
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Conjugated Polymers for Organic Electronics
Design and Synthesis
, pp. 208 - 262
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Thompson, R., Swan, S., Moore, C., and vom Saal, F., ‘Our plastic age’, Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 364, pp. 19731976, 2009.CrossRefGoogle ScholarPubMed
‘Patents for inventions’, UK Patent Office, 1857, p. 255.Google Scholar
Baekeland, L. H., ‘Method of making insoluble products of phenol and formaldehyde’, US Patent 942,699, 1909.Google Scholar
Rasmussen, S. C., ‘Electrically conducting plastics: Revising the history of conjugated organic polymers’, in 100+ Years of Plastics. Leo Baekeland and Beyond, Strom, E. T. and Rasmussen, S. C. (eds.) (ACS Symposium Series). Washington, DC: American Chemical Society, 2011.Google Scholar
Weiss, D. E. and Bolto, B. A., Physics and Chemistry of the Organic Solid State, vol. II. New York: Interscience Publishers, 1965, ch. 2.Google Scholar
Mainthia, S. B., Kronick, P. L., and Labes, M. M. J., ‘Electrical measurements on polyvinylene and polyphenylene’, Journal of Chemical Physics, vol. 37, no. 10, pp. 25092510, 1962.CrossRefGoogle Scholar
McNeill, R., Siudak, R., Wardlaw, J. H., and Weiss, D. E., ‘Electronic conduction in polymers. I. The chemical structure of polypyrrole’, Australian Journal of Chemistry, vol. 16, pp. 10561075, 1963.CrossRefGoogle Scholar
Bolto, B. A. and Weiss, D. E., ‘Electronic conduction in polymers. II. The electrochemical reduction of polypyrrole at controlled potential’, Australian Journal of Chemistry, vol. 16, pp. 10761089, 1963.CrossRefGoogle Scholar
Bolto, B. A., McNeill, R., and Weiss, D. E., ‘Electronic conduction in polymers. III. Electronic properties of polypyrrole’, Australian Journal of Chemistry, vol. 16, pp. 10901103, 1963.CrossRefGoogle Scholar
Chiang, C. K., Park, Y. W., Heeger, A. J., Shirakawa, H., Louis, E. J., and MacDiarmid, A. G., ‘Conducting polymers: Halogen doped polyacetylene’, Journal of Chemical Physics, vol. 69, pp. 50985104, 1978.CrossRefGoogle Scholar
Brabec, C. J., Dyakonov, V., and Scherf, U. (eds.), Organic Photovoltaics. Weinheim: Wiley-VCH, 2008.CrossRefGoogle Scholar
Saeki, A., Koizumi, Y., Aida, T., and Seki, S., ‘Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures’, Accounts of Chemical Research, vol. 45, pp. 11931202, 2012.CrossRefGoogle ScholarPubMed
Sirringhaus, H., ‘Reliability of organic field-effect transistors’, Advanced Materials, vol. 21, pp. 38593873, 2009.CrossRefGoogle Scholar
Sandberg, H. G. O., Bäcklund, T. G., Österbacka, R., and Stubb, H., ‘High-performance all-polymer transistor utilizing a hygroscopic insulator’, Advanced Materials, vol. 16, pp. 11121115, 2004.CrossRefGoogle Scholar
Elkington, D., Darwis, D., Zhou, X., Belcher, W., and Dastoor, P. C., ‘The fabrication and characterization of poly(4-vinylpyridine)-based thin film transistors exhibiting enhanced ion modulation’, Organic Electronics, vol. 13, pp. 153158, 2012.CrossRefGoogle Scholar
Shinar, J. and Shinar, R., ‘Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: An overview’, Journal of Physics D: Applied Physics, vol. 41, p. 133001, 2008.CrossRefGoogle Scholar
Pope, M., Kallmann, H. P., and Magnante, P., ‘Electroluminescence in organic crystals’, Journal of Chemical Physics, vol. 38, pp. 20422043, 1963.CrossRefGoogle Scholar
Tang, C. W. and VanSlyke, S. A., ‘Organic electroluminescent diodes’, Applied Physics Letters, vol. 51, pp. 913915, 1987.CrossRefGoogle Scholar
Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., et al., ‘Light-emitting diodes based on conjugated polymers’, Nature, vol. 347, pp. 539541, 1990.CrossRefGoogle Scholar
Förster, T., ‘Zwischenmolekulare energiewanderung und fluoreszenz’, Annalen der Physik, vol. 437, pp. 5575, 1948.CrossRefGoogle Scholar
Kappaun, S., Slugovc, C., and List, E. J. W., ‘Phosphorescent organic light-emitting devices: Working principle and iridium based emitter materials’, International Journal of Molecular Sciences, vol. 9, pp. 15271547, 2008.CrossRefGoogle ScholarPubMed
Geffroy, B., le Roy, P., and Prat, C., ‘Organic light-emitting diode (OLED) technology: Materials, devices and display technologies’, Polymer International, vol. 44, pp. 572582, 2006.CrossRefGoogle Scholar
Tang, C. W., VanSlyke, S. A., and Chen, C. H., ‘Electroluminescence of doped organic thin films’, Journal of Applied Physics, vol. 65, pp. 36103616, 1989.CrossRefGoogle Scholar
Jin, Y. D., Ding, X. B., Reynaert, J., Arkhipov, V. I., Borghs, G., Heremans, P. L., and Van der Auweraer, M., ‘Role of LiF in polymer light-emitting diodes with LiF-modified cathodes’, Organic Electronics, vol. 5, no. 6, pp. 271281, 2004.CrossRefGoogle Scholar
Jabbour, G. E., Kippelen, B., Armstrong, N. R., and Peyghambarian, N., ‘Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices’, Applied Physics Letters, vol. 73, pp. 11851187, 1998.CrossRefGoogle Scholar
Hung, L. S., Tang, C. W., and Mason, M. G., ‘Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode’, Applied Physics Letters, vol. 70, pp. 152154, 1997.CrossRefGoogle Scholar
Wohlgenannt, M., Tandon, K., Mazumdar, S., Ramasesha, S., and Vardeny, Z. V., ‘Singlet and triplet exciton ratios in conjugated polymers’, Nature, vol. 409, pp. 494497, 2001.CrossRefGoogle Scholar
Wallikewitz, B. H., Kabra, D., Gélinas, S., and Friend, R. H., ‘Triplet dynamics in fluorescent polymer light-emitting diodes’, Physical Review B, vol. 85, p. 045209, 2012.CrossRefGoogle Scholar
Adachi, C., Baldo, M. A., Thompson, M. E., and Forrest, S. R., ‘Nearly 100% internal phosphorescence efficiency in an organic light-emitting device’, Journal of Applied Physics, vol. 90, pp. 50485051, 2001.CrossRefGoogle Scholar
Goushi, K., Yoshida, K., Sato, K., and Adachi, C., ‘Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion’, Nature Photon, vol. 6, pp. 253258, 2012.CrossRefGoogle Scholar
Greenham, N. C., Friend, R. H., and Bradley, D. D. C., ‘Angular dependence of the emission from a conjugated polymer light-emitting diode: Implications for efficiency calculations’, Advanced Materials, vol. 6, pp. 491494, 1994.CrossRefGoogle Scholar
Saleh, B. E. A. and Teich, M. C., Fundamentals of Photonics. New York: Wiley, 1991.CrossRefGoogle Scholar
Kim, J.-S., Ho, P. K. H., Greenham, N. C., and Friend, R. H., ‘Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations’, Journal of Applied Physics, vol. 88, pp. 10731081, 2000.CrossRefGoogle Scholar
Kido, J., Hongawa, K., Okuyama, K., and Nagai, K., ‘White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes’, Applied Physics Letters, vol. 64, pp. 815817, 1994.CrossRefGoogle Scholar
Kido, J., Kimura, M., and Nagai, K., ‘Multilayer white light-emitting organic electroluminescent device’, Science, vol. 267, pp. 13321334, 1995.CrossRefGoogle ScholarPubMed
Sun, Y., Giebink, N. C., Kanno, H., Ma, B., Thompson, M. E., and Forrest, S. R., ‘Management of singlet and triplet excitons for efficient white organic light-emitting devices’, Nature, vol. 440, pp. 908912, 2006.CrossRefGoogle ScholarPubMed
So, F., Kido, J., and Burrows, P., ‘Organic light-emitting devices for solid-state lighting’, Materials Research Society Bulletin, vol. 33, pp. 663669, 2008.CrossRefGoogle Scholar
Moses, D., ‘High quantum efficiency luminescence from a conducting polymer in solution: A novel polymer laser dye’, Applied Physics Letters, vol. 60, pp. 32153216, 1992.CrossRefGoogle Scholar
Heeger, A. J., ‘Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials’, Reviews of Modern Physics, vol. 73, pp. 681700, 2001.CrossRefGoogle Scholar
Scherf, U., Riechel, S., Lemmer, U., and Mahrt, R. F., ‘Conjugated polymers: Lasing and stimulated emission’, Current Opinion in Solid State and Materials Science, vol. 5, pp. 143154, 2001.CrossRefGoogle Scholar
Chen, Y., Herrnsdorf, J., Guilhabert, B., Kanibolotsky, A. L., Mackintosh, A. R., Wang, Y., et al., ‘Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite’, Organic Electronics, vol. 12, pp. 6269, 2011.CrossRefGoogle Scholar
Holzer, W., Penzkofer, A., Pertsch, T., Danz, N., Brauer, A., and Kley, E. B., ‘Corrugated neat thin-film conjugated polymer distributed-feedback lasers’, Applied Physics B, vol. 74, pp. 333342, 2002.CrossRefGoogle Scholar
Leclerc, M., ‘Polyfluorenes: 20 years of progress’, Journal of Polymer Science, Part A: Polymer Chemistry, vol. 39, pp. 28672873, 2001.CrossRefGoogle Scholar
Heliotis, G., Xia, R., Bradley, D. D. C., Turnbull, G. A., Samuel, I. D. W., Andrew, P., and Barnes, W. L., ‘Blue surface-emitting distributed feedback polyfluorene laser’, Applied Physics Letters, vol. 83, pp. 21182120, 2003.CrossRefGoogle Scholar
Lehnhardt, M., Riedl, T., Weimann, T., and Kowalsky, W., ‘Impact of triplet absorption and triplet-singlet annihilation on the dynamics of optically pumped organic solid-state lasers’, Physical Review B, vol. 81, p. 165206, 2010.CrossRefGoogle Scholar
Chénais, S. and Forget, S., ‘Recent advances in solid-state organic lasers’, Polymer International, vol. 61, pp. 390406, 2012.CrossRefGoogle Scholar
Wallikewitz, B. H., de la Rosa, M., Kremer, J. H. W. M., Hertel, D., and Meerholz, K., ‘A lasing organic light-emitting diode’, Advanced Materials, vol. 22, pp. 531534, 2010.CrossRefGoogle ScholarPubMed
Gartner, C., Karnutsch, C., Lemmer, U., and Pflumm, C., ‘The influence of annihilation processes on the threshold current density of organic laser diodes’, Journal of Applied Physics, vol. 101, p. 023107, 2007.CrossRefGoogle Scholar
Giebink, N. C. and Forrest, S. R., ‘Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation’, Physical Review B, vol. 79, p. 073302, 2009.CrossRefGoogle Scholar
Mandoc, M. M., Koster, L. J. A., and Blom, P. W. M., ‘Optimum charge carrier mobility in organic solar cells’, Applied Physics Letters, vol. 90, p. 133504, 2007.CrossRefGoogle Scholar
Braun, C. L., ‘Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production’, Journal of Chemical Physics, vol. 80, pp. 41574161, 1984.CrossRefGoogle Scholar
Mandoc, M. M., Veurman, W., Koster, L. J. A., De Boer, B., and Blom, P. W. M., ‘Origin of the reduced fill factor and photocurrent in MDMO-PPV:PCNEPV all-polymer solar cells’, Advanced Functional Materials, vol. 17, pp. 21672173, 2007.CrossRefGoogle Scholar
Morteani, A. C., Sreearunothai, P., Herz, L. M., Friend, R. H., and Silva, C., ‘Exciton regeneration at polymeric semiconductor heterojunctions’, Physical Review Letters, vol. 92, p. 247402, 2004.CrossRefGoogle ScholarPubMed
Ohkita, H., Cook, S., Astuti, Y., Duffy, W., Tierney, S., Zhang, W., et al., ‘Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy’, Journal of the American Chemical Society, vol. 130, pp. 30303042, 2008.CrossRefGoogle ScholarPubMed
Kallmann, H. and Pope, M., ‘Photovoltaic effect in organic crystals’, Journal of Chemical Physics, vol. 30, pp. 585586, 1959.CrossRefGoogle Scholar
Tang, C. W., ‘Two‐layer organic photovoltaic cell’, Applied Physics Letters, vol. 48, pp. 183185, 1986.CrossRefGoogle Scholar
Sariciftci, N. S., Smilowitz, L., Heeger, A. J., and Wudl, F., ‘Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): Photoinduced electron transfer and heterojunction devices’, Synthetic Metals, vol. 59, pp. 333352, 1993.CrossRefGoogle Scholar
Sariciftci, N. S., Braun, D., Zhang, C., Srdanov, V. I., Heeger, A. J., Stucky, G., and Wudl, F., ‘Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells’, Applied Physics Letters, vol. 62, pp. 585587, 1993CrossRefGoogle Scholar
Yu, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger, A. J., ‘Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions’, Science, vol. 270, pp. 17891791, 1995.CrossRefGoogle Scholar
Shaheen, S. E., Brabec, C. J., Sariciftci, N. S., Padinger, F., Fromherz, T., and Hummelen, J. C., ‘2.5% efficient organic plastic solar cells’, Applied Physics Letters, vol. 78, pp. 841843, 2001.CrossRefGoogle Scholar
Li, W., Furlan, A., Hendriks, K. H., Wienk, M. M., and Janssen, R. A. J., ‘Efficient tandem and triple-junction polymer solar cells’, Journal of the American Chemical Society, vol. 135, pp. 55295532, 2013.CrossRefGoogle ScholarPubMed
Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T.-Q., Dante, M., and Heeger, A. J., ‘Efficient tandem polymer solar cells fabricated by all-solution processing’, Science, vol. 317, pp. 222225, 2007.CrossRefGoogle ScholarPubMed
You, J., Chen, C.-C., Hong, Z., Yoshimura, K., Ohya, K., Xu, R., et al., ‘10.2% Power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells’, Advanced Materials, vol. 25, pp. 39733978, 2013.CrossRefGoogle ScholarPubMed
You, J., Dou, L., Yoshimura, K., Kato, T., Ohya, K., Moriarty, T., et al., ‘A polymer tandem solar cell with 10.6% power conversion efficiency’, Nature Communications, vol. 4, pp. 1446/11446/10, 2013, DOI: 10.1038/ncomms2411.CrossRefGoogle ScholarPubMed
Xu, T. and Yu, L., ‘How to design low bandgap polymers for highly efficient organic solar cells’, Materials Today, vol. 17, pp. 1115, 2014.CrossRefGoogle Scholar
Peet, J., Kim, J. Y., Coates, N. E., Ma, W. L., Moses, D., Heeger, A. J., and Bazan, G. C., ‘Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols’, Nature Materials, vol. 6, pp. 497500, 2007.CrossRefGoogle ScholarPubMed
Chen, H.-Y., Hou, J., Zhang, S., Liang, Y., Yang, G., Yu, L., et al., ‘Polymer solar cells with enhanced open-circuit voltage and efficiency’, Nature Photonics, vol. 3, pp. 649653, 2009.CrossRefGoogle Scholar
Liang, Y., Xu, Z., Xia, J., Tsai, S.-T., Wu, Y., Li, G., et al., ‘For the bright future–bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%’, Advanced Materials, vol. 22, pp. E135E138, 2010.CrossRefGoogle ScholarPubMed
Jhuo, H.-J., Yeh, P.-N., Liao, S.-H., Li, Y.-L., Cheng, Y.-S., and Chen, S.-A., ‘Review on the recent progress in low band gap conjugated polymers for bulk hetero-junction polymer solar cells’, Journal of the Chinese Chemical Society, vol. 61, pp. 115126, 2014.CrossRefGoogle Scholar
Tsumura, A., Koezuka, H., and Ando, T., ‘Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film’, Applied Physics Letters, vol. 49, pp. 12101212, 1986.CrossRefGoogle Scholar
Burroughes, J. H., Jones, C. A., and Friend, R. H., ‘New semiconductor device physics in polymer diodes and transistors’, Nature, vol. 335, pp. 137141, 1988.CrossRefGoogle Scholar
Garnier, F., Hajlaoui, R., Yassar, A., and Srivastava, P., ‘All-polymer field-effect transistor realized by printing techniques’, Science, vol. 265, pp. 16841686, 1994.CrossRefGoogle ScholarPubMed
Ha, J. S., Kim, K. H., and Choi, D. H., ‘5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-based donor-acceptor alternating copolymer bearing 5,5’-di(thiophen-2-yl)-2,2’-biselenophene exhibiting 1.5 cm2 V−1 s−1 hole mobility in thin-film transistors’, Journal of the American Chemical Society, vol. 133, pp. 1036410367, 2011.CrossRefGoogle Scholar
Li, J., Zhao, Y., Tan, H. S., Guo, Y., Di, C.-A., Yu, G., et al., ‘A stable solution-processed polymer semiconductor with record high-mobility for printed transistors’, Scientific Reports, vol. 2, p. 754.CrossRefGoogle Scholar
Zhang, X., Bronstein, H., Kronemeijer, A. J., Smith, J., Kim, Y., Kline, R. J., et al., ‘Molecular origin of high field effect mobility in an indacenodithiophene-benzothiadiazole copolymer’, Nature Communications, vol. 4, p. 2238, 2013, DOI: 10.1038/ncomms3238.CrossRefGoogle Scholar
Noriega, R., Rivnay, J., Vandewal, K., Koch, F. P. V., Stingelin, N., Smith, P, et al., ‘A general relationship between disorder, aggregation and charge transport in conjugated polymers’. Nature Materials, vol. 12, pp. 10381044, 2013.CrossRefGoogle ScholarPubMed
Street, R. A., ‘Unravelling charge transport in conjugated polymers’, Science, vol. 341, pp. 10721073, 2013.CrossRefGoogle ScholarPubMed
Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T., ‘A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications’, Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 99669970, 2004.CrossRefGoogle ScholarPubMed
Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., et al., ‘Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes’, Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 1232112325, 2005.CrossRefGoogle ScholarPubMed
Darwis, D., Elkington, D., Ulum, S., Bryant, G., Belcher, W., Dastoor, P., and Zhou, X., ‘Novel low voltage and solution processible organic thin film transistors based on water dispersed polymer semiconductor nanoparticulates’, Journal of Colloid and Interface Science, vol. 401, pp. 6569, 2013.CrossRefGoogle ScholarPubMed
Elkington, D., Cooling, N., Belcher, W., Dastoor, P. C., and Zhou, X., ‘OTFT-based sensors’, Electronics, vol. 3, pp. 234254, 2014.CrossRefGoogle Scholar
Elkington, D., Belcher, W. J., Dastoor, P. C., and Zhou, X. J., ‘Detection of saliva-range glucose concentrations using organic thin-film transistors’, Applied Physics Letters, vol. 105, p. 043303, 2014.CrossRefGoogle Scholar
Elkington, D., Wasson, M., Belcher, W., Dastoor, P. C., and Zhou, X. J., ‘Printable organic thin film transistors for glucose detection incorporating inkjet-printing of the enzyme recognition element’, Applied Physics Letters, vol. 106, p. 263301, 2015.CrossRefGoogle Scholar
Ito, T., Shirakawa, H., and Ikeda, S., ‘Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated Ziegler-type catalyst solution’, Journal of Polymer Science, Polymer Chemistry, vol. 12, pp. 1120, 1974.CrossRefGoogle Scholar
Shirakawa, H., ‘The discovery of polyacetylene film: The dawning of an era of conducting polymers’, Angewandte Chemie International Edition, vol. 40, pp. 25742580, 2001.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
MacDiarmid, A. G., ‘“Synthetic metals”: A novel role for organic polymers’, Angewandte Chemie International Edition, vol. 40, pp. 25812590, 2001.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Heeger, A. J., ‘Semiconducting and metallic polymers: The fourth generation of polymeric materials’, Angewandte Chemie International Edition, vol. 40, pp. 25912611, 2001.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Edwards, J. H. and Feast, W. J., ‘A new synthesis of poly(acetylene)’, Polymer, vol. 21, pp. 595596, 1980.CrossRefGoogle Scholar
Feast, W. J. and Winter, J. N., ‘An improved synthesis of polyacetylene’, Journal of the Chemical Society, Chemical Communications, no. 4, pp. 202203, 1985.CrossRefGoogle Scholar
Heeger, A. J., Kivelson, S., Schrieffer, J. R., and Su, W.-P., ‘Solitons in conducting polymers’, Reviews of Modern Physics, vol. 60, pp. 781850, 1988.CrossRefGoogle Scholar
Wegner, G., ‘Polymers with metal-like conductivity: A review of their synthesis, structure and properties’, Angewandte Chemie International Edition, vol. 20, pp. 361381, 1981.CrossRefGoogle Scholar
Sun, R. G., Wang, Y., Zou, X., Fahlam, M., Zheng, Q., Kobayashi, T., et al., ‘Electroluminescence of carbazole-substituted polyacetylenes’, Proceedings of the Society of Photo-Optical Instrumentation Engineers, vol. 3476, pp. 332337, 1998.Google Scholar
Tada, K., Sawada, H., Kyokane, J., and Yoshino, K., ‘Optical properties of perfluoroalkylated poly(diphenylacetylene)’, Japanese Journal of Applied Physics, vol. 34, no. 8B, pp. L1083L1085, 1995.CrossRefGoogle Scholar
Lam, J. W. Y. and Tang, B. Z., ‘Liquid-crystalline and light-emitting polyacetylenes’, Journal of Polymer Science (A), Polymer Chemistry, vol. 41, pp. 26072629, 2003.CrossRefGoogle Scholar
Lam, J. W. Y., Peng, H., Häussler, M., Zheng, R., and Tang, B., ‘Conjugated polymers with linear and hyperbranched structures and advanced materials properties’, Molecular Crystals and Liquid Crystals, vol. 415, pp. 4360, 2004.Google Scholar
Lam, J. W. Y. and Tang, B. Z., ‘Functional polyacetylenes’, Accounts of Chemical Research, vol. 38, pp. 745754, 2005.CrossRefGoogle ScholarPubMed
Masuda, T., ‘Substituted polyacetylenes’, Journal of Polymer Science A, Polymer Chemistry, vol. 45, pp. 165180, 2007.CrossRefGoogle Scholar
Liu, J., Lam, J. W. Y., and Tang, B. Z., ‘Acetylenic polymers: Synthesis, structures and functions’, Chemical Reviews, vol. 109, pp. 57995867, 2009.CrossRefGoogle ScholarPubMed
Tada, K., Hidayat, R., Hirohata, M., Teraguchi, M., Masuda, T., and Yoshino, K., ‘Optical properties and blue and green electroluminescence in soluble disubstituted acetylene polymers’, Japanese Journal of Applied Physics, vol. 35, pp. L1138L1141, 1996.CrossRefGoogle Scholar
Sun, R., Masuda, T., and Kobayashi, T., ‘Green electroluminescent emission from substituted polyacetylenes’, Japanese Journal of Applied Physics, vol. 35, pp. L1434L1437, 1996.CrossRefGoogle Scholar
Hidayat, R., Hirohata, M., Tada, K., Teraguchi, M., Masuda, T., and Yoshino, K., ‘Effect of molecular structure of substituents on green electroluminescence in disubstituted acetylene polymers’, Japanese Journal of Applied Physics, vol. 36, pp. 37403743, 1997.CrossRefGoogle Scholar
Yoshino, K., Hirohata, M., Hidayat, R., Tada, K., Sada, T., Teraguchi, M., et al., ‘Optical properties and electroluminescence characteristics of polyacetylene derivatives dependent on substituent and layer structure’, Synthetic Metals, vol. 91, pp. 283287, 1997.CrossRefGoogle Scholar
Sun, R., Masuda, T., and Kobayashi, T., ‘Visible electroluminescence of polyacetylene derivatives’, Synthetic Metals, vol. 91, pp. 301303, 1997.CrossRefGoogle Scholar
Yoshino, K., Hirohata, M., Hidayat, R., Kim, D. W., Tada, K., Ozaki, M., et al., ‘Photoluminescence and electroluminescence in polyacetylene derivatives’, Synthetic Metals, vol. 102, p. 1159, 1999.CrossRefGoogle Scholar
Sun, R. G., Wang, Y. Z., Wang, D. K., Zheng, Q. B., and Epstein, A. J., ‘Hole transport in substituted polydiphenylacetylenes’, Synthetic Metals, vol. 111–112, pp. 403408, 2000.CrossRefGoogle Scholar
Sun, R., Masuda, T., and Kobayashi, T., ‘Blue electroluminescence of substituted polyacetylenes’, Japanese Journal of Applied Physics, vol. 35, pp. L1673L1676, 1997.CrossRefGoogle Scholar
Abdul Karim, S. M., Nomura, R., Sanda, F., Seki, S., Watanabe, M., and Masuda, T., ‘Synthesis and properties of ion-conducting poly(anthrylacetylene)s’, Macromolecules, vol. 36, pp. 47864789, 2003.CrossRefGoogle Scholar
Mastrorilli, P., Nobile, C. F., Grisorio, R., Rizzuti, A., Suranna, G. P., Acierno, D., et al., ‘Polyacetylenes bearing chiral-substituted fluorene and terfluorene pendant groups: Synthesis and properties’, Macromolecules, vol. 37, pp. 44884495, 2004.CrossRefGoogle Scholar
Xu, H., Sun, Q., Lee, P. P.-S., Kwok, H. S., and Tang, B. Z., ‘Synthesis and light-emission of C60-containing poly(phenylbutynes)’, Thin and Solid Films, vol. 363, pp. 143145, 2000.CrossRefGoogle Scholar
Tang, B. Z., Xu, H., Lam, J. W. Y., Lee, P. P. S., Xu, K., Sun, Q., and Cheuk, K. K. L., ‘C60-containing poly(1-phenyl-1-alkynes): Synthesis, light emission, and optical limiting’, Chemistry of Materials, vol. 12, pp. 14461455, 2000.CrossRefGoogle Scholar
Lam, J. W. Y., Law, C. K., Dong, Y., Wang, J.-L., Ge, W., and Tang, B. Z., ‘Mesomorphic and luminescent properties of disubstituted polyacetylenes bearing biphenyl pendants’, Optical Materials, vol. 21, pp. 321324, 2002.CrossRefGoogle Scholar
Xie, Z., Lam, J. W. Y., Dong, Y., Qiu, C., Kwok, H.-S., and Tang, B. Z., ‘Blue luminescence of poly(phenyl-napthoxy-pentyne)’, Optical Materials, vol. 21, pp. 231234, 2002.CrossRefGoogle Scholar
Dong, Y., Lam, J. W. Y., Peng, H., Cheuk, K. K. L., Kwok, H. S., and Tang, B. Z., ‘Synthesis and mesomorphic and luminescent properties of disubstituted polyacetylenes bearing biphenyl pendants’, Macromolecules, vol. 37, pp. 64086417, 2004.CrossRefGoogle Scholar
Lam, J. W. Y., Dong, Y., Kwok, H. S., and Tang, B. Z., ‘light-emitting polyacetylenes: Synthesis and electrooptical properties of poly(1-phenyl-1-alkyne)s bearing naphthyl pendants’, Macromolecules, vol. 39, pp. 69977003, 2006.CrossRefGoogle Scholar
Lam, J. W. Y., Luo, J., Dong, Y., Cheuk, K. K. L., and Tang, B. Z., ‘Functional polyacetylenes: Synthesis and light emission of polypropiolates’, Macromolecules, vol. 35, pp. 82888299, 2002.CrossRefGoogle Scholar
Chen, J., Xie, Z., Lam, J. W. Y., Law, C. C. W., and Tang, B. Z., ‘Silole-containing polyacetylenes. Synthesis, thermal stability, light emission, nanodimensional aggregation, and restricted intramolecular rotation’, Macromolecules, vol. 36, pp. 11081117, 2003.CrossRefGoogle Scholar
Lam, J. W. Y., Chen, J., Law, C. C. W., Peng, H., Xie, Z., Cheuk, K. K. L., et al., ‘Silole-containing linear and hyperbranched polymers’, Macromolecular Symposia, vol. 196, pp. 289300, 2003.CrossRefGoogle Scholar
Chen, J., Kwok, H. S., and Tang, B. Z., ‘Silole-containing poly(diphenylacetylene): Snthesis, characterization, and light emission’, Journal of Polymer Science (A), Polymer Chemistry, vol. 44, pp. 24872498, 2006.CrossRefGoogle Scholar
Yu, G., Liu, Y., Zhan, X., Li, H., Yang, M., and Zhu, D., ‘Thermally stable substituted polyacetylenes’, Thin and Solid Films, vol. 363, pp. 126129, 2000.CrossRefGoogle Scholar
Park, J.-W., Lee, J.-W., Gal, Y.-S., Ko, J.-M., and Chen, J.-H., ‘Poly(2-ethynyl pyrdinium tosylate)’, Polymer Preprints, vol. 40(2), pp. 795796, 1999.Google Scholar
Hidayat, R., Hirohata, M., Tada, K., Teraguchi, M., Masuda, T., and Yoshino, K., ‘Green electroluminescence from polydiphenylacetylene blends’, Japanese Journal of Applied Physics, vol. 37, pp. L180L183, 1998.Google Scholar
Huang, Y. M., Lam, J. W. Y., Cheuk, K. K. L., Ge, W., and Tang, B. Z., ‘Strong luminescence from poly(1-alkynes)’, Macromolecules, vol. 32, pp. 59765978, 1999.CrossRefGoogle Scholar
Huang, Y. M., Lam, J. W. Y., Cheuk, K. K. L., Ge, W., and Tang, B. Z., ‘Poly(alkylacetylene)s: A new class of luminescent polyacetylenes’, Thin and Solid Films, vol. 363, pp. 146148, 2000.CrossRefGoogle Scholar
Lee, P. P.-S., Geng, Y., Kwok, H. S., and Tang, B. Z., ‘Synthesis and light-emission of poly(carbazolyl acetylene)s’, Thin and Solid Films, vol. 363, pp. 149151, 2000.Google Scholar
Wessling, R. A. and Zimmerman, R. G., ‘U.S.Patent US 3,401,152’, Chemical Abstracts, vol. 69, p. 87735q, 1968.Google Scholar
Wessling, R. A., ‘The polymerisation of xylylidene bisalkylsulfonium salts’, Journal of Polymer Science, Polymer Symposia, vol. 72, pp. 5566, 1985.CrossRefGoogle Scholar
Garay, R. O. and Lenz, R. W., ‘Effect of the reaction state on the polymerization of p-xylenesulfonium salts’, Journal of Polymer Science: Part A: Polymer Chemistry, vol. 30, pp. 977982, 1992.CrossRefGoogle Scholar
Burn, P. L., Bradley, D. D. C., Friend, R. H., Halliday, D. A., Holmes, A. B., Jackson, R. W., and Kraft, A., ‘Precursor route chemistry and electronic properties of poly(p-phenylenevinylene), poly[(2,5-dimethyl-p-phenylene)vinylene] and poly[(2,5-dimethoxy-p-phenylene)vinylene]’, Journal of the Chemical Society, Perkin Transactions 1, pp. 3225–3231, 1992.Google Scholar
Garay, R. O., Baier, U., Bubeck, C., and Müllen, K., ‘Low-temperature synthesis of poly(p-phenylenevinylene) by the sulfonium salt route’, Advanced Materials, vol. 5, pp. 561564, 1993.CrossRefGoogle Scholar
Halliday, D. A., Burn, P. L., Bradley, D. D. C., Friend, R. H., Gelsen, O. M., Holmes, A. B., et al., ‘Large changes in optical response through chemical pre-ordering of poly(p-phenylenevinylene)’, Advanced Materials, vol. 5, pp. 4043, 1993.CrossRefGoogle Scholar
Halliday, D. A., Burn, P. L., Friend, R. H., Bradley, D. D. C., Holmes, A. B., and Kraft, A., ‘Extended π-conjugation in poly(p-phenylenevinylene) from a chemically modified precursor polymer’, Synthetic Metals, vol. 55, pp. 954959, 1993.CrossRefGoogle Scholar
Burn, P. L., Holmes, A. B., Kraft, A., Bradley, D. D. C., Brown, A. R., and Friend, R. H., ‘Synthesis of a segmented conjugated polymer chain giving a blue-shifted electroluminescence and improved efficiency’, Journal of the Chemical Society Chemical Communications, pp. 32–34, 1992.CrossRefGoogle Scholar
Brown, A. R., Burn, P. L., Bradley, D. D. C., Friend, R. H., Kraft, A., and Holmes, A. B., ‘Blue-shifted electroluminescence from a stable precursor to poly(P-phenylene vinylene)’, Molecular Crystals and Liquid Crystals, vol. 216, pp. 111116, 1992.CrossRefGoogle Scholar
Carter, J. C., Grizzi, I., Heeks, S. K., Lacey, D. J., Latham, S. G., May, P. G., et al., ‘Operating stability of light-emitting polymer diodes based on poly(p-phenylene vinylene)’, Applied Physics Letters, vol. 71, pp. 3436, 1997.CrossRefGoogle Scholar
Tessler, N., Harrison, N. T., and Friend, R. H., ‘High peak brightness polymer light-emitting diodes’, Advanced Materials, vol. 10, pp. 6468, 1998.3.0.CO;2-G>CrossRefGoogle Scholar
Padmanaban, G. and Ramakrishnan, S., ‘Conjugation length control in MEHPPV’, Journal of the American Chemical Society, vol. 122, pp. 22442251, 2000.CrossRefGoogle Scholar
Padmanaban, G. and Ramakrishnan, S., ‘Improved method for conjugation control in MEHPPV’, Synthetic Metals, vol. 119, pp. 533534, 2001.CrossRefGoogle Scholar
Burn, P. L., Holmes, A. B., Kraft, A., Bradley, D. D. C., Brown, A. R., Friend, R. H., and Gymer, R. W., ‘Chemical tuning of electroluminescent copolymers to improve emission efficiencies and allow patterning’, Nature, vol. 356, pp. 4749, 1992.CrossRefGoogle Scholar
Gelan, J., Vanderzande, D., and Louwet, F., ‘Eur. Patent Appl. EP 644,217’, Chemical Abstracts, vol. 123, p. 144940m, 1995.Google Scholar
Louwet, F., Vanderzande, D., Gelan, J., and Mullens, J., ‘A new synthetic route to a soluble high molecular weight precursor to poly(p-phenylene vinylene)’, Macromolecules, vol. 28, pp. 13301331, 1995.CrossRefGoogle Scholar
van Breemen, A. J. J. M., Vanderzande, D. J. M., Adriaensens, P. J., and Gelan, J. M. J. V., ‘Highly selective route for producing unsymmetrically substituted monomers towards synthesis of conjugated polymers derived from poly(p-phenylene vinylene)’, Journal of Organic Chemistry, vol. 64, pp. 31063112, 1999.CrossRefGoogle Scholar
Mozer, A. J., Denk, P., Scharber, M. C., Neugebauer, H., Sariciftci, N. S., Wagner, P., et al., ‘Novel regiospecific MDMO-PPV copolymer with improved charge transport for bulk heterojunction solar cells’, The Journal of Physical Chemistry B, vol. 108, pp. 52355242, 2004.CrossRefGoogle Scholar
Gilch, H. G. and Wheelwright, W. L., ‘Polymerisation of α-halogenated p-xylenes with base’, Journal of Polymer Science A-1, vol. 4, pp. 13371349, 1966.CrossRefGoogle Scholar
Wudl, F. and Srdanov, G., ‘US Patent 5,189,136’, Chemical Abstracts, vol. 123, p. 255575, 1993.Google Scholar
Sarnecki, G. J., Friend, R. H., Holmes, A. B., and Moratti, S. C., ‘The synthesis of a new regioregular conjugated polymer. Poly(2-bromo-5-dodecyloxy-1,4-phenylenevinylene)’, Synthetic Metals, vol. 69, pp. 545546, 1995.CrossRefGoogle Scholar
Gurge, R. M., Sarker, A., Lahti, P. M., Hu, B., and Karasz, F. E., ‘Red light emitting “push−pull” disubstituted poly(1,4-phenylenevinylenes)’, Macromolecules, vol. 29, pp. 42874292, 1996.CrossRefGoogle Scholar
Schoo, H. F. M., Demandt, R. C. J. E., Vleggaar, J. J. M., and Liedenbaum, C. T. H., ‘Organic polymer LEDs with mobile and immobile ions’, Macromolecular Symposia, vol. 125, pp. 165170, 1997.CrossRefGoogle Scholar
Webster, G. R. and Burn, P. L., ‘Controlling the conjugation length in poly[5-n-butyl-2-(2-ethylhexyl)-1,4-phenylene vinylene]: Exploring the scope of hydrogen radical substitution of leaving groups on precursor polymers’, Synthetic Metals, vol. 145, pp. 159169, 2004.CrossRefGoogle Scholar
Garay, R. O., Sarimalis, M. N., Montani, R. S., and Hernandez, S. A., ‘Synthesis of conjugated polymers. Polymerizability studies of bis-sulfonium salts’, Designed Monomers and Polymers, vol. 3, pp. 231244, 2000.CrossRefGoogle Scholar
Grimsdale, A. C., Chan, K. L., Martin, R. E., Jokisz, P. G., and Holmes, A. B., ‘Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices’, Chemical Reviews, vol. 109, pp. 9871091, 2009.CrossRefGoogle ScholarPubMed
Denton, F. R., Lahti, P. M., and Karasz, F. E., ‘The effect of radical trapping upon formation of poly(α-tetrahydrothiophenio paraxylene) polyelectrolytes by the Wessling soluble precursor method’, Journal of Polymer Science: Part A: Polymer Chemistry, vol. 30, pp. 22232231, 1992.CrossRefGoogle Scholar
Issaris, A., Vanderzande, D., and Gelan, J., ‘Polymerisationof a p-quinodimethane derivative to a precursor of poly(p-phenylene vinylene): Indications for a free radical mechanism’, Polymer, vol. 38, pp. 25712574, 1997.CrossRefGoogle Scholar
Cho, B. R., ‘Precursor polymers to poly(p-phenylene vinylene) and its heteroaromatic derivatives. Polymerization mechanism’, Progress in Polymer Science, vol. 27, pp. 307355, 2002.CrossRefGoogle Scholar
Yin, C. and Yang, C.-Z., ‘Mechanism analysis of the PEG-participated Gilch synthesis for soluble PPV derivatives’, Journal of Applied Polymer Science, vol. 82, pp. 263268, 2001.CrossRefGoogle Scholar
Neef, C. J. and Ferraris, J. P., ‘MEHPPV: Improved synthetic procedure and molecular weight control’, Macromolecules, vol. 33, pp. 23112314, 2000.CrossRefGoogle Scholar
Hsieh, B. R., Yu, Y., Van Laeken, A. C., and Lee, H., ‘General methodology towards soluble poly(p-phenylene vinylene) derivatives’, Macromolecules, vol. 30, pp. 80948095, 1997.CrossRefGoogle Scholar
Hontis, L., Vrindts, V., Lutsen, L., Vanderzande, D., and Gelan, J., ‘The Gilch polymerisation towards C1C10PPV: Indications for a radical mechanism’, Polymer, vol. 42, pp. 57935799, 2001.CrossRefGoogle Scholar
Schwalm, T., Wiesecke, J., Immel, S., and Rehahn, M., ‘The Gilch synthesis of poly(p-phenylene vinylenes): Mechanistic knowledge in the service of advanced materials’, Macromolecular Rapid Communications, vol. 30, pp. 12951322, 2009.CrossRefGoogle ScholarPubMed
Becker, H., Spreitzer, H., Ibrom, K., and Kreuder, W., ‘New insights into the microstructure of Gilch-polymerized PPVs’, Macromolecules, vol. 32, pp. 49254932, 1999.CrossRefGoogle Scholar
Becker, H., Gelsen, O., Kluge, E., Kreuder, W., Schenk, H., and Spreitzer, H., ‘Development of high-performance PPVs: Implications of the polymer microstructure’, Synthetic Metals, vol. 111–112, pp. 145149, 2000.CrossRefGoogle Scholar
Becker, H., Spreitzer, H., Kreuder, W., Kluge, E., Vestweber, H., Schenk, H., and Treacher, K., ‘Advances in polymers for PLEDs: From a polymerization mechanism to industrial manufacturing’, Synthetic Metals, vol. 122, pp. 105110, 2001.CrossRefGoogle Scholar
Fleissner, A., Stegmaier, K., Melzer, C., von Seggern, H., Schwalm, T., and Rehahn, M., ‘Residual halide groups in Gilch-polymerized PPV and their impact on performance and lifetime of OLEDs’, Chemistry of Materials, vol. 21, pp. 42884298, 2009.CrossRefGoogle Scholar
Becker, H., Spreitzer, H., Kreuder, W., Kluge, E., Schenk, H., Parker, I., and Cao, Y., ‘Soluble PPVs with enhanced performance: A mechanistic approach’, Advanced Materials, vol. 12, pp. 4248, 2000.3.0.CO;2-F>CrossRefGoogle Scholar
Delmotte, A., Biesemans, M., Mele, B. V., Gielen, M., Bouman, M. M., and Meijer, E. W., ‘Selective elimination in dialkoxy–PPV precursors yielding polymers with isolated tetraalkoxy-stilbene units’, Synthetic Metals, vol. 68, pp. 269273, 1995.CrossRefGoogle Scholar
Fan, Y.-L. and Lin, K.-F., ‘Dependence of the luminescence properties and chain length of poly[2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylene vinylene] on the formation of cis-vinylene bonds during the Gilch polymerization’, Journal of Polymer Science (A), Polymer Chemistry, vol. 43, pp. 25202526, 2005.CrossRefGoogle Scholar
Greiner, A. and Heitz, W., ‘New synthetic approach to PPV and its derivatives by Pd catalyzed arylation of ethylene’, Macromolecular Chemistry, Rapid Communications, vol. 9, p. 581, 1988.CrossRefGoogle Scholar
Heitz, W., Brügging, W., Freund, L., Gailberger, M., Greiner, A., Jung, H., et al., ‘Synthesis of monomers and polymers by the Heck reaction’, Makromolekulare Chemie, vol. 189, pp. 119127, 1988.CrossRefGoogle Scholar
Heitz, W., ‘Metal-catalyzed polycondensation reactions’, Pure and Applied Chemistry, vol. 67, pp. 19511964, 1995.CrossRefGoogle Scholar
Liu, Y., Lahti, P. M., and La, F., ‘Synthesis of a regiospecific, soluble poly(2-alkoxy-1,4-phenylenevinylene)’, Polymer, vol. 39, pp. 52415244, 1998.CrossRefGoogle Scholar
Pfeiffer, S. and Hörhold, H.-H., ‘Synthesis of soluble MEHPPV and MEHPPB by Horner’, Synthetic Metals, vol. 101, pp. 109110, 1999.CrossRefGoogle Scholar
Pfeiffer, S. and Hörhold, H.-H., ‘Investigation of poly(arylenevinylene)s. Part 41. Synthesis of soluble dialkoxysubstituted poly(phenylene alkenylidenes) by applying the Horner reaction by condensation polymerization’, Macromolecular Chemistry and Physics, vol. 200, pp. 18701878, 1999.3.0.CO;2-T>CrossRefGoogle Scholar
Hörhold, H.-H., Tillmann, H., Bader, C., Stockmann, R., Nowotny, J., Klemm, E., et al., ‘MEH-PPV and dialkoxy phenylene vinylene copolymers: Synthesis and lasing’, Synthetic Metals, vol. 119, pp. 199200, 2001.CrossRefGoogle Scholar
Drury, A., Maier, S., Rüther, N., and Blau, W. J., ‘Investigation of different synthesis routes to and structure-property relationships of a poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenyklene vinylene)’, Journal of Materials Chemistry, vol. 13, pp. 485490, 2003.CrossRefGoogle Scholar
Liao, L., Pang, Y., Ding, L., and Karasz, F. E., ‘Effect of iodine-catalyzed isomerization on the optical properties of poly[(1,3-phenylenevinylene-alt-(2,5-dihexyloxy-1,4-phenylenevinylene)]s’, Macromolecules, vol. 35, pp. 60556059, 2002.CrossRefGoogle Scholar
Rehahn, M. and Schlüter, A.-D., ‘Soluble poly(p-phenylenevinylene)s from 2,5-dihexylterephthaldehyde using the improved McMurry reagent’, Makromolecular Chemie Rapid Communications, vol. 11, pp. 375379, 1990.CrossRefGoogle Scholar
Feast, W. J. and Millichamp, I. S., ‘The synthesis of poly(4,4’-diphenylene diphenylvinylene) via condensation polymerization of 4,4’-dibenzoylbiphenyl’, Polymer Communications, vol. 24, pp. 102103, 1983.Google Scholar
Cacialli, F., Daik, R., Feast, W. J., Friend, R. H., and Lartigau, C., ‘Synthesis and properties of poly(arylene vinylene)s with controlled structures’, Optical Materials, vol. 12, pp. 315319, 1999.CrossRefGoogle Scholar
Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H., and Holmes, A. B., ‘Efficient light-emitting diodes based on polymers with high electron affinity’, Nature, vol. 365, pp. 628630, 1993.CrossRefGoogle Scholar
Marsella, M. J., Fu, D.-K., and Swager, T. M., ‘Synthesis of regioregular poly(methylpyridinium vinylene). An isoelectronic analog to poly(paraphenylenevinylene)’, Advanced Materials, vol. 7, pp. 145147, 1995.CrossRefGoogle Scholar
Bao, Z., Chan, W. K., and Yu, L., ‘Exploration of the Stille coupling reaction for the synthesis of functional polymers’, Journal of the American Chemical Society, vol. 117, pp. 1242612435, 1995.CrossRefGoogle Scholar
Babudri, F., Cicco, S. R., Farinola, G. M., Naso, F., Bolognesi, A., and Porzio, W., ‘Synthesis, characterization, and properties of a soluble polymer with a poly(phenylenevinylene) structure’, Macromolecular Rapid Communications, vol. 17, pp. 905911, 1996.CrossRefGoogle Scholar
Lopez, L. C., Strohriegl, P., and Stübinger, T., ‘Synthesis of poly(fluorenylene-co-phenylene vinylene) by Suzuki coupling’, Macromolecular Chemistry and Physics, vol. 203, pp. 19261930, 2002.3.0.CO;2-E>CrossRefGoogle Scholar
Grisorio, R., Mastrorilli, P., Nobile, C. F., Romanazzi, G., and Suranna, E. P., ‘A novel synthetic protocol for poly(fluorenylenevinylene)s: A cascade Suzuki-Heck reaction’, Tetrahedron Letters, vol. 46, pp. 25552558, 2005.CrossRefGoogle Scholar
Thorn-Csányi, E. and Kraxner, P., ‘All trans-oligomers of dialkyl-1,4-phenylenevinylenes: Metathesis preparation and characterization’, Macromolecular Chemistry and Physics, vol. 198, pp. 38273843, 1997.CrossRefGoogle Scholar
Reetz, R., Norwark, O., Herzog, O., Brocke, S., and Thorn-Csányi, E., ‘Substituted PPV oligomers by metathesis’, Synthetic Metals, vol. 119, pp. 539540, 2001.Google Scholar
Oakley, G. W. and Wagener, K. B., ‘Solid-state olefin metathesis: ADMET of rigid-rod polymers’, Macromolecular Chemistry and Physics, vol. 206, pp. 1524, 2005.CrossRefGoogle Scholar
Wagaman, M. W. and Grubbs, R. H., ‘Synthesis of PNV homo- and copolymers by a ROMP precursor route’, Synthetic Metals, vol. 84, pp. 327328, 1997.CrossRefGoogle Scholar
Zyung, T., Kim, J.-J., Hwang, W.-Y., Hwang, D. H., and Shim, H. K., ‘Electroluminescence from poly(p-phenylenevinylene) with monoalkoxy substituent on the aromatic ring’, Synthetic Metals, vol. 71, pp. 21672169, 1995.CrossRefGoogle Scholar
Braun, D. and Heeger, A. J., ‘Visible light emission from semiconducting polymer diodes’, Applied Physics Letters, vol. 58, pp. 19821984, 1991.CrossRefGoogle Scholar
Doi, S., Kuwabara, M., Noguchi, T., and Ohnishi, T., ‘Organic electroluminescent devices having poly(dialkoxy-p-phenylene vinylenes) as a light emitting material’, Synthetic Metals, vol. 57, pp. 41744179, 1993.CrossRefGoogle Scholar
Andersson, M. R., Yu, G., and Heeger, A. J., ‘PL and EL of films from soluble PPV polymers’, Synthetic Metals, vol. 85, pp. 12751276, 1997.CrossRefGoogle Scholar
Hwang, D.-H., Kim, S. T., Shim, H.-K., Holmes, A. B., Moratti, S. C., and Friend, R. H., ‘Green light-emitting diodes from poly(2-dimethyloctylsilyl-1,4-phenylenevinylene)’, Chemical Communications, pp. 2241–2242, 1996.Google Scholar
Vestweber, H., Greiner, A., Lemmer, U., Mahrt, R. F., Richert, R., Heitz, W., and Bässler, H., ‘Progress towards processible materials for light-emitting devices using poly(p-phenylphenylenevinylene)’, Advanced Materials, vol. 4, pp. 661662, 1992.CrossRefGoogle Scholar
Jin, Y., Kim, J., Park, S. H., Kim, H., Lee, K., and Suh, H., ‘Synthesis and color tuning of PPV containing terphenyl units for LEDs’, Bulletin of the Korean Chemical Society, vol. 26, pp. 18071818, 2005.Google Scholar
Martin, R. E., Generste, F., Riehn, R., Chuah, B. S., Cacialli, F., Friend, R. H., and Holmes, A. B., ‘Efficient blue-green emitting poly(1,4-phenylene vinylene) copolymers’, Chemical Communications, pp. 291–292, 2000.CrossRefGoogle Scholar
Martin, R. E., Geneste, F., Chuah, B. S., Fischmeister, C., Ma, Y., Holmes, A. B., et al., ‘Versatile synthesis of conjugated aromatic homo- and copolymers’, Synthetic Metals, vol. 122, pp. 16, 2001.CrossRefGoogle Scholar
Hsieh, B. R., Wan, W. C., Yu, Y., Gao, Y., Goodwin, T. E., Gonzalez, S. A., and Feld, W. A., ‘Synthesis of highly phenylated poly(p-phenylenevinylenes) via a chlorine precursor route’, Macromolecules, vol. 31, pp. 631636, 1998.CrossRefGoogle Scholar
Hsieh, B. R., Yu, Y., Forsythe, E. W., Schaaf, G. M., and Feld, W. A., ‘A new family of highly emissive soluble poly(p-phenylene vinylene) derivatives. A step toward fully conjugated blue-emitting poly(p-phenylene vinylenes)’, Journal of the American Chemical Society, vol. 120, pp. 231232, 1998.CrossRefGoogle Scholar
Ahn, T., Jang, M. S., Shim, H.-K., Hwang, D.-H., and Zyung, T., ‘Blue electroluminescent polymers: Control of conjugation by kink linkages and substituents in the poly(p-phenylenevinylene)-related copolymers’, Macromolecules, vol. 32, pp. 32793285, 1999.CrossRefGoogle Scholar
Spreitzer, H., Becker, H., Kluge, E., Kreuder, W., Schenk, H., Demandt, R., and Schoo, H., ‘Soluble phenyl-substituted PPVs. New materials for highly efficient polymer LEDs’, Advanced Materials, vol. 10, pp. 13401343, 1998.3.0.CO;2-G>CrossRefGoogle Scholar
Van Der Borght, M., Vanderzande, D., and Gelan, J., ‘Synthesis of high molecular weight poly(4,4’-biphenylene vinylene) and poly(2-6-naphthalene vinylene) via a non-ionic precursor route’, Polymer, vol. 39, pp. 41714174, 1998.CrossRefGoogle Scholar
Jin, S.-H., Park, H.-J., Kim, J. Y., Lee, K., Lee, S.-P., Moon, D.-K., et al., ‘Poly(fluorene vinylene) by Gilch for light emitting diode applications’, Macromolecules, vol. 35, pp. 75327534, 2002.CrossRefGoogle Scholar
Remmers, M., Neher, D., Grüner, J., Friend, R. H., Gelinck, G. H., Warman, J. M., et al., ‘The optical, electronic, and electroluminescent properties of novel poly(p-phenylene) related polymers’, Macromolecules, vol. 29, pp. 74327445, 1996.CrossRefGoogle Scholar
Stenger-Smith, J. D., Sauer, T., Wegner, G., and Lenz, R. W., ‘Preparation, spectroscopic and cyclic voltammetric studies of poly (1,4-naphthalene vinvlene) prepared from a cycloalkylene sulfonium precursor polymer’, Polymer, vol. 31, pp. 16321636, 1990.CrossRefGoogle Scholar
Miao, Y.-J. and Bazan, G. C., ‘Paracyclophane route to poly(p-phenylene vinylene)’, Journal of the American Chemical Society, vol. 116, pp. 93799380, 1994.CrossRefGoogle Scholar
Hwang, D.-H., Choi, K.-H., Do, L.-M., Ahn, T., Shim, H.-K., and Zyung, T., ‘Two-colour emission from PPV-PTV copolymer and Alq3 heterostructure EL device’, Synthetic Metals, vol. 102, pp. 12181219, 1999.CrossRefGoogle Scholar
Baigent, D. R., Marks, R. N., Greenham, N. C., Friend, R. H., Moratti, S. C., and Holmes, A. B., ‘Surface-emitting polymer light emitting diodes’, Synthetic Metals, vol. 71, pp. 21772178, 1995.CrossRefGoogle Scholar
Moratti, S. C., Cervini, R., Holmes, A. B., Baigent, D. R., Friend, R. H., Greenham, N. C., et al., ‘High electron affinity polymers for LEDs’, Synthetic Metals, vol. 71, pp. 21172120, 1995.CrossRefGoogle Scholar
An, Z., Wu, C. Q., and Sun, X., ‘Dynamics of photogenerated polarons in conjugated polymers’, Physical Review Letters, vol. 93, p. 216407, 2004.CrossRefGoogle ScholarPubMed
Blundell, S. J., Pratt, F. L., Marshall, I. M., Steer, C., Hayes, W., Husmann, A., et al., ‘Muon-spin relaxation study of anisotropic charge carrier motion in polyphenylene vinylene-based polymers’, Journal of Physics: Condensed Matter, vol. 14, pp. 99879995, 2002.Google Scholar
Campbell, A. J., Bradley, D. D. C., and Lidzey, D. G., ‘Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes’, Journal of Applied Physics, vol. 82, pp. 63266342, 1997.CrossRefGoogle Scholar
Moses, D., Okumoto, H., Lee, C. H., Heeger, A. J., Ohnishi, T., and Noguchi, T., ‘Mechanism of carrier generation in poly(phenylene vinylene): Transient photoconductivity and photoluminescence at high electric fields’, Physical Review B, vol. 54, pp. 47484754, 1996.CrossRefGoogle ScholarPubMed
Barth, S. and Bässler, H., ‘Intrinsic photoconduction in PPV-type conjugated polymers’, Physical Review Letters, vol. 79, pp. 44454448, 1997.CrossRefGoogle Scholar
Gmeiner, J., Karg, S., Meier, M., Riess, W., Strohriegl, P., and Schwoerer, M., ‘Synthesis, electrical conductivity and electroluminescence of poly(p-phenylene vinylene) prepared by the precursor route’, Acta Polymerica, vol. 44, pp. 201205, 1993.CrossRefGoogle Scholar
Gagnon, D. R., Capistran, J. D., Karasz, F. E., Lenz, R. W., and Antoun, S., ‘Synthesis, doping, and electrical conductivity of high molecular weight PPV’, Polymer, vol. 28, p. 567, 1987.CrossRefGoogle Scholar
Ohmori, Y., Muro, K., Onada, M., and Yoshino, K., ‘Fabrication and characterization of Schottky gated field-effect transistors utilizing poly(1,4-naphthalene vinylene) and poly(p-phenylene vinylene)’, Japanese Journal of Applied Physics, vol. 31, p. L646, 1992.CrossRefGoogle Scholar
Parker, I. D., Gymer, R. W., Harrison, M. G., Friend, R. H., and Ahmed, H., ‘Fabrication of a novel electro-optical intensity modulator from the conjugated polymer poly(2,5-dimethoxy-PPV)’, Applied Physics Letters, vol. 62, pp. 15191521, 1993.CrossRefGoogle Scholar
Gurge, R. M., Sarker, A. M., Lahti, P. M., Hu, B., and Karasz, F. E., ‘Light-emitting properties of fluorine-substituted poly(1,4-phenylene vinylenes)’, Macromolecules, vol. 30, pp. 82868292, 1997.CrossRefGoogle Scholar
Kang, I.-N., Shim, H.-K., and Zyung, T., ‘Yellow-light emitting fluorine-substituted PPV’, Chemistry of Materials, vol. 9, pp. 746749, 1997.CrossRefGoogle Scholar
Greenham, N. C., Cacialli, F., Bradley, D. D. C., Friend, R. H., Moratti, S. C., and Holmes, A. B., ‘Cyano-derivatives of poly(p-phenylene vinylene) for use in thin-film light-emitting diodes’, Materials Research Society Symposia Proceedings, vol. 328, pp. 351360, 1994.CrossRefGoogle Scholar
Jin, S.-H., Kim, M.-Y., Kim, J. Y., Lee, K., and Gal, Y.-S., ‘High efficiency poly(p-phenylene vinylene)-based copolymers containing an oxadiazole pendant group for light-emitting diodes’, Journal of the American Chemical Society, vol. 126, pp. 24742480, 2004.CrossRefGoogle Scholar
Grell, M. and Bradley, D. D. C., ‘Polarized luminescence from oriented molecular materials’, Advanced Materials, vol. 11, pp. 895905, 1999.3.0.CO;2-Y>CrossRefGoogle Scholar
O’Neill, M. and Kelly, S. M., ‘Liquid crystals for charge transport, luminescence and photonics’, Advanced Materials, vol. 15, pp. 11351146, 2003.CrossRefGoogle Scholar
Hamaguchi, M. and Yoshino, K., ‘Lyotropic behavior of poly(2,5-dinonlyoxy-p-phenylene)’, Japanese Journal of Applied Physics, vol. 33, pp. L1478L1481, 1994.CrossRefGoogle Scholar
Hamaguchi, M. and Yoshino, K., ‘Rubbing-induced molecular orientation and polarized electroluminescence in conjugated polymer’, Japanese Journal of Applied Physics, vol. 34, pp. L712L715, 1995.CrossRefGoogle Scholar
Onoda, M., Tada, K., Ozaki, M., and Yoshino, K., ‘An electroluminescent diode using liquid-crytalline conducting polymer’, Thin and Solid Films, vol. 363, pp. 912, 2000.CrossRefGoogle Scholar
Park, J. H., Lee, C. H., Akagi, K., Shirakawa, H., and Park, Y. W., ‘PL and EL of LC aromatic conjugated polymers’, Synthetic Metals, vol. 119, pp. 633634, 2001.CrossRefGoogle Scholar
Nishikata, Y., Kakimoto, M., and Imai, Y., ‘Preparation and properties of poly(p-phenylene vinylene) Langmuir-Blodgett film’, Thin and Solid Films, vol. 179, pp. 191197, 1989.CrossRefGoogle Scholar
Wu, A., Jikei, M., Kakimoto, M., Imai, Y., Ukishima, S., and Takahashi, Y., ‘Fabrication of polymeric light-emitting diodes based on poly(p-phenylene vinylene) LB films’, Chemistry Letters, vol. 23, pp. 23192322, 1994.CrossRefGoogle Scholar
Kim, J. H., Kim, Y. K., Sohn, B. C., Kang, D.-Y., Jin, J.-I., Kim, C.-H., and Pyun, C.-H., ‘Preparation and characterization of poly(p-phenylene vinylene) Langmuir-Blodgett film formed via precursor method’, Synthetic Metals, vol. 71, pp. 20232024, 1995.CrossRefGoogle Scholar
Peeters, E., Christiaans, M. P. T., Janssen, R. A. J., Schoo, H. F. M., Dekkers, H. P. J. M., and Meijer, E. W., ‘Circularly polarized electroluminescence from a polymer light-emitting diode’, Journal of the American Chemical Society, vol. 119, pp. 99099910, 1997.CrossRefGoogle Scholar
Pu, L., ‘Binaphthyl dimers, oligomers and polymers’, Chemical Reviews, vol. 98, pp. 24052494, 1998.CrossRefGoogle ScholarPubMed
Hofmann, O., Wang, X., deMello, J. C., Bradley, D. D. C., and deMello, A. J., ‘Towards microalbuminuria determination on a disposable diagnostic microchip with integrated fluorescence detection based on thin-film organic light emitting diodes’, Lab Chip, vol. 5, pp. 863868, 2005.CrossRefGoogle ScholarPubMed
Karg, S., Reiss, W., Meier, M., and Schwoerer, M., ‘Characterization of LEDs and solar cells based on PPV’, Synthetic Metals, vol. 57, pp. 41864191, 1993.CrossRefGoogle Scholar
Arias, A. C., Granstrom, M., Thomas, D. S., Petritsch, K., and Friend, R. H., ‘Doped conducting-polymer-semiconducting-polymer interfaces: Their use in organic photovoltaic devices’, Physical Review B, vol. 60, pp. 18541860, 1999.CrossRefGoogle Scholar
Hayashi, Y., Yamada, I., Takagi, S., Takasu, A., Soga, T., and Jimbo, T., ‘Influence of structure and C60 composition on properties of blends and bilayers of organic donor-acceptor polymer/C60 photovoltaic devices’, Japanese Journal of Applied Physics, vol. 44, pp. 12961300, 2005.CrossRefGoogle Scholar
Umeda, T., Hashimoto, Y., Mizukami, H., Fujii, A., and Yoshino, K., ‘Fabrication of interpenetrating semilayered structure of semiconducting polymer and fullerene by solvent corrosion method and its photovoltaic properties’, Japanese Journal of Applied Physics, vol. 44, pp. 41554160, 2005.CrossRefGoogle Scholar
Zhang, F., Johansson, M., Andersson, M. R., Hummelen, J. C., and Inganas, O., ‘Polymer photovoltaic cells with conducting polymer anodes’, Advanced Materials, vol. 14, pp. 662665, 2002.3.0.CO;2-N>CrossRefGoogle Scholar
Lin, P., Liang, C.-J., Deng, Z.-B., Xiong, D.-P., Wang, L., Zhang, Z.-F., and Zhang, X.-Q., ‘[Photovoltaic character of organic EL devices MEH-PPV/Alq3]’, Guangpuxue Yu Guangpu Fenxi, vol. 25, pp. 2325, 2005; Chemical Abstracts, vol. 143, 88243.Google ScholarPubMed
Lee, C. H., Yu, G., Moses, D., Pakbaz, K., Zhang, C., Sariciftci, N. S., et al., ‘Sensitization of the photoconductivity of conducting polymers by C60: photoinduced electron transfer’, Physical Review B, vol. 48, pp. 1542515433, 1993.CrossRefGoogle ScholarPubMed
Yoshino, K., Yin, X. H., Muro, K., Kiyomatsu, S., Morita, S., Zakhidov, A. A., et al., ‘Marked enhancement of photoconductivity and quenching of luminescence in poly(2,5-dialkoxy-p-phenylene vinylene) upon C60 doping’, Japanese Journal of Applied Physics, vol. 32, p. L357, 1993.CrossRefGoogle Scholar
Morita, S., Kiyomatsu, S., Yin, X. H., Zakhidov, A. A., Noguchi, T., Ohnishi, T., and Yoshino, K., ‘Doping effect of buckminsterfullerene in poly(2,5-dialkoxy-p-phenylene vinylene)’, Journal of Applied Physics, vol. 74, pp. 28602865, 1993.CrossRefGoogle Scholar
Damodare, L., Soga, T., and Mieno, T., ‘Studies on dark and photo-conductivities of poly[2-methoxy,5-(2’-ethylhexyloxy)-p-phenylene vinylene]:C60 thin films’, Japanese Journal of Applied Physics, vol. 42, pp. 24982502, 2003.CrossRefGoogle Scholar
Günes, S., Neugebauer, H., and Sariciftci, N. S., ‘Conjugated polymer-based organic solar cells’, Chemical Reviews, vol. 107, pp. 13241338, 2007.CrossRefGoogle ScholarPubMed
Hains, A. W. and Marks, T. J., ‘High-efficiency hole extraction/electron-blocking layer to replace poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) in bulk-heterojunction polymer solar cells’, Applied Physics Letters, vol. 92, p. 023504, 2008.CrossRefGoogle Scholar
Sahin, Y., Alem, S., de Bettignies, R., and Nunzi, J.-M., ‘Development of air stable polymer solar cells using an inverted gold on top anode structure’, Thin and Solid Films, vol. 476, pp. 340343, 2005.CrossRefGoogle Scholar
Brabec, C. J., Gowrisanker, S., Halls, J. J. M., Laird, D., Jia, S., and Williams, S. P., ‘Polymer–fullerene bulk-heterojunction solar cells’, Advanced Materials, vol. 22, pp. 38393856, 2010.CrossRefGoogle ScholarPubMed
Hoppe, H. and Sariciftci, N. S., ‘Organic solar cells: An overview’, Journal of Materials Research, vol. 19, p. 1924, 2004.CrossRefGoogle Scholar
Huang, Y. F., Inigo, A. R., Chang, C.-C., Li, K.-C., Liang, C.-F., Chang, C.-W., et al., ‘Nanostructure-dependent vertical charge transport in MEH-PPV films’, Advanced Functional Materials, vol. 17, pp. 29022910, 2007.CrossRefGoogle Scholar
Huang, Y.-F., Chang, C.-W., Smilgies, D.-M., Jeng, U.-S., Inigo, A. R., White, J. D., et al., ‘Correlating nanomorphology with charge-transport anisotropy in conjugated-polymer thin films’, Advanced Materials, vol. 21, pp. 29882992, 2009.CrossRefGoogle Scholar
Nierengarten, J.-F., ‘Fullerene-(π-conjugated oligomer) dyads as active photovoltaic materials’, Solar Energy Materials and Solar Cells, vol. 83, pp. 187199, 2004.CrossRefGoogle Scholar
Peeters, E., van Hal, P., Knol, J., Brabec, C. J., Sariciftci, N. S., Hummelen, J. C., and Janssen, R., ‘Synthesis, photphysical properties and photovoltaic devices of oligo(p-phenylene vinylene)-fullerene dyads’, The Journal of Physical Chemistry B, vol. 104, pp. 1017410190, 2000.CrossRefGoogle Scholar
Stalmach, U., de Boer, B., Videtot, C., van Hutten, P. F., and Hadziioannou, G., ‘Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques’, Journal of the American Chemical Society, vol. 122, pp. 54645472, 2000.CrossRefGoogle Scholar
Park, J. Y., Lee, S. B., Park, Y. S., Park, Y. W., Lee, C. H., Lee, J. I., and Shim, H. K., ‘Doping effect of viologen on photoconductive device made of poly(p-phenylene vinylene)’, Applied Physics Letters, vol. 72, pp. 28712873, 1998.CrossRefGoogle Scholar
Angadi, M. A., Gosztola, D., and Wasielewski, M. R., ‘Characterization of photovoltaic cells using poly(phenylenevinylene) doped with perylenediimide electron acceptors’, Journal of Applied Physics, vol. 83, pp. 61876189, 1998.CrossRefGoogle Scholar
Takahashi, K., Seto, K., Yamaguchi, T., Nakamura, J., Yokoe, C., and Murata, K., ‘Performance enhancement by blending an electron acceptor in TiO2/polyphenylenevinylene/Au solid-state solar cells’, Chemistry Letters, vol. 33, pp. 10421043, 2004.CrossRefGoogle Scholar
Tanigaki, N., Mochizuki, H., Mo, X., Mizokuro, T., Hiraga, T., Taima, T., and Yase, K., ‘Dye doping of poly(p-phenylenevinylene)s by vapor transportation for photovoltaic application’, Japanese Journal of Applied Physics, vol. 44, pp. 630632, 2005.CrossRefGoogle Scholar
Itoh, E., Suzuki, I., and Miyairi, K., ‘Field emission from carbon-nanotube-dispersed conducting polymer thin film and its application to photovoltaic devices’, Japanese Journal of Applied Physics, vol. 44, pp. 636640, 2005.CrossRefGoogle Scholar
Greenham, N. C., Peng, X., and Alivisatos, A., ‘A CdSe nanocrystal/MEHPPV polymer composite photovoltaic’, AIP Conference Proceedings, vol. 404, pp. 295301, 1997.CrossRefGoogle Scholar
Beek, W. J. E., Wienk, M. M., Kemerink, M., Yang, X., and Janssen, R. A. J., ‘Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells’, Journal of Physical Chemistry B, vol. 109, pp. 95059516, 2005.CrossRefGoogle ScholarPubMed
Breeze, A. J., Schlesinger, Z., Carter, S. A., and Brock, P. J., ‘Charge transport in TiO2/MEHPPV polymer photovoltaics’, Physical Review B, vol. 64, p. 125205, 2001.CrossRefGoogle Scholar
Sirimanne, P. M., Shirata, T., Damodare, L., Hayashi, Y., Soga, T., and Jimbo, T., ‘An approach for utilization of organic polymer as a sensitizer in solid-state cells’, Solar Energy Materials and Solar Cells, vol. 77, pp. 1524, 2003.CrossRefGoogle Scholar
Ravirajan, P., Haque, S. A., Durrant, J. R., Bradley, D. D. C., and Nelson, J., ‘The effect of polymer optoelectronic properties on the performance of multilayer hybrid polymer/TiO2 solar cells’, Advanced Functional Materials, vol. 15, pp. 609618, 2005.CrossRefGoogle Scholar
Hagfeldt, A. and Grätzel, M., ‘Molecular photovoltaics’, Accounts of Chemical Research, vol. 33, pp. 269277, 2000.CrossRefGoogle ScholarPubMed
Halls, J. J. M., Walsh, C. A., Greenham, N. C., Marseglia, E. A., Friend, R. H., Moratti, S. C., and Holmes, A. B., ‘Efficient photodiodes from interpenetrating polymer networks’, Nature, vol. 376, pp. 498500, 1995.CrossRefGoogle Scholar
Yu, G. and Heeger, A. J., ‘Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions’, Journal of Applied Physics, vol. 78, pp. 45104515, 1995.CrossRefGoogle Scholar
Gao, J., Yu, G., and Heeger, A. J., ‘Polymer p-i-n junction photovoltaic cells’, Advanced Materials, vol. 10, pp. 692695, 1998.3.0.CO;2-5>CrossRefGoogle Scholar
Veenstra, S. C., Verhees, W. J. H., Kroon, J. M., Koetse, M. M., Sweelssen, J., Bastiaansen, J. J. A. M., et al., ‘Photovoltaic properties of a conjugated polymer blend of MDMO-PPV and PCNEPV’, Chemistry of Materials, vol. 16, pp. 25032508, 2004.CrossRefGoogle Scholar
Breeze, A. J., Schlesinger, Z., Carter, S. A., Tillmann, H., and Hörhold, H.-H., ‘Improving power efficiencies in polymer-polymer blend photovoltaics’, Solar Energy Materials and Solar Cells, vol. 83, pp. 263271, 2004.CrossRefGoogle Scholar
Loos, J., Yang, X., Koetse, M. M., Sweelssen, J., Schoo, H. F. M., Veenstra, S. C., et al., ‘Morphology determination of functional poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene]/poly[oxa-1,1-phenylene-1,2-(1-cyanovinylene)-2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylene-1,2-(1-cyanovinylene)-1,4-phenylene] blends as used for all-polymer solar cells’, Journal of Applied Polymer Science, vol. 97, pp. 10011007, 2005.CrossRefGoogle Scholar
Tada, K., Hosoda, K., Hirohata, M., Hidayat, R., Kawai, T., Onoda, M., et al., ‘Donor polymer (PAT6)-acceptor polymer (CNPPV) fractal polymer networks’, Synthetic Metals, vol. 85, pp. 13051306, 1997.CrossRefGoogle Scholar
Greenwald, Y., Xu, X., Fourmigué, M., Srdanov, G., Koss, C., Wudl, F., and Heeger, A. J., ‘Polymer–polymer rectifying heterojunction based on poly(3,4-dicyanothiophene) and MEH-PPV’, Journal of Polymer Science Part A, Polymer Chemistry, vol. 36, pp. 31153120, 1998.3.0.CO;2-I>CrossRefGoogle Scholar
Holcombe, T. W., Woo, C. H., Kavaluk, D. F. J., Thompson, B. C., and Frechet, J. M. J., ‘All-polymer photovoltaic devices of poly(3-(4-n-octyl)phenylthiophene) from Grignard metathesis (GRIM) polmerization’, Journal of the American Chemical Society, vol. 131, pp. 1416014161, 2009.CrossRefGoogle Scholar
Fuchigami, H., Tsumura, A., and Koezuka, H., ‘Polythienylenevinylene thin-film transistor with high charge carrier mobility’, Applied Physics Letters, vol. 63, pp. 13721374, 1993.CrossRefGoogle Scholar
Qin, Y. and Hillmyer, M. A., ‘Poly(3-hexyl-2,5-thienylene vinylene) by ADMET polymerization of a dipropenyl monomer’, Macromolecules, vol. 42, pp. 64296432, 2009.CrossRefGoogle Scholar
Loewe, R. S. and McCullogh, R. D., ‘Effects of structural regularity on the properties of poly(3-alkylthienylenevinylenes)’, Chemistry of Materials, vol. 12, pp. 32143221, 2000.CrossRefGoogle Scholar
Kim, J. Y., Qin, Y., Stevens, D. M., Ugurlu, O., Kalihari, V., Hillmyer, M. A., and Frisbie, C. D., ‘Low band gap poly(thienylene vinylene)/fullerene bulk heterojunction photovoltaic cells’, Journal of Physical Chemistry C, vol. 113, pp. 1079010797, 2009.CrossRefGoogle Scholar
Huo, L., Chen, T. L., Zhou, Y., Hou, J., Chen, H.-Y., Yang, Y., and Li, Y., ‘Improvement of photoluminescent and photovoltaic properties of poly(thienylene vinylene) by carboxylate substitution’, Macromolecules, vol. 42, pp. 43774380, 2009.CrossRefGoogle Scholar
Al-Hashimi, M., Baklar, M. A., Colleaux, F., Watkins, S. E, Anthopoulos, T. D., Stingelin, N., and Heeney, M., ‘Synthesis, characterization, and field-effect transistor properties of regioregular poly(3-alkyl-2,5-selenylenevinylene)’, Macromolecules, vol. 44, pp. 51945199, 2011.CrossRefGoogle Scholar
Bunz, U. H. F., ‘Poly(arylene ethynylene)s: Synthesis, properties, structures, and applications’, Chemical Reviews, vol. 100, pp. 16051644, 2000.CrossRefGoogle Scholar
Häger, H. and Heitz, W., ‘Synthesis of poly(phenyleneethynylene) without diyne defects’, Macromolecular Chemistry and Physics, vol. 199, pp. 18211826, 1998.3.0.CO;2-Y>CrossRefGoogle Scholar
Zhang, W. and Moore, J. S., ‘Synthesis of poly(2,5-thienyleneethynylene)s by alkyne metathesis’, Macromolecules, vol. 37, pp. 39733975, 2004.CrossRefGoogle Scholar
Montali, A., Smith, P., and Weder, C., ‘PPE-based light-emitting devices’, Synthetic Metals, vol. 97, pp. 123126, 1998.CrossRefGoogle Scholar
Schmitz, C., Pösch, P., Thelakkat, M., Schmidt, H.-W., Montali, A., Feldman, K., et al., ‘Polymeric light-emitting diodes based on PPE, poly(triphenyldiamine) and spiroquinoxaline’, Advanced Functional Materials, vol. 11, pp. 4146, 2001.3.0.CO;2-S>CrossRefGoogle Scholar
Halkyard, C. E., Rampey, M. E., Kloppenburg, L., Studer-Martinez, S. L., and Bunz, U. H. F., ‘Evidence of aggregate formation for 2,5-dialkylpoly(p-phenyleneethynylene)s in solution and films’, Macromolecules, vol. 31, pp. 86558659, 1998.CrossRefGoogle Scholar
Zhu, Z. and Swager, T. M., ‘Conjugated polymers containing iptycene blocks’, Organic Letters, vol. 3, pp. 34713474, 2001.CrossRefGoogle ScholarPubMed
Weder, C., Sarwa, C., Bastiaansen, C., and Smith, P., ‘Highly polarised luminescence from oriented conjugated polymer/polyethylene blend films’, Advanced Materials, vol. 9, pp. 10351039, 1997.CrossRefGoogle Scholar
Montali, A., Bastiaansen, C., Smith, P., and Weder, C., ‘Polarising energy transfer in photoluminescent materials for display applications’, Nature, vol. 392, pp. 261264, 1998.CrossRefGoogle Scholar
Weder, C., Sarwa, C., Montali, A., Bastiaansen, C., and Smith, P., ‘Incorporation of photoluminescent polarizers into liquid crystal displays’, Science, vol. 279, pp. 835837, 1998.CrossRefGoogle ScholarPubMed
Zheng, J. and Swager, T. M., ‘Poly(arylene ethynylene)s in chemosensing and biosensing’, Advances in Polymer Science, vol. 177, pp. 151179, 2005.Google Scholar
Thomas, S. W. I., Joly, G. D., and Swager, T. M., ‘Chemical sensors based on amplifying fluorescent conjugated polymers’, Chemical Reviews, vol. 107, pp. 13391386, 2007.CrossRefGoogle ScholarPubMed
Zhou, Q. and Swager, T. M., ‘Fluorescent chemosensors based on energy migration in conjugated polymers: The molecular wire approach to increased sensitivity’, Journal of the American Chemical Society, vol. 117, pp. 1259312602, 1995.CrossRefGoogle Scholar
Erdogan, B., Wilson, J. N., and Bunz, U. H. F., ‘Synthesis and mesoscopic order of a sugar-coated poly(p-phenyleneneethynylene)’, Macromolecules, vol. 35, p. 7863, 2002.CrossRefGoogle Scholar
Kim, I.-B., Erdogan, B., Wilson, J. N., and Bunz, U. H. F., ‘Sugar-poly(para-phenyleneethynylene) conjugates as sensory materials. Efficient quenching by Hg2+ and Pb2+ ions’, Chemistry – A European Journal, vol. 10, pp. 62476254, 2004.CrossRefGoogle Scholar
Wilson, J. N., Wang, Y., Lavigne, J. J., and Bunz, U. H. F., ‘A biosensing model system: Selective interaction of biotinylated PPEs with streptavidin-coated polystyrene microspheres’, Chemical Communications, no. 14, pp. 16261627, 2003.CrossRefGoogle Scholar
Zheng, J. and Swager, T. M., ‘Biotinylated poly(p-phenyleenethynylene): Unexpected energy transfer results in the detection of biological analytes’, Chemical Communications, no. 24, pp. 27982799, 2004.CrossRefGoogle Scholar
Kim, I. B., Wilson, J. N., and Bunz, U. H. F., ‘Mannose-substituted PPEs detect lectins: A model for Ricin sensing’, Chemical Communications, no. 10, pp. 12731275, 2005.CrossRefGoogle Scholar
Kushon, S. A., Bradford, K., Marin, V., Suhrada, C., Armitage, B. A., McBranch, D., and Whitten, D., ‘Detection of single nucleotide mismatches via fluorescent polymer superquenching’, Langmuir, vol. 19, pp. 64566464, 2003.CrossRefGoogle Scholar
Yang, J.-S. and Swager, T. M., ‘Porous shape persistent fluorescent polymer films: An approach to TNT sensory materials’, Journal of the American Chemical Society, vol. 120, pp. 53215322, 1998.CrossRefGoogle Scholar
Yang, J.-S. and Swager, T. M., ‘Fluorescent porous polymer films as TNT chemosensors: Electronic and structural effects’, Journal of the American Chemical Society, vol. 120, pp. 1186411873, 1998.CrossRefGoogle Scholar
Williams, V. E. and Swager, T. M., ‘Iptycene-containing poly(aryleneethynylene)s’, Macromolecules, vol. 33, pp. 40694073, 2000.CrossRefGoogle Scholar
la Grone, M. J., Cumming, C., Fisher, M. E., Reust, D., and Taylor, R., ‘Land mine detection by chemical signature: Detection of vapors of nitroaromatic compounds by fluorescence quenching of novel polymer materials’, Proceedings of the Society of Photo-Optical Instrumentation Engineers, vol. 3710, pp. 409420, 2001.Google Scholar
Dong, H., Jiang, S., Jiang, L., Liu, Y., Li, H., Hu, W., et al., ‘Nanowire crystals of a rigid rod conjugated polymer’, Journal of the American Chemical Society, vol. 131, pp. 1731517320, 2009.CrossRefGoogle ScholarPubMed
Dallos, T., Beckmann, D., Brunklas, G., and Baumgarten, M., ‘Thiaidazoloquinoxaline-acetylene containing polymers as semiconductors in ambupolar field effect transistors’, Journal of the American Chemical Society, vol. 133, pp. 1389813901, 2011.CrossRefGoogle ScholarPubMed
Egbe, D. A. M., Neugebauer, H., and Sariciftci, N. S., ‘Alkoxy-substituted poly(arylelene-ethynylene)-alt-poly(arylene-vinylene)s: Synthesis, electroluminescence and photovoltaic applications’, Journal of Materials Chemistry, vol. 21, pp. 13381349, 2011.CrossRefGoogle Scholar
Egbe, D. A. M., Carbonnier, B., Ding, L., Mühlbacher, D., Birckner, E., Pakula, T., et al., ‘Supramolecular ordering, thermal behavior and photophysical, electrochemical, and electroluminescent properties of alkoxy-substituted yne-containing poly(phenylene-vinylene)s’, Macromolecules, vol. 37, pp. 74517463, 2004.CrossRefGoogle Scholar
Troshin, P. A., Mukhacheva, O. A., Usluer, Ö., Goryachev, A. E., Akkuratov, A. V., Susarova, D. K., et al., ‘Improved photovoltaic performance of PPV-based copolymers using optimized fullerene-based counterparts’, Advanced Energy Materials, vol. 3, pp. 161166, 2013.CrossRefGoogle Scholar
Kästner, C., Ulbricht, C., Egbe, D. A. M., and Hoppe, H., ‘Polymer BHJ solar cell performance tuning by C60 fullerene derivative alkyl side-chain length’, Journal of Polymer Science: Part B: Polymer Physics, vol. 50, pp. 15621566, 2012.CrossRefGoogle Scholar
Usluer, O., Boudiba, S., Egbe, D. A. M., Hirsch, L., and Abbas, M., ‘Control of carrier mobilities for performance enhancement of anthracene-based polymer solar cells’, RSC Advances, vol. 5, pp. 5066850672, 2015.CrossRefGoogle Scholar
Ramos, A. M., Rispens, M. T., van Duren, J. K. J., Hummelen, J. C., and Janssen, R. A. J., ‘Photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendant fullerenes’, Journal of the American Chemical Society, vol. 123, pp. 67146715, 2001.CrossRefGoogle ScholarPubMed
Egbe, D. A. M., Kietzke, T., Carbonnier, B., Mühlbacher, D., Hörhold, H.-H., Neher, D., and Pakula, T., ‘Synthesis, characterization, and photophysical, electrochemical, electroluminescent and hotovoltaic properties of yne-containg CN-PPVs’, Macromolecules, vol. 37, pp. 88638873, 2004.CrossRefGoogle Scholar
Kovacic, P. and Jones, M. B., ‘Oxdiative coupling of arylenes’, Chemical Reviews, vol. 87, pp. 357379, 1987.CrossRefGoogle Scholar
Yamamoto, T., ‘Electrically conducting and thermally stable π-conjugated poly(arylene)s prepared by organometallic processes’, Progress in Polymer Science, vol. 17, pp. 11531205, 1992.CrossRefGoogle Scholar
Grem, G., Martin, V., Meghdadi, F., Paar, C., Stampfl, J., Sturm, J., et al., ‘Stable poly(para-phenylene)s and their application in organic light emitting devices’, Synthetic Metals, vol. 71, pp. 21932194, 1995.CrossRefGoogle Scholar
Ballard, D. G. H., Courtis, A., Shirley, I. M., and Taylor, S. C., ‘A biotech route to polyphenylene’, Journal of the Chemical Society, Chemical Communications, no. 17, pp. 954955, 1983.CrossRefGoogle Scholar
Ballard, D. G. H., Courtis, A., Shirley, I. M., and Taylor, S. C., ‘Synthesis of polyphenylene from a cis-dihydrocatechol, a biologically produced monomer’, Macromolecules, vol. 21, pp. 294304, 1988.CrossRefGoogle Scholar
Gin, D. L., Conticello, V. P., and Grubbs, R. H., ‘Transition-metal-catalyzed polymerization of heteroatom-functionalized cyclohexadienes: Stereoregular precursors to poly(p-phenylene)’, Journal of the American Chemical Society, vol. 114, pp. 31673169, 1992.CrossRefGoogle Scholar
Gin, D. L., Conticello, V. P., and Grubbs, R. H., ‘Stereoregular precursors to poly(p-phenylene) via transition-metal-catalyzed polymerization. 1. Precursor design and synthesis’, Journal of the American Chemical Society, vol. 116, pp. 1050710519, 1994.CrossRefGoogle Scholar
Gin, D. L., Conticello, V. P., and Grubbs, R. H., ‘Stereoregular precursors to poly(p-phenylene) via transition-metal-catalyzed polymerization. 2. The effects of polymer stereochemistry and acid catalysts on precursor aromatization: A characterization study’, Journal of the American Chemical Society, vol. 116, pp. 1093410947, 1994.CrossRefGoogle Scholar
Gin, D. L., Avlyanov, J. K., and MacDiarmid, A. G., ‘Synthesis and processing of poly(p-phenylene) via the phosphoric acid-catalyzed pyrolysis of a stereoregular precursor polymer: a characterization study’, Synthetic Metals, vol. 66, pp. 169175, 1994.CrossRefGoogle Scholar
Grem, G., Leditzky, G., Ullrich, B., and Leising, G., ‘Realization of a blue-light-emitting device using poly(p-phenylene)’, Advanced Materials, vol. 4, pp. 3637, 1992.CrossRefGoogle Scholar
Scherf, U., ‘Oligo-and polyarylenes, oligo- and polyarylenevinylenes’, Topics in Current Chemistry, vol. 201, pp. 163222, 1999.CrossRefGoogle Scholar
Grimsdale, A. C. and Müllen, K., ‘Polyphenylene-type emissive materials: Polyphenylenes, polyfluorenes and ladder polymers’, Advances in Polymer Science, vol. 199, pp. 182, 2006.CrossRefGoogle Scholar
Schlüter, A. D., ‘The tenth anniversary of Suzuki polycondensation’, Journal of Polymer Science A: Polymer Chemistry, vol. 39, pp. 15331556, 2001.Google Scholar
Sakamoto, J., Rehahn, M., Wegner, G., and Schlüter, A. D., ‘Suzuki polycondensation: Polyarylenes a la carte’, Macromolecular Rapid Communications, vol. 30, pp. 653687, 2009.CrossRefGoogle ScholarPubMed
Tanigaki, N., Masuda, H., and Kaeriyama, K., ‘Substituted polyphenylenes from diheptylbenzene and aryldiboronates’, Polymer, vol. 38, pp. 12211226, 1997.CrossRefGoogle Scholar
Nehls, B. S., Asawapirom, U., Füldner, S., Preis, E., Farrell, T., and Scherf, U., ‘Semiconducting polymers via microwave-assisted Suzuki and Stille cross-coupling reactions’, Advanced Functional Materials, vol. 14, pp. 352356, 2004.CrossRefGoogle Scholar
Yang, Y., Pei, Q., and Heeger, A. J., ‘Efficient blue polymer light-emitting diodes from a series of soluble poly(paraphenylene)s’, Journal of Applied Physics, vol. 79, pp. 934939, 1996.CrossRefGoogle Scholar
Cimrová, V., Remmers, M., Neher, D., and Wegner, G., ‘Polarized light emission from LEDs prepared by the Langmuir-Blodgett technique’, Advanced Materials, vol. 8, pp. 146149, 1996.CrossRefGoogle Scholar
Cimrová, V., Schmidt, W., Rulkens, R., Schulze, M., Meyer, W., and Neher, D., ‘Efficient blue light emitting devices based on rigid-rod polyelectrolytes’, Advanced Materials, vol. 8, pp. 585588, 1996.CrossRefGoogle Scholar
Remmers, M., Müller, B., Martin, K., Räder, H.-J., and Köhler, W., ‘Synthesis, optical properties and analysis of PPPs’, Macromolecules, vol. 32, pp. 10731079, 1999.CrossRefGoogle Scholar
Reddinger, J. L. and Reynolds, J. R., ‘UV-emitting poly(m-phenylene)s’, Macromolecules, vol. 30, pp. 479481, 1997.CrossRefGoogle Scholar
Cimrová, V., Výprachtický, D., Pecka, J., and Kotva, R., ‘OLEDs based on novel blends’, Proceedings of the Society of Photo-Optical Instrumentation Engineers, vol. 3939, pp. 164171, 2000.Google Scholar
Scherf, U., ‘Ladder-type materials’, Journal of Materials Chemistry, vol. 9, pp. 18531864, 1999.CrossRefGoogle Scholar
Grimme, J., Kreyenschmidt, M., Uckert, F., Müllen, K., and Scherf, U., ‘On the conjugation length in poly(para-phenylene)-type polymers’, Advanced Materials, vol. 7, pp. 292295, 1995.CrossRefGoogle Scholar
Lu, P., Zhang, H., Shen, F., Yang, B., Li, D., Ma, Y., et al., ‘A wide bandgap semiconducting polymer for ultraviolet and blue light-emitting diodes’, Macromolecular Chemistry and Physics, vol. 204, pp. 22742280, 2003.CrossRefGoogle Scholar
Scherf, U. and Müllen, K., ‘Poly(arylene)s and poly(arylenevinylene)s. 7. A soluble ladder polymer via bridging of functionalised poly(p-phenylene)-precursors’, Makromolecular Chemie Rapid Communications, vol. 12, pp. 489497, 1991.CrossRefGoogle Scholar
Scherf, U. and Müllen, K., ‘Poly(arylene)s and poly(arylenevinylene)s. 11. A modified two-step route to soluble phenylene-type ladder polymers’, Macromolecules, vol. 25, pp. 35463548, 1992.CrossRefGoogle Scholar
Scherf, U. and Müllen, K., ‘The synthesis of ladder polymers’, Advances in Polymer Science, vol. 123, pp. 140, 1995.CrossRefGoogle Scholar
Hickl, P., Ballauff, M., Scherf, U., Müllen, K., and Lindner, P., ‘Characterization of a ladder polymer by small-angle X-ray and neutron scattering’, Macromolecules, vol. 30, pp. 273279, 1997.CrossRefGoogle Scholar
Petekidis, G., Fytas, G., Scherf, U., Müllen, K., and Fleischer, G., ‘Dynamics of polyphenylene ladder polymers in solution’, Journal of Polymer Science (A), Polymer Chemistry, vol. 37, pp. 22112220, 1999.3.0.CO;2-6>CrossRefGoogle Scholar
Somma, E., Loppinet, B., Fytas, G., Setayesh, S., Jacob, J., Grimsdale, A. C., and Müllen, K., ‘Collective orientation dynamics in semi-rigid polymers’, Colloid and Polymer Science, vol. 282, pp. 867873, 2004.Google Scholar
Schindler, F., Jacob, J., Grimsdale, A. C., Scherf, U., Müllen, K., Lupton, J. M., and Feldmann, J., ‘Counting chromophores in conjugated polymers’, Angewandte Chemie, International Edition, vol. 44, pp. 15201525, 2005.CrossRefGoogle ScholarPubMed
Graupner, W., Grem, G., Meghdadi, F., Paar, C., Leising, G., Scherf, U., et al., ‘Electroluminesence with conjugated polymers and oligomers’, Molecular Crystals and Liquid Crystals, vol. 256, pp. 549554, 1994.CrossRefGoogle Scholar
Stampfl, J., Graupner, W., Leising, G., and Scherf, U., ‘Photoluminescence and UV-VIS absorption study of poly(para-phenylene)-type ladder polymers’, Journal of Luminescence, vol. 63, pp. 117123, 1995.CrossRefGoogle Scholar
Grem, G. and Leising, G., ‘Electroluminescence of “wide-bandgap” chemically tunable cyclic conjugated polymers’, Synthetic Metals, vol. 55–57, pp. 41054110, 1993.CrossRefGoogle Scholar
Hüber, J., Müllen, K., Salbeck, J., Schenk, H., Scherf, U., Stehlin, T., and Stern, R., ‘Blue light-emitting diodes based on ladder polymers of the PPP type’, Acta Polymerica, vol. 45, pp. 244247, 1994.CrossRefGoogle Scholar
Grüner, J., Wittmann, H. F., Hamer, P. J., Friend, R. H., Huber, J., Scherf, U., et al., ‘Electroluminescence and photoluminescence investigations of the yellow emission of devices based on ladder-type oligo(para-phenylene)s’, Synthetic Metals, vol. 67, pp. 181185, 1994.CrossRefGoogle Scholar
Lemmer, U., Heun, S., Mahrt, R. F., Scherf, U., Hopmeier, M., Siegner, U., et al., ‘Aggregate fluorescence in conjugated polymers’, Chemical Physics Letters, vol. 240, pp. 373380, 1995.CrossRefGoogle Scholar
Köhler, A., Grüner, J., Friend, R. H., Müllen, K., and Scherf, U., ‘Photocurrent measurements on aggregates in ladder-type polyphenylene’, Chemical Physics Letters, vol. 243, pp. 456461, 1995.CrossRefGoogle Scholar
Yang, X., Hou, Y., Wang, Z., Chen, X., Xu, Z., and Xu, X., ‘Blue polymer light-emitting diode based on ladder-type polyphenylene’, Thin and Solid Films, vol. 363, pp. 211213, 2000.Google Scholar
Scherf, U., Bohnen, A., and Müllen, K., ‘The oxidized states of a (1,4-phenylene) ladder polymer’, Makromolekulare Chemie, vol. 193, pp. 11271133, 1992.CrossRefGoogle Scholar
Tasch, S., Niko, A., Leising, G., and Scherf, U., ‘Highly efficient electroluminescence of new wide band gap ladder-type poly(para-phenylenes)’, Applied Physics Letters, vol. 68, pp. 10901092, 1996.CrossRefGoogle Scholar
Haugeneder, A., Lemmer, U., and Scherf, U., ‘Exciton diffussion dynamics in a conjugated polymer containing aggregate states’, Chemical Physics Letters, vol. 351, pp. 354358, 2002.CrossRefGoogle Scholar
Lupton, J. M., ‘On-chain defect emission in conjugated polymers’, Chemical Physics Letters, vol. 365, pp. 366368, 2002.CrossRefGoogle Scholar
Lupton, J. M., Pogantsch, A., Piok, T., List, E. W. J., Patil, S., and Scherf, U., ‘Intrinsic room-temperature electrophosphorescence from a pi-conjugated polymer’, Physical Review Letters, vol. 89, pp. 74017404, 2002.CrossRefGoogle ScholarPubMed
Qiu, S., Lu, P., Liu, X., Shen, F., Liu, L., Ma, Y., and Shen, J., ‘New ladder-type poly(p-phenylene)s containing fluorene units exhibiting highly efficient electroluminescence’, Macromolecules, vol. 36, pp. 98239829, 2003.CrossRefGoogle Scholar
Grem, G., Paar, C., Stampfl, J., Leising, G., Huber, J., and Scherf, U., ‘Soluble segmented stepladder poly(p-phenylenes) for blue-light-emitting diodes’, Chemistry of Materials, vol. 7, pp. 24, 1995.CrossRefGoogle Scholar
Grüner, J., Hamer, P. J., Friend, R. H., Huber, H.-J., Scherf, U., and Holmes, A. B., ‘A high efficiency blue-light-emitting diode based on novel ladder poly(p-phenylene)s’, Advanced Materials, vol. 6, pp. 748752, 1994.CrossRefGoogle Scholar
Grüner, J., Friend, R. H., Huber, J., and Scherf, U., ‘A blue-luminescent ladder-type poly(para-phenylene) copolymer containing oxadiazole groups’, Chemical Physics Letters, vol. 251, pp. 204210, 1996.CrossRefGoogle Scholar
Forster, M. and Scherf, U., ‘Strongly fluorescent ethylene-bridged poly(para-phenylene) ladder polymers’, Macromolecular Rapid Communications, vol. 21, pp. 810813, 2000.3.0.CO;2-D>CrossRefGoogle Scholar
Chmil, K. and Scherf, U., ‘A simple two-step syntheis of a novel, fully aromatic ladder-type polymer’, Makromolekulare Chemie, Raid Communications, vol. 14, pp. 217222, 1993.CrossRefGoogle Scholar
Chmil, K. and Scherf, U., ‘Conjugated all-carbon ladder polymers: Improved solubility and molecular weights’, Acta Polymerica, vol. 48, pp. 208211, 1997.CrossRefGoogle Scholar
Kirstein, S., Cohen, G., Davidov, D., Scherf, U., Klapper, M., Chmil, K., and Müllen, K., ‘Transient and DC electroluminescence of some new conjugated polymers’, Synthetic Metals, vol. 69, pp. 415418, 1995.CrossRefGoogle Scholar
Kleybolte, M. E., Vagin, S. I., and Rieger, B., ‘A polymer lost in the shuffle: The perspective of poly(para)phenylenes’, Macromolecular Chemistry and Physics, vol. 324, p. 2200441, 2023.CrossRefGoogle Scholar
Li, C., Liu, M. S., Pschirer, N. G., Baumgarten, M., and Müllen, K., ‘Polyphenylene-based materials for organic photovoltaics’, Chemical Reviews, vol. 110, no. 11, pp. 68176855, 2010.CrossRefGoogle ScholarPubMed
Nejim, A. and Carter, G., ‘Ion implantation induced conductivity changes in polyphenylene’, Nuclear Instruments and Methods in Physics Research, B, vol. 61, no. 4, pp. 502508, 1991CrossRefGoogle Scholar
Sehgal, H. D., Pratap, Y., and Kabra, S., ‘Detection of poisonous gases using JL FinFET with conducting gate polymer,’ in 2022 6th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India: IEEE, pp. 440444, 2022, DOI: 10.1109/ICDCS54290.2022.9780853.CrossRefGoogle Scholar
Mehrdad, F. and Ahangari, Z., ‘Design and simulation of a gas sensitive junctionless FinFET based on conducting polymer as the gate material’, Physica Scripta, vol. 97, no. 7, p. 075805, 2022.CrossRefGoogle Scholar
Rothe, C., Chiang, C.-J., Jankus, V., Abdullah, K., Zeng, X., Jitchati, R., et al., ‘Ionic iridium (III) complexes with bulky side groups for use in light emitting cells: Reduction of concentration quenching’, Advanced Functional Materials, vol. 19, no. 13, pp. 20382044, 2009.CrossRefGoogle Scholar
Neher, D., ‘Polyfluorene homopolymers’, Macromolecular Rapid Communications, vol. 22, pp. 13651385, 2001.3.0.CO;2-B>CrossRefGoogle Scholar
Scherf, U. and List, E. W. J., ‘Polyfluorenes: Towards reliable structure–activity relationships’, Advanced Materials, vol. 14, pp. 477487, 2002.3.0.CO;2-9>CrossRefGoogle Scholar
Grimsdale, A. C. and Müllen, K., ‘Oligomers and polymers based on bridged phenylenes as electronic materials’. Macromolecular Rapid Communications, vol. 28, pp. 16761702, 2007.CrossRefGoogle Scholar
Grimsdale, A. C. and Müllen, K., ‘Bridged polyphenylenes: From polyfluorenes to ladder polymers’. Advances in Polymer Science, vol. 212, pp. 148, 2008.Google Scholar
Fukuda, M., Sawada, K., and Yoshino, K., ‘Fusible conducting poly(9-alkylfluorene) and poly(9,9-dialkylfluorene) and their characteristics’, Japanese Journal of Applied Physics, vol. 28, pp. L1433L1435, 1989.CrossRefGoogle Scholar
Fukuda, M., Sawada, K., and Yoshino, K., ‘Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics’. Journal of Polymer Science, Polymer Chemistry, vol. 31, pp. 24652471, 1993.CrossRefGoogle Scholar
Ohmori, Y., Uchida, K., Muro, K., and Yoshino, K., ‘Blue electroluminescent diodes utilizing poly(alkylfluorene)’, Japanese Journal of Applied Physics, vol. 30, pp. L1941L1943, 1991.CrossRefGoogle Scholar
Ohmori, Y., Uchida, M., Morishima, C., Fujii, A., and Yoshino, K., ‘Enhancement of emission efficiency in electroluminescent diode utilizing vapor-deposited poly(alkylfluorene)’, Japanese Journal of Applied Physics, vol. 32, pp. L1663L1666, 1993.CrossRefGoogle Scholar
Uchida, M., Ohmori, Y., Morishima, C., and Yoshino, K., ‘Visible and blue electroluminescent diodes utilizing poly(3-alkylthiophene)s and poly(alkylfluorene)s’, Synthetic Metals, vol. 57, pp. 41684173, 1993.CrossRefGoogle Scholar
Woo, E. P., Inbasekaran, M., Shiang, W., and Roof, G. R., ‘Polydialkylfluorenes by Suzuki coupling’, Chemical Abstracts, 126, 225700y, p. WO97/05184, 1997.Google Scholar
Inbasekaran, M., Wu, W., and Woo, E. P., ‘Polydialkylfluorene copolymers by Suzuki’, Chemical Abstracts, 129, 123010t, p. 5777070, 1998.Google Scholar
Inbasekaran, M., Woo, E., Bernius, M., and Wujkowski, L., ‘Fluorene homopolymers and copolymers’, Synthetic Metals, vol. 111–112, pp. 397401, 2000.CrossRefGoogle Scholar
Bernius, M., Inbasekaran, M., O’Brien, J., and Wu, W., ‘Progress with light-emitting polymers’, Advanced Materials, vol. 12, pp. 17371750, 2000.3.0.CO;2-N>CrossRefGoogle Scholar
Bernius, M., Inbasekaran, M., Woo, E., Wu, W., and Wujkowski, L., ‘Fluorene-based polymers: Synthesis and applications’, Journal of Materials Science; Materials for Electronics, vol. 11, pp. 111116, 2000.CrossRefGoogle Scholar
Bernius, M., Inbasekaran, M., Woo, E., Wu, W., and Wujkowski, L., ‘LEDs based on fluorene polymers’, Thin and Solid Films, vol. 363, pp. 5557, 2000.CrossRefGoogle Scholar
Grice, A. W., Bradley, D. D. C., Bernius, M. T., Inbasekaran, M., Wu, W. W., and Woo, E. P., ‘High brightness and efficiency blue polymer light-emitting diodes’, Applied Physics Letters, vol. 73, pp. 629631, 1998.CrossRefGoogle Scholar
Grell, M., et al., ‘Blue polarized electroluminescence from liquid crystalline polyfluorene’, Advanced Materials, vol. 11, pp. 671675, 1999.3.0.CO;2-E>CrossRefGoogle Scholar
Klaerner, G. and Miller, R. D., ‘Well-defined oligomers of poly(9,9-dihexylfluorene)’, Macromolecules, vol. 31, pp. 20072009, 1998.CrossRefGoogle Scholar
Wang, Q., Qu, Y., Tian, H., Geng, Y., and Wang, F., ‘Iterative binomial synthesis of monodisperse polyfluorenes up to 64-mers and trheir chain-length-dependent properties’, Macromolecules, vol. 44, pp. 12561260, 2011.CrossRefGoogle Scholar
Grell, M., Bradley, D. D. C., Inbasekaran, M., and Woo, E. P., ‘Liquid crystalline polymer for polarized electroluminescence applications’, Advanced Materials, vol. 9, pp. 798802, 1997.CrossRefGoogle Scholar
Teetsov, J. and Fox, M. A., ‘Photophysical characterisation of polydialkylfluorene films and solutions’, Journal of Materials Chemistry, vol. 9, pp. 21172122, 1999.CrossRefGoogle Scholar
Nothofer, H.-G., Meisel, A., Miteva, T., Neher, D., Forster, M., Oda, M., et al., ‘Liquid crystalline polyfluorenes for blue polarised electroluminescence’, Macromolecular Symposia, vol. 154, pp. 139146, 2000.3.0.CO;2-S>CrossRefGoogle Scholar
Whitehead, K. S., Grell, M., Bradley, D. D. C., Inbasekaran, M., and Woo, E. P., ‘Polarized emission from liquid crystalline polymers’, Synthetic Metals, vol. 111–112, pp. 181185, 2000.CrossRefGoogle Scholar
Whitehead, K. S., Grell, M., Bradley, D. D. C., Jandke, M., and Strohriegl, P., ‘Highly polarized blue electroluminescence from aligned polydialkylfluorene films’, Applied Physics Letters, vol. 76, pp. 29462948, 2000.CrossRefGoogle Scholar
Oda, M., Meskers, S. C. J., Nothofer, H. G., Scherf, U., and Neher, D., ‘Chiroptical properties of chiral-substituted polyfluorenes’, Synthetic Metals, vol. 111–112, pp. 575577, 2000.CrossRefGoogle Scholar
Oda, M., Nothofer, H.-G., Lieser, G., Scherf, U., Meskers, S. C. J., and Neher, D., ‘Circularly polarized electroluminescence from liquid crystalline chiral polyfluorenes’, Advanced Materials, vol. 12, no. 5, pp. 362365, 2000.3.0.CO;2-P>CrossRefGoogle Scholar
Grimsdale, A. C., ‘In search of stable blue emission from phenylene-based conjugated polymers’, Current Organic Chemistry, vol. 14, pp. 21962217, 2010.CrossRefGoogle Scholar
Lupton, J. M., Craig, M. R., and Meijer, E. W., ‘On-chain defect emission in electroluminescent polyfluorenes’, Applied Physics Letters, vol. 80, pp. 44894491, 2002.CrossRefGoogle Scholar
List, E. W. J., Guentner, R., Scanducci de Freitas, P., and Scherf, U., ‘Effect of keto defect sites on emission of polyfluorenes’, Advanced Materials, vol. 14, pp. 374378, 2002.3.0.CO;2-U>CrossRefGoogle Scholar
Ilharco, L., Garcia, A. R., da Silva, J. L., Lemos, M. J., and Vieira Ferreira, L. F., ‘Ultraviolet-visible and Fourier transform infrared diffuse reflectance studies of benzophenone and fluorenone adsorped onto microcrystalline cellulose’, Langmuir, vol. 13, pp. 37873793, 1997.CrossRefGoogle Scholar
Pei, J., Ni, J., Zhou, X.-H., Cao, X.-Y., and Lai, Y.-H., ‘Head-to-tail regioregular oligothiophene functionalized spirobifluorene derivatives’, Journal of Organic Chemistry, vol. 67, pp. 49244936, 2002.CrossRefGoogle ScholarPubMed
Gaal, M., List, E. J. W., and Scherf, U., ‘Excimers or emissive on-chain defects’, Macromolecules, vol. 36, pp. 42364238, 2003.CrossRefGoogle Scholar
Zeng, G., Yu, W.-L., Chua, S.-J., and Huang, W., ‘Spectral and thermal stability study for fluorene-based conjugated polymers’, Macromolecules, vol. 35, pp. 69076914, 2002.CrossRefGoogle Scholar
Gong, X., Iyer, P. K., Moses, D., Bazan, G. C., Heeger, A. J., and Xiao, S. S., ‘Stabilized blue emission from polyfluorene-based LEDs: Elimination of fluorenone defects’, Advanced Functional Materials, vol. 13, pp. 325330, 2003.CrossRefGoogle Scholar
Chan, K. L., Sims, M., Pascu, S. I., Ariu, M., Holmes, A. B., and Bradley, D. D. C., ‘Understanding the nature of the states responsible for green emission in oxidised PDAFs’, Advanced Functional Materials, vol. 19, pp. 21472154, 2009.CrossRefGoogle Scholar
Weinfurtner, K.-H., Fujikawa, H., Tokito, S., and Taga, Y., ‘Influence of molecular weight distribution on aggregation tendency of polydialkylfluorenes’, Applied Physics Letters, vol. 76, pp. 25022504, 2000.CrossRefGoogle Scholar
Sainova, D., Miteva, T., Nothofer, H. G., Scherf, U., Glowacki, I., Ulanski, J., et al., ‘Control of colour and efficiency of light-emitting diodes using polydialkylfluorene and triphenylamine blend’, Applied Physics Letters, vol. 76, pp. 18101812, 2000.CrossRefGoogle Scholar
Sirtonski, M. R., McFarlane, S. L., and Veinot, J. G. C., ‘Stabilizing the optical properties of PFO through addition of a low molecular weight aromatic ether’, Journal of Materials Chemistry, vol. 20, pp. 81478152, 2010.CrossRefGoogle Scholar
Ego, C., et al., ‘Attaching perylene dyes to polyfluorene: Three simple efficient methods for facile colour tuning of light-emitting polymers’, Journal of the American Chemical Society, vol. 125, pp. 437443, 2003.CrossRefGoogle ScholarPubMed
Klärner, G., Davey, M. H., Chen, W.-D., Scott, J. C., and Miller, R. D., ‘Colourfast blue light-emitting dihexylfluorene copolymers’, Advanced Materials, vol. 10, pp. 993997, 1998.3.0.CO;2-2>CrossRefGoogle Scholar
Klärner, G., Lee, J.-I., Davey, M. H., and Miller, R. D., ‘Exciton migration and trapping in polydialkylfluorene copolymers’, Advanced Materials, vol. 11, pp. 115118, 1999.3.0.CO;2-N>CrossRefGoogle Scholar
Miller, R. D., et al., ‘Thermally stable polyfluorene copolymers for blue light emission’, Molecular Crystals and Liquid Crystals, Part B, Nonlinear Optics, vol. 20, pp. 269295, 1999.Google Scholar
Guo, X., Cheng, Y., Xie, Z., Geng, Y., Wang, L., Jing, X., and Wang, F., ‘Fluorene-based copolymers containing dinaphto-s-indacene as new building blocks for high-efficiency and colour-stable blue LEDs’, Macromolecular Rapid Communications, vol. 30, pp. 816825, 2009.CrossRefGoogle Scholar
Lu, P., Zhang, H. Q., Zheng, Y., Ma, Y. G., Zhang, G., Chen, X. F., and Shen, J. C., ‘New ultraviolet-emissive wide bandgap semiconductive polymers’, Synthetic Metals, vol. 135–136, pp. 205206, 2003.CrossRefGoogle Scholar
Lim, S. F., Friend, R. H., Rees, I. D., Li, J., Ma, Y. G., Robinson, K., et al., ‘Suppression of green emission in a new class of blue-emitting PF copolymers with twisted biphenyl moieties’, Advanced Functional Materials, vol. 15, pp. 981988, 2005.CrossRefGoogle Scholar
Zhang, H., Guo, E., Fang, Y., Ren, P., and Yang, W., ‘Synthesis and optoelectronic properties of alternating benzofuran/terfluorene copolymer with stable blue emission’, Journal of Polymer Science (A), Polymer Chemistry, vol. 47, pp. 54885497, 2008.CrossRefGoogle Scholar
Xia, C. and Advincula, R. C., ‘Decreased aggregation in polyfluorenes by introducing carbazole copolymer units’, Macromolecules, vol. 34, pp. 58545859, 2001.CrossRefGoogle Scholar
Park, J. S., Song, M., Jin, S.-H., Lee, J. W., Lee, C. W., and Gal, J.-S., ‘Poly(carbazole)-based copolymers containing deep-blue-chromophores for polymer light-emitting diode applications’, Macromolecular Chemistry and Physics, vol. 210, pp. 15721578, 2009.CrossRefGoogle Scholar
Klärner, G., Lee, J.-I., Lee, V. Y., Chan, E., Chen, J.-P., Nelson, A., et al., ‘Cross-linkable polymers based on polydialkylfluorenes’, Chemistry of Materials, vol. 11, pp. 18001805, 1999.CrossRefGoogle Scholar
Setayesh, S., Grimsdale, A. C., Weil, T., Enkelmann, V., Müllen, K., Meghdadi, F., et al., ‘Polyfluorenes with polyphenylene dendron side chains: Toward non-aggregating, light-emitting polymers’, Journal of the American Chemical Society, vol. 123, pp. 946953, 2001.CrossRefGoogle ScholarPubMed
Marsitzky, D., Vestberg, R., Blainey, P., Tang, B. T., Hawker, C. J., and Carter, K. R., ‘Self-encapsulation of polyfluorenes in a dendrimer matrix’, Journal of the American Chemical Society, vol. 123, pp. 69656972, 2001.CrossRefGoogle Scholar
Lee, J., Cho, H.-J., Jung, B.-J., Cho, N. S., and Shim, H.-K., ‘Stabilized blue luminescent polyfluorenes: Introducing polyhedral oligomeric silsesquioxane’, Macromolecules, vol. 37, pp. 85238529, 2004.CrossRefGoogle Scholar
Takagi, K., Kunii, S., and Yuki, Y., ‘Synthesis and photophysical properties of polyfluorenes bearing Si-based functional groups’, Journal of Polymer Science (A), Polymer Chemistry, vol. 43, pp. 21192127, 2005.CrossRefGoogle Scholar
Craig, M. R., de Kok, M. M., Hofstraat, J. W., Schenning, A. P. H. J., and Meijer, E. W., ‘Improving color purity and stability in a blue emitting polyfluorene by monomer purification’, Journal of Materials Chemistry, vol. 13, pp. 28612862, 2003.CrossRefGoogle Scholar
Cho, S. Y., Grimsdale, A. C., Jones, D. J., Watkins, S. E., and Holmes, A. B., ‘Polyfluorenes without monoalkylfluorene defects’, Journal of the American Chemical Society, vol. 129, pp. 1191011911, 2007.CrossRefGoogle ScholarPubMed
Abbel, R., Wolffs, M., Bovee, R. A. A., van Dongen, J. L. J., Lou, X., Henze, O., et al., ‘Side-chain degradation of ultrapure π-conjugted oligomers: Implications for organic electronics’, Advanced Materials, vol. 21, pp. 597602, 2009.CrossRefGoogle ScholarPubMed
Jacob, J., Oldridge, L., Zhang, J., Gaal, M., List, E. J. W., Grimsdale, A. C., and Müllen, K., ‘Progress towards stable blue light-emitting polymers’, Current Applied Physics, vol. 3, pp. 339342, 2004.CrossRefGoogle Scholar
Pogantsch, A. F., Wenzl, F. P., List, E. W. J., Leising, G., Grimsdale, A. C., and Müllen, K., ‘Polyfluorenes with dendron sidechains as the active materials for polymer light-emitting diodes’, Advanced Materials, vol. 14, pp. 10611064, 2002.3.0.CO;2-6>CrossRefGoogle Scholar
List-Kratochvil, E. J. W., Pogantsch, A., Wenzl, F. P., Kim, C.-H., Shinar, J., Loi, M. A., et al., ‘A comparative study of the photophysics in polyfluorenes with alkyl and dendron sidechains’, Materials Research Society Symposia Proceedings, vol. 665, pp. C5.47.1C5.47.6, 2001.Google Scholar
Lupton, J. M., Schouwink, P., Keivanidis, P. E., Grimsdale, A. C., and Müllen, K., ‘Influence of dendronisation on spectral diffusion and aggregation in conjugated polymers’, Advanced Functional Materials, vol. 13, pp. 154158, 2003.CrossRefGoogle Scholar
Pogantsch, A., Gadermaier, C., Cerullo, G., Lanzani, G., Scherf, U., Grimsdale, A. C., et al., ‘Photophysics of poly(fluorene)s with dendronic side chains’, Synthetic Metals, vol. 139, pp. 847849, 2003.CrossRefGoogle Scholar
Pogantsch, A., Wenzl, F. P., Scherf, U., Grimsdale, A. C., Müllen, K., and List, E. J. W., ‘Long lived photoexcitation dynamics in a dendronically substituted poly(fluorene)’, Journal of Chemical Physics, vol. 119, pp. 69046910, 2003.CrossRefGoogle Scholar
Ego, C., Grimsdale, A. C., Uckert, F., Yu, G., Srdanov, G., and Müllen, K., ‘Triphenylamine-substituted polyfluorene: A stable blue-emitter with improved charge injection for light-emitting diodes’, Advanced Materials, vol. 14, pp. 809811, 2002.3.0.CO;2-8>CrossRefGoogle Scholar
Lee, J.-H. and Hwang, D.-H., ‘Alkoxyphenyl-substituted polyfluorene: A stable blue-light emitting polymer with good solution processability’, Chemical Communications, no. 22, pp. 28362837, 2003.CrossRefGoogle Scholar
Surin, M., Hennebicq, E., Ego, C., Marsitzky, D., Grimsdale, A. C., Müllen, K., et al., ‘Correlation between the microscopic morphology and the solid-state photoluminescence properties in fluorene-based polymers and copolymers’, Chemistry of Materials, vol. 16, pp. 9941001, 2004.CrossRefGoogle Scholar
Wu, F.-I., Reddy, S., Shu, C.-F., Liu, M. S., and Jen, A. K.-Y., ‘Novel oxadiazole containing polyfluorene with efficient blue electroluminescence’, Chemistry of Materials, vol. 15, pp. 269274, 2003.CrossRefGoogle Scholar
Shu, C.-F., Dodda, R., Wu, F.-I., Liu, M. S., and Jen, A. K.-Y., ‘Highly efficient blue light-emitting diodes from polyfluorene contining bipolar pendant groups’, Macromolecules, vol. 36, pp. 66986703, 2003.CrossRefGoogle Scholar
Salbeck, J., ‘Electroluminescence with organic compounds’, Berichte der Bunsengesellschaft Physical Chemistry, vol. 100, pp. 16661677, 1996.Google Scholar
Wu, Y., Li, J., Fu, Y., and Bo, Z., ‘Synthesis of extremely stable blue light emitting poly(spirobifluorene)s by Suzuki polycondensation’, Organic Letters, vol. 6, pp. 34853487, 2004.CrossRefGoogle ScholarPubMed
Yu, W.-L., Pei, J., Huang, W., and Heeger, A. J., ‘Spiro-functionalised polyfluorenes as light emitting materials’, Advanced Materials, vol. 12, pp. 828831, 2000.3.0.CO;2-H>CrossRefGoogle Scholar
Grisorio, R., Mastrorilli, P., Nobile, C. F., Romanazzi, G., Suranna, G. P., Acierno, D., and Amendola, E., ‘New spiro-functionalized polyfluorenes: Synthesis and properties’, Macromolecular Chemistry and Physics, vol. 206, pp. 448455, 2005.CrossRefGoogle Scholar
Vak, D., Chun, C., Lee, C. L., Kim, J.-J., and Kim, D.-Y., ‘Novel spiro-functionalized polyfluorene derivative with solubilizing sidechains’, Journal of Materials Chemistry, vol. 14, pp. 13421346, 2004.CrossRefGoogle Scholar
Müller, C. D., Falcou, A., Reckefuss, N., Rojahn, M., Wiederhirn, V., Rudati, P., et al., ‘Multi-colour organic light-emitting diodes by solution processing’, Nature, vol. 421, pp. 829833, 2003.CrossRefGoogle ScholarPubMed
Redecker, M., Bradley, D. D. C., Inbasekaran, M., and Woo, E. P., ‘Nondispersive hole transport in an electroluminescent polyfluorene’, Applied Physics Letters, vol. 73, pp. 15651567, 1998.CrossRefGoogle Scholar
Sonar, P., Grimsdale, A. C., Heeney, M., Shkunov, M., McCulloch, I., and Müllen, K., ‘A study of the effects metal residues in poly(dioctylfluorene) have on field-effect transistor device characteristics’, Synthetic Metals, vol. 157, pp. 872875, 2007.CrossRefGoogle Scholar
Sirringhaus, H., Wilson, R. J., Friend, R. H., Inbasekaran, M., Wu, W., Woo, E. P., et al., ‘Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase’, Applied Physics Letters, vol. 77, pp. 406408, 2000.CrossRefGoogle Scholar
Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E. P., ‘High-resolution inkjet printing of all-polymer transistor circuits’, Science, vol. 290, pp. 21232126, 2000.CrossRefGoogle ScholarPubMed
Surin, M., Sonar, P., Grimsdale, A. C., Müllen, K., Lazzaroni, R., and Leclere, P., ‘Supramolecular organization in fluorene/indenofluorene-oligothiophene alternating conjugated coplymers’, Advanced Functional Materials, vol. 15, pp. 14261434, 2005.CrossRefGoogle Scholar
Halls, J. J. M., Arias, A. C., MacKenzie, J. D., Wu, W., Inbasekaran, M., Woo, E. P., and Friend, R. H., ‘Photodiodes based on polyfluorene composites: Influence of morphology’, Advanced Materials, vol. 12, pp. 498502, 2000.3.0.CO;2-H>CrossRefGoogle Scholar
Stevens, M. A., Silva, C., Russell, D. M., and Friend, R. H., ‘Exciton dissociation mechanisms in the polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-co-benzothiadiazole)’, Physical Review B, vol. 63, p. 165213, 2001.CrossRefGoogle Scholar
Arias, A. C., MacKenzie, J. D., Stevenson, R., Halls, J. J. M., Inbasekaran, M., Woo, E. P., et al., ‘Photovoltaic performance and morphology of polyfluorene blends: A combined microscopic and photovoltaic investigation’, Macromolecules, vol. 34, pp. 60056013, 2001.CrossRefGoogle Scholar
McNeill, C. R., Frohne, H., Holdsworth, J. L., and Dastoor, P. C., ‘Near-field scanning photocurrent measurements of polyfluorene blend devices: Directly correlating morphology with current generation’, Nano Letters, vol. 4, pp. 25032507, 2004.CrossRefGoogle Scholar
McNeill, C. R., Watts, B., Thomsen, L., Belcher, W. J., Greenham, N. C., and Dastoor, P. C., ‘Nano-scale quantitative chemical mapping of conjugated polymer blends’, Nano Letters, vol. 6, pp. 12021206, 2006.CrossRefGoogle Scholar
McNeill, C. R., Watts, B., Thomsen, L., Ade, H., Greenham, N. C., and Dastoor, P. C., ‘X-ray microscopy of photovoltaic polyfluorene blends:relating nanomorphology to device performance’, Macromolecules, vol. 40, pp. 32633270, 2007.CrossRefGoogle Scholar
McNeill, C. R., Watts, B., Swaraj, S., Ade, H., Thomsen, L., Belcher, W., and Dastoor, P. C., ‘Evolution of the nanomorphology of photovoltaic polyfluorene blends: Sub-100 nm resolution with X-ray spectromicroscopy’, Nanotechnology, vol. 19, p. 424015, 2008.CrossRefGoogle ScholarPubMed
McNeill, C. R., Watts, B., Thomsen, L., Belcher, W. J., Greenham, N. C., Dastoor, P. C., and Ade, H., ‘Evolution of laterally phase-separated polyfluorene blend morphology studied by X-ray spectromicroscopy’, Macromolecules, vol. 42, pp. 33473352, 2009.CrossRefGoogle Scholar
Watts, B. and McNeill, C. R., ‘Simultaneous surface and bulk imaging of polymer blends with x-ray spectromicroscopy’, Macromolecular Rapid Communications, vol. 31, pp. 17061712, 2010.CrossRefGoogle ScholarPubMed
Abdulla, M., Renero-Lecuna, C., Kim, J. S., and Friend, R. H., ‘Morphological study of F8BT:PFB thin film blends’, Organic Electronics, vol. 23, pp. 8798, 2015.CrossRefGoogle Scholar
Michinobu, T., Osako, H., and Shigehara, K., ‘Synthesis of poly(1,8-carbazole) derivatives’, Macromolecular Rapid Communications, vol. 29, pp. 111116, 2008.CrossRefGoogle Scholar
Grazulevicius, J. V., Strohriegl, P., Pielichowski, J., and Pielichowski, K., ‘Carbazole-containing polymers: synthesis, properties, and applications’, Progress in Polymer Science, vol. 28, pp. 12971353, 2003.CrossRefGoogle Scholar
Morin, J.-F., Leclerc, M., Ades, D., and Siove, A., ‘Polycarbazoles: 25 years of progress’, Macromolecular Rapid Communications, vol. 26, pp. 761778, 2005.CrossRefGoogle Scholar
Li, J. and Grimsdale, A. C., ‘Carbazole-based copolymers for organic photovoltaic devices’, Chemical Society Reviews, vol. 39, pp. 23992410, 2010.CrossRefGoogle ScholarPubMed
Morin, J.-F. and Leclerc, M., ‘Synthesis of conjugated polymers derived from N-alkyl-2,7-carbazoles’, Macromolecules, vol. 34, pp. 46804682, 2001.CrossRefGoogle Scholar
Dierschke, F., Grimsdale, A. C., and Müllen, K., ‘Efficient synthesis of 2,7-dibromocarbazoles as components for electroactive materials’, Synthesis, pp. 2470–2472, 2003.Google Scholar
Cadogan, J. I. G., Cameron-Wood, M., Mackie, R. K., and Searle, R. J. G., ‘Reduction of nitro-compounds by triethyl phosphite. Convenient route to carbazoles, indoles, indazoles, triazoles and related compounds’, Journal of the Chemical Society, pp. 4831–4837, 1965.Google Scholar
Freeman, A. W., Urvoy, M., and Criswell, M. E., ‘Triphenylphosphine-mediated reductive cyclisation of 2-nitrobiphenyls: a practical and convenient synthesis of carbazoles’, Journal of Organic Chemistry, vol. 70, pp. 50145019, 2005.CrossRefGoogle Scholar
Morin, J.-F. and Leclerc, M., ‘2,7-Carbazole-based conjugated polymers for blue, green and red light emission’, Macromolecules, vol. 35, pp. 84138417, 2002.CrossRefGoogle Scholar
Iraqi, A. and Wataru, I., ‘Preparation and properties of 2,7-linked N-alkyl-9H-carbazole main-chain polymers’, Chemistry of Materials, vol. 16, pp. 442448, 2004.CrossRefGoogle Scholar
Zotti, G., Schiavon, G., Zecchin, S., Morin, J.-F., and Leclerc, M., ‘Electrochemical, conductive and magnetic properties of 2,7-cvarbazole-based conjugated polymers’, Macromolecules, vol. 35, pp. 21222128, 2002.CrossRefGoogle Scholar
Li, J., Dierschke, F., Wu, J., Grimsdale, A. C., and Müllen, K., ‘Poly(2,7-carbazole) and PDI: A promising donor/acceptor pair for polymer solar cells’, Journal of Materials Chemistry, vol. 16, pp. 96100, 2006.CrossRefGoogle Scholar
Lmimouni, K., Legrand, C., and Chapoton, A., ‘Poly(N-alkylcarbazole) LEDs’, Synthetic Metals, vol. 97, pp. 151155, 1998.CrossRefGoogle Scholar
Morin, J.-F., Beaupre, S., Leclerc, M., Levesque, I., and D’Iorio, M., ‘Blue LEDs from new conjugated poly(N-substituted-2,7-carbazole) derivatives’, Applied Physics Letters, vol. 80, pp. 341343, 2002.CrossRefGoogle Scholar
Patil, S. A., Scherf, U., and Kadashchuk, A., ‘New conjugated ladder polymer containing carbazole moieties’, Advanced Functional Materials, vol. 13, pp. 609614, 2003.CrossRefGoogle Scholar
Dierschke, F., Grimsdale, A. C., and Müllen, K., ‘Novel carbazole-based ladder-type polymers for electronic applications’, Macromolecular Chemistry and Physics, vol. 205, pp. 11471153, 2004.CrossRefGoogle Scholar
Mishra, A. K., Graf, M., Grasse, F., Jacob, J., List, E. J. W., and Müllen, K., ‘Blue-emitting carbon and nitrogen-bridged poly(ladder-type tetraphenylene)s’, Chemistry of Materials, vol. 17, pp. 28792885, 2006.CrossRefGoogle Scholar
Chan, K. L., McKiernan, M. J., Towns, C. R., and Holmes, A. B., ‘Poly(2,7-dibenzosilole): A blue light emitting polymer’, Journal of the American Chemical Society, vol. 127, pp. 76627663, 2005.CrossRefGoogle ScholarPubMed
Ooi, Z. E., Tam, T. L., Shin, R. Y. C., Chen, Z. K., Kietzke, T., Sellinger, A., et al., ‘Solution processable bulk heterojunction solar cells using a small molecule acceptor’, Journal of Materials Chemistry, vol. 18, pp. 46194622, 2008.CrossRefGoogle Scholar
Yang, C., Scheiber, H., List, E. J. W., Jacob, J., and Müllen, K., ‘Poly(2,7-phenanthrylene)s and poly(3,6-phenanthrylene)s as PPP and PPV analogues’, Macromolecules, vol. 39, pp. 52135221, 2006.CrossRefGoogle Scholar
Setayesh, S., Marsitzky, D., and Müllen, K., ‘Polyindenofluorenes: Bridging the gap between LPPP and PF’, Macromolecules, vol. 33, pp. 20162020, 2000.CrossRefGoogle Scholar
Grimsdale, A. C., Leclère, P., Lazzaroni, R., MacKenzie, J. D., Murphy, C., Setayesh, S., et al., ‘Correlation between molecular structure, microscopic morphology and optical properties of poly(tetraalkylindenofluorene)s’, Advanced Functional Materials, vol. 12, pp. 729733, 2002.3.0.CO;2-F>CrossRefGoogle Scholar
Keivanidis, P. E., Jacob, J., Oldridge, L., Sonar, P., Carbonnier, B., Baluschev, S., et al., ‘Photophysical characterization of light-emitting polyindenofluorenes’, ChemPhysChem, vol. 6, pp. 16501660, 2005.CrossRefGoogle ScholarPubMed
Marsitzky, D., Scott, C., Chen, J.-P., Lee, V. Y., Miller, R. D., Setayesh, S., and Müllen, K., ‘Poly-2,8-(indenofluorene-co-anthracene): A colorfast blue light-emitting random copolymer’, Advanced Materials, vol. 13, pp. 10961099, 2001.3.0.CO;2-I>CrossRefGoogle Scholar
Jacob, J., Zhang, J., Grimsdale, A. C., Müllen, K., Gaal, M., and List, E. J. W., ‘Poly(tetraarylindenofluorene)s: New stable blue-emitting polymers’, Macromolecules, vol. 36, pp. 82408245, 2003.CrossRefGoogle Scholar
Vak, D., Lim, B., Lee, S.-H., and Kim, D.-Y., ‘Synthesis of a double spiro-indenofluorene with a stable blue emission’, Organic Letters, vol. 7, pp. 42294232, 2005.CrossRefGoogle ScholarPubMed
Laquai, F., Mishra, A. K., Ribas, M. R., Petrozza, A., Jacob, J., Akcelrud, L., et al., ‘Photophysical properties of a series of poly(ladder-type phenylene)s’, Advanced Functional Materials, vol. 17, pp. 32313240, 2007.CrossRefGoogle Scholar
Jacob, J., Sax, S., Piok, T., List, E. J. W., Grimsdale, A. C., and Müllen, K., ‘Ladder-type pentaphenylenes and their polymers: Efficient blue-light emitters and electron-acepting materials via a common intermediate’, Journal of the American Chemical Society, vol. 126, pp. 69876995, 2004.CrossRefGoogle Scholar
Jacob, J., Grimsdale, A. C., Müllen, K., Sax, S., Gaal, M., and List, E. J. W., ‘Fully aryl-substituted poly(ladder-type pentaphenylene): A remarkably stable blue light-emitting polymer’, Macromolecules, pp. 9933–9938, 2005.Google Scholar
Finlayson, C. E., Kim, J.-S., Liddell, M. J., Friend, R. H., Jung, S.-H., Grimsdale, A. C., and Müllen, K., ‘Exciplex emission from electroluminescent ladder-type pentaphenylene oligomers bearing both electron and hole-accepting substituents’, Journal of Chemical Physics, vol. 128, p. 044703, 2008.CrossRefGoogle ScholarPubMed
Uckert, F., Setayesh, S., and Müllen, K., ‘Precursor route to polyfluorenone’, Macromolecules, vol. 32, pp. 45194524, 1999.CrossRefGoogle Scholar
Uckert, F., Tak, Y.-H., Müllen, K., and Bässler, H., ‘Polyfluorenone: A trap-free electron injection material’, Advanced Materials, vol. 12, pp. 905908, 2000.3.0.CO;2-W>CrossRefGoogle Scholar
Kulkarni, A. P., Kong, X., and Jenekhe, S. A., ‘Fluorenone containing PFs and oligomers: Photophysics, origin of the green emission and efficient green EL’, Journal of Physical Chemistry B, vol. 108, pp. 86898701, 2004.CrossRefGoogle Scholar
Usta, H., Facchetti, A., and Marks, T. J., ‘Air-stable, solution processable n-channel and ambipolar semiconductors for thin-film transistors based on the indenoflourenebis(dicyanovinylene) core’, Journal of the American Chemical Society, vol. 130, pp. 85808581, 2008.CrossRefGoogle ScholarPubMed
Usta, H., Facchetti, A., and Marks, T. J., ‘Synthesis and characterization of electron-deficient and highly soluble (bis)indenofluorene building blocks for n-type semiconducting polymers’, Organic Letters, vol. 10, pp. 13851388, 2008.CrossRefGoogle ScholarPubMed
Wakim, S. and Leclerc, M., ‘Towards the synthesis of ladder oligo(p-aniline)s’, Synlett, no. 8, pp. 12231234, 2005.Google Scholar
Wu, Y., Li, Y., Gardner, S., and Ong, B. S., ‘Indolo[3,2-b]carbazole-based thin-film transistors with high mobility and stability’, Journal of the American Chemical Society, vol. 127, pp. 614618, 2005.CrossRefGoogle ScholarPubMed
Li, Y., Wu, Y., Gardner, S., and Ong, B. S., ‘Novel peripherally substituted indolo[3,2-b]carbazoles for high mobility organic thin-film transistors’, Advanced Materials, vol. 17, pp. 849853, 2005.CrossRefGoogle Scholar
Li, Y., Wu, Y., and Ong, B. S., ‘Poly[3,2-b]carbazoles: A new class of p-channel semiconductor polmers for organic thin-film transistors’, Macromolecules, vol. 39, pp. 65216527, 2006.CrossRefGoogle Scholar
Blouin, N., Michaud, A., Wakim, S., Boudreault, P.-L. T., Leclerc, M., Vercelli, B., et al., ‘Optical, electrochemical, magnetic and conductive properties of new polyindolocarbazoles and polydiindolocarbazoles’, Macromolecular Chemistry and Physics, vol. 207, pp. 166174, 2006.CrossRefGoogle Scholar
Pisula, W., Mishra, A. K., Li, J., Baumgarten, M., and Müllen, K., ‘Carbazole-based conjugated polymers as donor-material for photovoltaic devices,’ in Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies, Brabec, C. J., Dyakononv, V., and Scherf, U. (eds). Weinheim: Wiley-VCH, 2008, ch. 3, pp. 93127.CrossRefGoogle Scholar
Kaneto, K., Kohno, Y., Yoshino, K., and Inuishi, Y., ‘Electrochemical preparation of a metallic polythiophene film’, Journal of the Chemical Society Chemical Communications, no. 7, pp. 382383, 1983.CrossRefGoogle Scholar
McCullough, R. D., ‘The chemistry of conducting polythiophenes’, Advanced Materials, vol. 10, pp. 93116, 1998.3.0.CO;2-F>CrossRefGoogle Scholar
Leclerc, M., Martinez Diaz, F., and Wegner, G., ‘Structural analysis of poly(3-alkylthiophene)s’, Makromolekulare Chemie, vol. 190, pp. 31053116, 1989.CrossRefGoogle Scholar
Andersson, M. R., Selse, D., Berggren, M., Jaervinen, H., Hjertberg, T., Inganaes, O., et al., ‘Regioselective polymerization of 3-(4-octylphenyl)thiophene with FeCl3’, Macromolecules, vol. 27, pp. 65036506, 1994.CrossRefGoogle Scholar
Gill, R. E., Malliaras, G. E., Wildeman, J., and Hadziioannou, G., ‘Tuning of photo- and electroluminescence in alkylated polythiophenes with well-defined regioregularity’, Advanced Materials, vol. 6, pp. 132135, 1994.CrossRefGoogle Scholar
McCullogh, R. D. and Lowe, R. D., ‘Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes)’, Journal of the Chemical Society, Chemical Comminucations, no. 1, pp. 7072, 1992.CrossRefGoogle Scholar
McCullough, R. D., Lowe, R. D., Jayaraman, M., and Anderson, D. L., ‘Design, synthesis, and control of conducting polymer architectures: Structurally homogeneous poly(3-alkylthiophenes)’, Journal of Organic Chemistry, vol. 58, pp. 904912, 1993.CrossRefGoogle Scholar
Chen, T.-A. and Rieke, R. D., ‘The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: Nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization’, Journal of the American Chemical Society, vol. 114, pp. 1008710088, 1992.CrossRefGoogle Scholar
Chen, T.-A., Wu, X., and Rieke, R. D., ‘Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by Rieke zinc: Their characterization and solid-state properties’, Journal of the American Chemical Society, vol. 117, pp. 233244, 1995.CrossRefGoogle Scholar
Iraqi, A. and Barker, G. W., ‘Synthesis and characterisation of telechelic regioregular head-to-tail poly(3-alkylthiophene)s’, Journal of Materials Chemistry, vol. 8, pp. 2529, 1998.CrossRefGoogle Scholar
Guillerez, S. and Bidan, G., ‘New convenient synthesis of highly regioregular poly(3-octylthiophene) based on the Suzuki coupling reaction’, Synthetic Metals, vol. 93, pp. 123126, 1998.CrossRefGoogle Scholar
Loewe, R. S., Khersonsky, S. M., and McCullough, R. D., ‘A simple method to prepare head-to-tail coupled, regioregular poly(3-alkylthiophene)s using Grignard metathesis’, Advanced Materials, vol. 11, pp. 127130, 1999.3.0.CO;2-J>CrossRefGoogle Scholar
Loewe, R. S., Ewbank, P. C., Liu, J., Zhai, L., and McCullough, R. D., ‘Regioregular, head-to-tail coupled poly(3-alkylthiophene)s made easy by the GRIM method: Investigation of the reaction and the origin of regioselectivity’, Macromolecules, vol. 34, pp. 43244333, 2001.CrossRefGoogle Scholar
Iovu, M. C., Sheina, E. E., Gil, R. R., and McCullough, R. D., ‘Experimental evidence for the quasi-“living” nature of the Grignard metathesis (GRIM) for the synthesis of regioregular poly(3-alkylthiophene)s’, Macromolecules, vol. 38, pp. 86498656, 2005.CrossRefGoogle Scholar
Jeffries-El, M., Sauve, G., and McCullough, R. D., ‘In-situ endgroup functionalization of regioregular poly(3-alkylthiophene)s using the Grignard metathesis polymerization method’, Advanced Materials, vol. 16, pp. 10171019, 2004.CrossRefGoogle Scholar
Jeffries-El, M., Sauve, G., and McCullough, R. D., ‘Facile synthesis of end-functionalized regioregular poly(3-alkylthiophene)s via modified Grignard metathesis reaction’, Macromolecules, vol. 38, pp. 1034610352, 2005.CrossRefGoogle Scholar
Kohn, P., Huettner, S., Komber, H., Senkovskyy, V., Tkachov, R., Kiriy, A., et al., ‘On the role of single regiodefects and polydispersity in regioregular poly(3-hexylthiophene): Defect distribution, synthesis of defect-free chains, and a simple model for the determination of crystallinity’, Journal of the American Chemical Society, vol. 134, pp. 47904805, 2012.CrossRefGoogle Scholar
Yokozawa, T. and Yokoyama, A., ‘Chain-growth condensation polymerization for the synthesis of well-defined condensation polymers and π-conjugated polymers’, Chemical Reviews, vol. 109, pp. 55955619, 2009.CrossRefGoogle ScholarPubMed
Sirringhaus, H., Brown, P. J., Friend, R. H., Nielsen, M. M., Bechgaard, K., Langeveld-Voss, B. M. W., et al., ‘Two-dimensional charge transport in self-organized, high-mobility conjugated polymers’, Nature, vol. 401, pp. 685688, 1999.CrossRefGoogle Scholar
Wang, Q., Swensen, J., Moses, D., and Heeger, A. J., ‘Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors’, Journal of Applied Physics, vol. 93, pp. 61376141, 2003.CrossRefGoogle Scholar
Kline, R. J., McGehee, M. D., Kadnikova, E. N., Liu, J., and Frechet, J. M. J., ‘Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight’, Advanced Materials, vol. 15, pp. 15191522, 2003.CrossRefGoogle Scholar
Ong, B. S., Wu, Y., Liu, P., and Gardner, S., ‘High-performance semiconducting polythiophenes for organic thin-film transistors’, Journal of the American Chemical Society, vol. 126, pp. 33783379, 2004.CrossRefGoogle ScholarPubMed
Ko, S., Verploegen, E., Hong, S., Mondal, R., Hoke, E. T., Toney, M. F., et al., ‘3,4-Disubstituted polyalkylthiophenes for high-performance thin-film transistors and photvoltaics’, Journal of the American Chemical Society, vol. 133, pp. 1672216725, 2011.CrossRefGoogle Scholar
Kim, J., Lim, B., Baeg, K.-J., Noh, Y.-Y., Khim, D., Jeong, H.-G., et al., ‘Highly soluble poly(thienylenevinylene) derivatives with charge-carrier mobility exceeding 1 cm2V‒1s‒1’, Chemistry of Materials, vol. 23, pp. 46634665, 2011.CrossRefGoogle Scholar
Kirchmeyer, S. and Reuter, K., ‘Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene)’, Journal of Materials Chemistry, vol. 15, pp. 20772088, 2005.CrossRefGoogle Scholar
Lang, U., Müller, E., Naujoks, N., and Dual, J., ‘Microscopical investigations of PEDOT:PSS thin films’, Advanced Functional Materials, vol. 19, pp. 12151220, 2009.CrossRefGoogle Scholar
Wen, Y. and Xu, J., ‘Scientific importance of water-processable PEDOT-PSS and preparation, challenge and new application in sensors of its film electrode: A review’, Journal of Polymer Science A: Polymer Chemistry, vol. 55, pp. 11211150, 2017.Google Scholar
Toshima, N., ‘Recent progress of organic and hybrid thermoelectric materials’, Synthetic Metals, vol. 225, pp. 321, 2017.CrossRefGoogle Scholar
Ryan, J. D., Mengistie, D. A., Gabrielsson, R., Lund, A., and Müller, C., ‘Machine-washable PEDOT:PSS dyed silk yarns for electronic textiles’, ACS Applied Materials and Interfaces, vol. 9, pp. 90459050, 2017.CrossRefGoogle ScholarPubMed
Nikolou, M. and Malliaras, G. G., ‘Applications of poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid) transistors in chemical and biological sensors’, The Chemical Record, vol. 8, pp. 1322, 2008.CrossRefGoogle Scholar
Zhu, Z.-T., Mabeck, J. T., Zhu, C., Cady, N. C., Batt, C. A., and Malliaras, G. G., ‘A simple poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonic acid) transistor for glucose sensing at neutral pH’, Chemical Communications, vol. 40, pp. 15561557, 2004.CrossRefGoogle Scholar
Bernards, D. A., Macaya, D. J., Nikolou, M., DeFranco, J. A., Takamatsu, S., and Malliaras, G. G., ‘Enzymatic sensing with organic electrochemical transistors’, Journal of Materials Chemistry, vol. 18, pp. 116120, 2007.CrossRefGoogle Scholar
Liu, J., Agarwal, M., and Varahramyan, K., ‘Glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer’, Sensors and Actuators B: Chemical, vol. 135, no. 1, pp. 195199, 2008.CrossRefGoogle Scholar
Phongphut, A., Sriprachuabwong, C., Wisitsoraat, A., Tuantranont, A., Prichanont, S., and Sritongkham, P., ‘A disposable amperometric biosensor based on inkjet-printed Au/PEDOT-PSS nanocomposite for triglyceride determination’, Sensors and Actuators B: Chemical, vol. 178, pp. 501507, 2013.CrossRefGoogle Scholar
Andersson, M. R., Thomas, O., Mamma, W., Svensson, M., Theander, M., and Inganäs, O., ‘Substituted polythiophenes designed for optoelectronic devices and conductors’, Journal of Materials Chemistry, vol. 9, pp. 19331940, 1999.CrossRefGoogle Scholar
McCullogh, R. D. and Williams, S. P., ‘A dramatic conformational transformation of a regioregular polythiophene via a chemoselective metal-ion assisted deconjugation’, Chemistry of Materials, vol. 7, pp. 20012003, 1995.CrossRefGoogle Scholar
Marsella, M. J. and Swager, T. M., ‘Designing conducting polymer-based sensors: Selective ionochromic response in crown ether containing polythiophenes’, Journal of the American Chemical Society, vol. 115, pp. 1221412215, 1993.CrossRefGoogle Scholar
Ho, H. A. and Leclerc, M., ‘New colorimetric and fluorimetric chemosensor based on a cationic polythiophene derivative for iodide-specific detection’, Journal of the American Chemical Society, vol. 125, pp. 44124413, 2003.CrossRefGoogle Scholar
Ho, H. A. and Leclerc, M., ‘Optical sensors based on hybrid aptamer/conjugated polymer complexes’, Journal of the American Chemical Society, vol. 126, pp. 13841387, 2004.CrossRefGoogle ScholarPubMed
Doré, K., Dubus, S., Ho, H.-A., Lévesque, I., Brunette, M., Corbeil, G., et al., ‘Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level’, Journal of the American Chemical Society, vol. 126, pp. 42404244, 2004.CrossRefGoogle ScholarPubMed
Ho, H. A., Doré, K., Boissinot, M., Bergeron, M. G., Tanguay, R. M., Boudreau, D., and Leclerc, M., ‘Direct molecular detection of nucleic acids by fluorescence signal amplification’, Journal of the American Chemical Society, vol. 127, pp. 1267312676, 2005.CrossRefGoogle ScholarPubMed
Gaylord, B. S., Heeger, A. J., and Bazan, G. C., ‘DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes’, Proceedings of the National Academy of Sciences of the United States of America, vol. 99, pp. 1095410957, 2002.CrossRefGoogle ScholarPubMed
Gaylord, B. S., Heeger, A. J., and Bazan, G. C., ‘DNA hybridization detection with water-soluble conjugated polymers and chromophore-labelled single-stranded DNA’, Journal of the American Chemical Society, vol. 125, pp. 896900, 2003.CrossRefGoogle Scholar
Dennler, G., Scharber, M. C., and Brabec, C. J., ‘Polymer-fullerene bulk-heterojunction solar cells’, Advanced Materials, vol. 21, pp. 13231338, 2009.CrossRefGoogle Scholar
Dang, M. T., Hirsch, L., and Wantz, G., ‘P3HT:PCBM, best seller in polymer photovoltaic research’, Advanced Materials, vol. 23, pp. 35973602, 2011.CrossRefGoogle ScholarPubMed
Schilinsky, P., Asawapirom, U., Scherf, U., Biele, M., and Brabec, C. J., ‘Influence of the molecular weight of P3HT on the performance of BHJ solar cells’, Chemistry of Materials, vol. 27, pp. 21752180, 2005.CrossRefGoogle Scholar
Kim, Y., et al., ‘A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells’, Nature Materials, vol. 5, no. 3, pp. 197203, 2006.CrossRefGoogle Scholar
Chandrasekaran, N., Gann, E., Jain, N., Kumar, A., Gopinathan, S., Sadhanala, A., et al., ‘Correlation between photovoltaic performance and interchain ordering induced delocalization of electronics states in conjugated polymer blends’, ACS Applied Materials & Interfaces, vol. 8, pp. 2024320250, 2016.CrossRefGoogle ScholarPubMed
Sivula, K., Luscombe, C. K., Thompson, B. C., and Frechet, J. M. J., ‘Enhancing the thermal stability of polythiophene:fullerene solar cells by decreasing effective polymer regioregularity’, Journal of the American Chemical Society, vol. 128, no. 43, pp. 1398813989, 2006.CrossRefGoogle ScholarPubMed
Collins, B. A., Gann, E., Guignard, L., He, X., McNeill, C. R., and Ade, H., ‘Molecular miscibility of polymer-fullerene blends’, Journal of Physical Chemistry Letters, vol. 1, pp. 31603166, 2010.CrossRefGoogle Scholar
Kozub, D. R., Vakhshouri, K., Orme, L. M., Wang, C., Hexemer, A., and Gomez, E. D., ‘Polymer crystallization of partially miscible polythiophene/fullerene mixtures controls morphology’, Macromolecules, vol. 44, pp. 57225726, 2011.CrossRefGoogle Scholar
Watts, B., Belcher, W. J., Thomsen, L., Ade, H., and Dastoor, P. C., ‘A quantitative study of PCBM diffusion during annealing of P3HT:PCBM blend films’, Macromolecules, vol. 42, pp. 83928397, 2009.CrossRefGoogle Scholar
Berriman, G. A., Holmes, N. P., Holdsworth, J. L., Zhou, X., Belcher, W. J., and Dastoor, P. C., ‘A new model for PCBM phase segregation in P3HT:PCBM blends’, Organic Electronics, vol. 30, pp. 1217, 2016.CrossRefGoogle Scholar
Berriman, G. A., Holmes, N. P., Holdsworth, J. L., Zhou, X., Belcher, W. J., and Dastoor, P. C., ‘Molecular versus crystallite PCBM diffusion in P3HT:PCBM blends’, AIP Advances, vol. 5, p. 097220, 2015.CrossRefGoogle Scholar
Chang, C.-Y., et al., ‘Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods’, Angewandte Chemie, International Edition, vol. 50, pp. 93869390, 2011.CrossRefGoogle ScholarPubMed
Wang, D., Noël, V., and Piro, B., ‘Electrolytic gated organic field-effect transistors for application in biosensors: A review’, Electronics, vol. 5, p. 9, 2017.CrossRefGoogle Scholar
Lv, A., Pan, Y., and Chi, L., ‘Gas sensors based on polymer field-effect transistors’, Sensors, vol. 17, p. 213, 2017.CrossRefGoogle ScholarPubMed
Ryu, G., Huang, J., Hofmann, O., Walshe, C. A., Sze, J. Y. Y., McClean, G. D., et al., ‘Highly sensitive fluorescence detection system for microfluidic lab-on-a-chip’, Lab on a Chip, vol. 11, pp. 16641670, 2011.CrossRefGoogle ScholarPubMed
Magliulo, M., Mallardi, A., Gristina, R., Ridl, F., Sabbatini, L., Cioffi, N., et al., ‘Part per trillion label-free electronic bioanalytical detection’, Analytical Chemistry, vol. 85, pp. 38493857, 2013.CrossRefGoogle ScholarPubMed
Chao, Y.-C., Lai, W.-J., Chen, C.-Y., Meng, H.-F., Zan, H.-W., and Horng, S.-F., ‘Low voltage active pressure sensor based on polymer space-charge-limited transistor’, Applied Physics Letters, vol. 95, p. 253306, 2009.CrossRefGoogle Scholar
Li, B. and Lambeth, D. N., ‘Chemical sensing using nanostructured polythiophene transistors’, Nano Letters, vol. 8, pp. 35633567, 2008.CrossRefGoogle ScholarPubMed
Elkington, D., Wasson, M., Belcher, W. J., Dastoor, P. C., and Zhou, X. J., ‘Printable organic thin film transistors for glucose detection incorporating inkjet-printing of the enzyme recognition element’, Applied Physics Letters, vol. 106, p. 263301, 2015.CrossRefGoogle Scholar
Liu, Y., Liu, Y., and Zhan, X., ‘High-mobility conjugated polymers based on fused-thiophene building blocks’, Macromolecular Chemistry and Physics, vol. 212, pp. 428433, 2011.CrossRefGoogle Scholar
McCulloch, I., Heeney, M., Chabinyc, M. L., DeLongchamp, D., Kline, R. J., Cölle, M., et al., ‘Semiconducting thienothiophene copolymers; design, synthesis, morphology, and performance in thin-film organic transistors’, Advanced Materials, vol. 21, pp. 10911109, 2009.CrossRefGoogle Scholar
McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., MacDonald, I., Shkunov, M., et al., ‘Liquid-crystalline semiconducting polymers with high charge-carrier mobility’, Nature Materials, vol. 5, pp. 328333, 2006.CrossRefGoogle ScholarPubMed
Li, Y., Wu, Y., Liu, P., Birau, M., Pan, H., and Ong, B. S., ‘Poly(2,5-bis(2-thienyl)-3,6-dialkylthieno[3,2-b]thiophene)s: High mobility semiconductors for thin-film transistors’, Advanced Materials, vol. 18, pp. 30293032, 2006.CrossRefGoogle Scholar
Li, J., Qin, F., Li, C. M., Bao, Q., Chan-Park, M. B., Zhang, W., et al., ‘High-performance thin-film transistors from solution-processed dithienothiophene polymer semiconductor nanoparticles’, Chemistry of Materials, vol. 20, pp. 20572059, 2008.CrossRefGoogle Scholar
Fong, H. H., Pozdin, V. A., Amassian, A., Malliaras, G. G., Smilgies, D.-M., He, M., et al., ‘Tetrathienoacene copolymers as high mobility, soluble organic semiconductors’, Journal of the American Chemical Society, vol. 130, pp. 1320213203, 2009.CrossRefGoogle Scholar
Pan, H., Li, Y., Wu, Y., Liu, P., Ong, B. S., Zhu, S., and Xu, G., ‘Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors’, Journal of the American Chemical Society, vol. 129, pp. 41124113, 2007.CrossRefGoogle ScholarPubMed
Rieger, R., Beckmann, D., Pisula, W., Steffen, W., Kastler, M., and Müllen, K., ‘Rational optimization of benzo[2,1-b;3,4-b’]dithiophene-containing polymers for organic field-effect transistors’, Advanced Materials, vol. 22, pp. 8386, 2010.CrossRefGoogle ScholarPubMed
Cheng, Y.-J., Yang, S.-H., and Hsu, C.-S., ‘Synthesis of conjugated polymers for organic solar cell applications’, Chemical Reviews, vol. 109, pp. 58685923, 2009.CrossRefGoogle ScholarPubMed
Facchetti, A., ‘π-conjugated polymers for organic electronics and photovoltaic cell applications’, Chemistry of Materials, vol. 23, pp. 733758, 2011.CrossRefGoogle Scholar
Arias, A. C., MacKenzie, J. D., McCulloch, I., Rivnay, J., and Salleo, A., ‘Materials and applications for large area electronics: Solution-based approaches’, Chemical Reviews, vol. 110, pp. 324, 2010.CrossRefGoogle Scholar
Robb, M. J., Ku, S.-Y., and Hawker, C. J., ‘No assembly required: Recent advances in fully conjugated block copolymers’, Advanced Materials, vol. 25, pp. 56865700, 2013.CrossRefGoogle ScholarPubMed
Mulherin, R. C., Jung, S., Huettner, S., Johnson, K., Kohn, P., Sommer, M., et al., ‘Ternary photovoltaic blends incorporating an all-conjugated donor-acceptor diblock copolymer’, Nano Letters, vol. 11, pp. 48464851, 2011.CrossRefGoogle ScholarPubMed
McNeill, C. R., Abrusci, A., Zaumseil, J., Wilson, R., McKiernan, M. J., Burroughes, J. H., et al., ‘Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes’, Applied Physics Letters, vol. 90, p. 193506, 2007.CrossRefGoogle Scholar
Guo, C., Lin, Y-H., Witman, M. D., Smith, K. A., Wang, C., Hexemer, A., et al., ‘Conjugated block copolymer photovoltaics with near 3% efficiency through microphase separation’, Nano Letters, vol. 13, pp. 29572963, 2013.CrossRefGoogle ScholarPubMed
Fahlman, M., Birgersson, J., Kaeriyama, K., and Salaneck, W. R., ‘Poly(2,5-diheptyl-1,4-phenylene-alt-2,5-thienylene): A new material for blue-light-emitting diodes’, Synthetic Metals, vol. 75, pp. 223228, 1995.CrossRefGoogle Scholar
Lère-Porte, J. P., Moreau, J. J. E., and Torreilles, C., ‘Thienylene-dialkoxyphenylene copolymers’, Synthetic Metals, vol. 101, p. 104, 1999.CrossRefGoogle Scholar
Donat-Bouillud, A., Lévesque, I., Tao, Y., D’Iorio, M., Beaupré, S., Blondin, P., et al., ‘Light-emitting diodes from fluorene-based π-conjugated polymers’, Chemistry of Materials, vol. 12, pp. 19311936, 2000.CrossRefGoogle Scholar
Liu, B., Niu, Y.-H., Yu, W.-L., Cao, Y., and Huang, W., ‘Applications of alternating fluorene-thiophene copolymers in PLEDS’, Synthetic Metals, vol. 129, pp. 129134, 2002.CrossRefGoogle Scholar
Forster, M., Annan, K. O., and Scherf, U., ‘Conjugated ladder polymers containing thiophene units’, Macromolecules, vol. 32, pp. 31593162, 1999.CrossRefGoogle Scholar
Ho, P. K. H., Thomas, D. S., Friend, R. H., and Tessler, N., ‘All-polymer optoelectronic devices’, Science, vol. 285, pp. 233237, 1999.CrossRefGoogle ScholarPubMed
He, Y., Gong, S., Hatori, R., and Kanicki, J., ‘High performance light-emitting heterostructure devices’, Applied Physics Letters, vol. 74, pp. 22652267, 1999.CrossRefGoogle Scholar
Fletcher, R. B., Lidzey, D. G., Bradley, D. D. C., Walker, S., Inbasekaran, M., and Woo, E. P., ‘High brightness conjugated polymer LEDs’, Synthetic Metals, vol. 111–112, pp. 151153, 2000.CrossRefGoogle Scholar
Zhu, F., Zhang, K., Guenther, E., and Jin, C. S., ‘Optimized ITO contact for OLED applications’, Thin and Solid Films, vol. 363, pp. 314317, 2000.CrossRefGoogle Scholar
Herguth, P., Jiang, X., Liu, M. S., and Jen, A. K.-Y., ‘Highly efficient F-BT copolymers for PLEDs’, Macromolecules, vol. 35, pp. 60946100, 2002.CrossRefGoogle Scholar
Hou, Q., Xu, Y., Yang, W., Yuan, M., Peng, J., and Cao, Y., ‘Novel red-emitting fluorene-based copolymers’, Journal of Materials Chemistry, vol. 12, pp. 28872892, 2002.CrossRefGoogle Scholar
Hou, Q., Xu, Y. S., Yang, W., Yang, R. Q., Yuan, M., Peng, J. B., and Cao, Y., ‘Synthesis and electroluminescent properties of fluorene-based copolymers’, Synthetic Metals, vol. 135–136, pp. 179180, 2003.CrossRefGoogle Scholar
Hou, Q., Zhou, Q., Zhang, Y., Yang, W., Yang, R., and Cao, Y., ‘Synthesis and EL properties of high-efficiency red emitter based on copolymers of fluorene and dithienylbenzothiadiazole’, Macromolecules, vol. 37, pp. 62996305, 2004.CrossRefGoogle Scholar
Luo, J., Peng, J., Cao, Y., and Hou, Q., ‘High-efficiency red LEDs based on PF copolymers with extremely low content of dithienylbenzothiadiazole: Comparative studies of intrachain and interchain interaction’, Applied Physics Letters, vol. 87, p. 261103, 2005.CrossRefGoogle Scholar
Xia, Y., Luo, J., Deng, X., Li, X., Li, D., Zhu, X., et al., ‘Novel random low-band-gap fluorene-based copolymers for deep red/near infrared light-emitting diodes and bulk heterojunction photovoltaic cells’, Macromolecular Chemistry and Physics, vol. 207, pp. 511520, 2006.CrossRefGoogle Scholar
Chen, M., Perzon, E., Andersson, M. R., Marcinkevicius, S., Jönsson, S. K. M., Fahlman, M., and Berggren, M., ‘1 micron wavelength photo- and electroluminescence from a conjugated polymer’, Applied Physics Letters, vol. 84, pp. 35703572, 2004.CrossRefGoogle Scholar
Chen, M. X., Perzon, E., Robisson, N., Jönsson, S. K. M., Andersson, M. R., Fahlman, M., and Berggren, M., ‘Low bandgap acceptor-donor-donor polymers for infra-red electroluminescence and transistors’, Synthetic Metals, vol. 146, pp. 233236, 2004.CrossRefGoogle Scholar
Hennebicq, E., Pourtois, G., Scholes, G. D., Herz, L. M., Russell, D. M., Silva, C., et al., ‘Exciton migration in rigid-rod conjugated polymers: An improved Förster model’, Journal of the American Chemical Society, vol. 127, pp. 47444762, 2005.CrossRefGoogle ScholarPubMed
Baluschev, S., Jacob, J., Avlasevich, Y., Keivanidis, P. E., Miteva, T., Yasuda, A., et al., ‘Enhanced operational stability of the up-conversion fluoresence in films of palladium-porphyrin end-capped poly(pentaphenylene)’, ChemPhysChem, vol. 6, pp. 12501253, 2005.CrossRefGoogle Scholar
Baluschev, S., Keivanidis, P. E., Wegner, G., Jacob, J., Grimsdale, A. C., Mullen, K., et al., ‘Upconversion photoluminescence in poly(ladder-type-pentaphenylene) doped with metal(II)octaethyl porphyrins’, Applied Physics Letters, vol. 86, p. 061904, 2005.CrossRefGoogle Scholar
Tseng, H.-R., Phan, H., Luo, C., Wang, M., Perez, L. A., Patel, S. N., et al., ‘High-mobility field-effect transistors fabricated with macroscopic aligned semiconductiung polymers’, Advanced Materials, vol. 26, pp. 29932998, 2014.CrossRefGoogle ScholarPubMed
Luo, C., Kyaw, A. K. K., Perez, L. A., Patel, S., Wang, M., Grimm, B., et al., ‘General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility’, Nano Letters, vol. 14, pp. 27642771, 2014.CrossRefGoogle ScholarPubMed
Saeki, A., Koizumi, Y., Aida, T., and Seki, S., ‘Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures’, Accounts of Chemical Research, vol. 45, pp. 11931202, 2012.CrossRefGoogle ScholarPubMed
Zhang, X., Bronstein, H., Kronemeijer, A. J., Smith, J., Kim, Y., Kline, R. J., et al., ‘Molecular origin of high field effect mobility in an indacenodithiophene-benzothiadiazole copolymer’, Nature Communications, vol. 4, p. 2238, 2013.CrossRefGoogle Scholar
Noriega, R., Rivnay, J., Vandewal, K., Koch, F. P. V., Stingelin, N., Smith, P., et al., ‘A general relationship between disorder, aggregation and charge transport in conjugated polymers’, Nature Materials, vol. 12, pp. 10381044, 2013.CrossRefGoogle ScholarPubMed
Koldemir, U., Puniredd, S. R., Wagner, M., Tongay, S., McCarley, T. D., Kamenov, G. D., et al., ‘End capping does matter: Enhanced order and charge transport in conjugated donor-acceptor polymers’, Macromolecules, vol. 48, pp. 63696377, 2015.CrossRefGoogle Scholar
Tsao, H. N., Cho, D. M., Park, I., Hansen, M. R., Mavrinskiy, A., Yoon, D. Y., et al., ‘Ultrahigh mobility in polymer field-effect transistors by design’, Journal of the American Chemical Society, vol. 133, pp. 26052612, 2011.CrossRefGoogle ScholarPubMed
Sonar, P., Oldridge, L., Grimsdale, A. C., Müllen, K., Surin, M., Lazzaroni, R., et al., ‘Synthesis, characterization and comparative OFET behaviour of indenofluorene-bithiophene and terthiophene alternating copolymers’, Synthetic Metals, vol. 160, pp. 468474, 2010.CrossRefGoogle Scholar
Bronstein, H., Leem, D. S., Hamilton, R., Woebkenberg, P., King, S., Zhang, W., et al., ‘Indacenodithiophene-co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization’, Macromolecules, vol. 44, pp. 66496652, 2011.CrossRefGoogle Scholar
Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., et al., ‘Approaching disorder-free transport in high-mobility conjugated polymers’, Nature, vol. 515, pp. 384388, 2014.CrossRefGoogle ScholarPubMed
Bronstein, H., Chen, Z., Ashraf, R. S., Zhang, W., Du, J., Durrant, J. R., et al., ‘Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high performance organic field-effect transistors and organic photovoltaic devices’, Journal of the American Chemical Society, vol. 133, pp. 32723275, 2011.CrossRefGoogle ScholarPubMed
Chen, Z., Lee, M. J., Ashraf, R. S., Gu, Y., Albert-Seifried, S., Nielsen, M. M., Schroeder, B., et al., ‘High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer filed-effect transistors with balanced hole and electron mobilities’, Advanced Materials, vol. 24, pp. 647652, 2012.CrossRefGoogle Scholar
Yuen, J. D., Fan, J., Seifter, J., Lim, B., Hufschmid, R., Heeger, A. J., and Wudl, F., ‘High performance weak-donor-acceptor polymers in thin film transistors: Effect of the acceptor on electronic properties, ambipolar conductivity, mobility and thermal stability’, Journal of the American Chemical Society, vol. 133, pp. 2079920807, 2011.CrossRefGoogle ScholarPubMed
Mei, J., Kim, D. H., Ayzner, A. L., Toney, M. F., and Bao, Z., ‘Siloxane-terminated solubilizing side chains: bringing conjugated backbones closer and boosting hole mobilities in thin-film transistors’, Journal of the American Chemical Society, vol. 133, pp. 2013020133, 2011.CrossRefGoogle ScholarPubMed
Mei, J., Wu, H.-C., Diao, Y., Appleton, A., Wang, H., Zhou, Y., et al., ‘Effect of spacer length of siloxane-terminated side chains on charge transport in isoindigo-based polymer semiconductor thin films’, Advanced Functional Materials, vol. 25, pp. 34553462, 2015.CrossRefGoogle Scholar
Lee, J., Han, A.-R., Yu, H., Shin, T. J., Yang, C., and Oh, J. H., ‘Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering’, Journal of the American Chemical Society, vol. 135, pp. 95409547, 2013.CrossRefGoogle ScholarPubMed
Han, A.-R., Dutta, G. K., Lee, J., Lee, H. R., Lee, S. M., Ahn, H., et al., ‘ε-branched flexible side chain substituted diketopyrrolopyrrole-containing polymers designed for high hole and electron mobilities’, Advanced Functional Materials, vol. 25, pp. 247254, 2015.CrossRefGoogle Scholar
Kang, I.-N., Yun, H.-J., Chung, D. S., Kwon, S.-K., and Kim, Y.-H., ‘Record high mobility in polymer semiconductors via side-chain engineering’, Journal of the American Chemical Society, vol. 135, pp. 1489614899, 2013.CrossRefGoogle ScholarPubMed
Meng, B., Song, H., Chen, X., Xie, Z., Liu, J., and Wang, L., ‘Replacing alkyl with oligo(ethylene glycol) as side chains of conjugated polymers for close π−π stacking’, Macromolecules, vol. 48, pp. 43574363, 2015.CrossRefGoogle Scholar
Chen, S., Sun, B., Hong, W., Azia, H., Meng, Y., and Li, Y., ‘Influence of side chain length and bifurcation point on the crystalline structure and charge transport of diketopyyrolopyrrole-quaterthiophene copolymers (PDQTs)’, Journal of Materials Chemistry C, vol. 2, pp. 21832190, 2014.CrossRefGoogle Scholar
Zhao, X. and Zhan, X., ‘Electron transporting semiconducting polymers in organic electronics’, Chemical Society Reviews, vol. 40, pp. 37283743, 2011.CrossRefGoogle ScholarPubMed
Yan, H., Chen, Z., Zhang, Y., Newman, C., Quinn, J. R., Dötz, F., et al., ‘A high-mobility electron transporting polymer for printed transistors’, Nature, vol. 457, pp. 679687, 2009.CrossRefGoogle ScholarPubMed
Senkovskyy, V., Tkachiv, R., Komber, H., Sommer, M., Heuken, M., Voit, B., et al., ‘Chain-growth polymerization of unusual anion-radical monomers based on naphthalene diimide: A new route to well-defined n-type conjugated copolymers’, Journal of the American Chemical Society, vol. 133, pp. 1996619970, 2011.CrossRefGoogle ScholarPubMed
Sun, B., Hong, W., Yan, Z., Aziz, H., and Li, Y., ‘Record high electron mobility of 6.3 cm2V-1s-1 achieved for, polymer semiconductors using a new building block’, Advanced Materials, vol. 26, pp. 26362642, 2014.CrossRefGoogle Scholar
Lei, T., Xia, X., Wang, J.-Y., Liu, C.-J., and Pei, J., ‘“Conformation locked” strong electron deficient poly(p-phenylene vinylene) derivatives for ambient stable n-type field effect transistors: Synthesis, propoerties and effects of fluorine substitution position’, Journal of the American Chemical Society, vol. 136, pp. 21352141, 2014.CrossRefGoogle Scholar
Lei, T., Dou, J.-H., Cao, X.-Y., Wang, J.-Y., and Pei, J., ‘A BDOPV-based donor acceptor polymer for high performance n-type and oxygen-doped ambipolar field-effect transitors’, Advanced Materials, vol. 25, pp. 65896593, 2013.CrossRefGoogle Scholar
Lee, J., Cho, S., and Yang, C., ‘Highly reproducible organic field-effect transistor from pseudo 3-dimensional triphenylamine-based amorphous conjugated copolymer’, Journal of Materials Chemistry, vol. 21, pp. 85288531, 2011.CrossRefGoogle Scholar
Wu, P.-T., Kim, F. S., and Jenekhe, S. A., ‘New poly(arylene vinylene)s based on diketopyrrolopyrrole for ambipolar transistors’, Chemistry of Materials, vol. 23, pp. 46184624, 2011.CrossRefGoogle Scholar
Cho, S., Lee, J., Tong, M., Seo, J. H., and Yang, C., ‘Poly(diketopyrrolopyrrole-benzothiadiazole) with ambipolarity approaching 100% equivalency’, Advanced Functional Materials, vol. 21, pp. 19101916, 2011.CrossRefGoogle Scholar
Lee, J., Cho, S., Seo, J. H., Anant, P., Jacob, J., and Yang, C., ‘Swapping field-effect transistor characteristics in polymeric diketopyrrolopyrrole semiconductors: Debut of an electron dominant transporting polymer’, Journal of Materials Chemistry, vol. 22, pp. 15041510, 2012.CrossRefGoogle Scholar
Wang, Y., Masunaga, H., Hikima, T., Matsumoto, H., Mori, T., and Michinobu, T., ‘New semiconducting polymers based on benzobisthiadiazole analogues: Tuning of charge polarity in thin film transistors via heteroatom substitution’, Macromolecules, vol. 48, pp. 40124023, 2015.CrossRefGoogle Scholar
Xiao, C., Zhao, G., Zhang, A., Jiang, W., Janssen, R. A. J., Li, W., et al., ‘High performance polymer nanowire field-effect transistors with distinct molecular orientations’, Advanced Materials, vol. 27, pp. 49634968, 2015.CrossRefGoogle ScholarPubMed
Schwartz, D. E., Rivnay, J., Whiting, G. L., Mei, P., Zhang, Y., Krusor, B., et al., ‘Flexible hybrid electronic circuits and systems’, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 7, pp. 2837, 2017.CrossRefGoogle Scholar
Chang, J. S., Facchetti, A. F., and Reuss, R. A., ‘Circuits and systems perspective of organic/printed electronics: Review, challenges, and contemporary and emerging design approaches’, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 7, pp. 726, 2017.CrossRefGoogle Scholar
Casalini, S., Bortolotti, C. A., Leonardi, F., and Biscarini, F., ‘Self-assembled monolayers in organic electronics’, Chemical Society Reviews, vol. 46, pp. 471, 2017.CrossRefGoogle ScholarPubMed
Holliday, S., Donaghey, J. E., and McCulloch, I., ‘Advances in charge carrier mobilities of semiconducting polymers used in organic transistors’, Chemistry of Materials, vol. 26, pp. 647663, 2014.CrossRefGoogle Scholar
Zhou, J., Ge, T., Ng, E., and Chang, J. S., ‘Fully additive low-cost printed electronics with very low process variations’, IEEE Transactions on Electron Devices, vol. 63, pp. 793799, 2016.CrossRefGoogle Scholar
Dimitrov, S. D. and Durrant, J. R., ‘Materials design considerations for charge generation in organic solar cells’, Chemistry of Materials, vol. 26, pp. 616630, 2014.CrossRefGoogle Scholar
Baran, D., Kirchartz, T., Wheeler, S., Dimitrov, S., Abdelsamie, M., Gorman, J., et al., ‘Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages’, Energy and Environmental Science, vol. 9, pp. 37833793, 2016.CrossRefGoogle ScholarPubMed
Zhou, H., Yang, L., Stoneking, S., and You, W., ‘A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells’, ACS Applied Materials and Interfaces, vol. 2, pp. 13771383, 2010.CrossRefGoogle ScholarPubMed
Zhou, H., Yang, L., and You, W., ‘Rational design of high performance conjugated polymers for organic solar cells’, Macromolecules, vol. 45, pp. 607632, 2012.CrossRefGoogle Scholar
Zhang, Z.-G. and Wang, J., ‘Structures and properties of conjugated donor-acceptor copolymers for solar cell applications’, Journal of Materials Chemistry, vol. 22, pp. 41784187, 2012.CrossRefGoogle Scholar
Adegoke, O. O., Jung, I. H., Orr, M., Yu, L., and Goodson, T., ‘Effect of acceptor strength on optical and electronic properties in conjugated polymers for solar applications’, Journal of the American Chemical Society, vol. 137, pp. 57595769, 2015.CrossRefGoogle ScholarPubMed
Zhou, E., Nakamura, M., Nishizawa, T., Zhang, Y., Wei, Q., Tajima, K., et al., ‘Synthesis and photovoltaic propetries of a novel low band gap polymer based on N-substituted dithieno[3,2-b:2’,3’-d]pyrrole’, Macromolecules, vol. 41, pp. 83028305, 2008.CrossRefGoogle Scholar
Steckler, T. T., Zhang, X., Hwang, J., Honeyager, R., Ohira, S., Zhang, X.-H., et al., ‘A spray-processable, low bandgap, and ambipolar donor-acceptor conjugated polymer’, Journal of the American Chemical Society, vol. 131, pp. 28242826, 2009.CrossRefGoogle ScholarPubMed
Wu, Z., Yao, W., London, A. E., Azoulay, J. D., and Ng, T. N., ‘Temperature-dependent detectivity of near-infrared organic bulk heterojunction photodiodes’, ACS Applied Materials and Interfaces, vol. 9, pp. 16541660, 2017.CrossRefGoogle ScholarPubMed
Dou, L., Liu, Y., Hong, Z., Li, G., and Yang, Y., ‘Low-bandgap near-IR conjugated polymers/molecules for organic electronics’, Chemical Reviews, vol. 115, pp. 1263312665, 2015.CrossRefGoogle ScholarPubMed
Li, H., Tam, T. L., Lam, Y. M., Mhaisalkar, S. G., and Grimsdale, A. C., ‘Synthesis of low bandgap [1,2,5]-thiadiazolo[3,4-g]quinoxaline and pyrazino[2,3-g]quinoxaline derivatives by selective reduction of benzo[1,2-c;4,5-c’]bis[1,2,5]thiadiazole’, Organic Letters, vol. 13, pp. 4649, 2011.CrossRefGoogle Scholar
Tam, T. L., Li, H., Lam, Y. M., Mhaisalkar, S. G., and Grimsdale, A. C., ‘Synthesis and characterization of [1,2,5]chalcogenazolo[3,4-f]benzotriazole and [1,2,3]triazolo[3,4-g]quinoxaline derivatives’, Organic Letters, vol. 13, pp. 46124615, 2011.CrossRefGoogle Scholar
Patel, D. G., Feng, F., Ohnishi, Y.-Y., Abboud, K. A., Schanze, K. S., and Reynolds, J. R., ‘It takes more than an imine: The role of the central atom on the electron-accepting ability of benzotriazole and benzothiadiazole oligomers’, Journal of the American Chemical Society, vol. 134, pp. 25992612, 2012.CrossRefGoogle ScholarPubMed
Tam, T. L., Zhou, F., Li, H., Pang, J. C. Y., Lam, Y. M., Mhaisalkar, S. G., et al., ‘Substituent effects on the electronic properties of pyrazino[2,3-g]quinoxaline molecules’, Journal of Materials Chemistry, vol. 21, pp. 1779817804, 2011.CrossRefGoogle Scholar
Meng, H. and Wudl, F., ‘A robust low band gap processable n-type conducting polymer based on poly(isothianaphthene)’, Macromolecules, vol. 34, pp. 18101816, 2001.CrossRefGoogle Scholar
Li, H., Sun, S., Salim, T., Bomma, S., Grimsdale, A. C., and Lam, Y. M., ‘Conjugated polymers based on dicarboxylic imide-substituted isothianaphthene and their applications in solar cells’, Journal of Polymer Science (A), Polymer Chemistry, vol. 50, pp. 250260, 2012.CrossRefGoogle Scholar
Son, H. J., He, F., Carsten, B., and Yu, L., ‘Are we there yet? Design of better conjugated polymers for polymer solar cells’, Journal of Materials Chemistry, vol. 21, pp. 1893418945, 2011.CrossRefGoogle Scholar
Blouin, N., Michaud, A., and Leclerc, M., ‘A low bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells’, Advanced Materials, vol. 19, pp. 22952300, 2007.CrossRefGoogle Scholar
Park, S. H., Roy, A., Beaupré, S., Cho, S., Coates, N., Moon, J. S., et al., ‘Bulk heterojunction solar cells with internal quantum efficiency approaching 100%’, Nature Photonics, vol. 3, pp. 297303, 2009.CrossRefGoogle Scholar
Chu, T.-Y., Alem, S., Tsang, S.-W., Tse, S.-C., Wakim, S., Lu, J., et al., ‘Morphology control in polycarbazole based bulk hetrojunction solar cells and its impact on device performance’, Applied Physics Letters, vol. 98, p. 253301, 2011.CrossRefGoogle Scholar
Beaupre, S. and Leclerc, M., ‘PCDTBT: En route for low cost plastic solar cells’, Journal of Materials Chemistry A, vol. 1, pp. 1109711105, 2013.CrossRefGoogle Scholar
Blouin, N., Michaud, A., Gendron, D., Wakim, S., Blair, E., Neagu-Plesu, R., et al., ‘Towards a rational design of poly(2,7-carbazole) derivatives for solar cells’, Journal of the American Chemical Society, vol. 130, pp. 732742, 2008.CrossRefGoogle Scholar
He, Z., Zhong, C., Huang, X., Wong, W.-Y., Wu, H., Chen, L., et al., ‘Simultaneous enhancement of open-circuit violtage, short-circuit current density, and fill factor in polymer solar cells’, Advanced Materials, vol. 23, pp. 46364643, 2011.CrossRefGoogle ScholarPubMed
Liu, S., Zhang, K., Lu, J., Zhang, J., Yip, H.-P., Huang, F., and Cao, Y., ‘High-efficiency polymer solar cells via the incorporation of an amino-functionalized conjugated metallopolymer as a cathode interlayer’, Journal of the American Chemical Society, vol. 135, pp. 1532615329, 2013.CrossRefGoogle ScholarPubMed
Chen, J.-D., Cui, C., Li, Y.-Q., Zhou, L., Ou, Q.-D., Li, C., et al., ‘Single-junction polymer solar cells exceeeding 10% power conversion efficiency’, Advanced Materials, vol. 27, pp. 10351041, 2015.CrossRefGoogle ScholarPubMed
Zhou, H., Yang, L., Stuart, A. C., Price, S. C., Liu, S., and You, W., ‘Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency’, Angewandte Chemie, International Edition, vol. 50, pp. 29952998, 2011.CrossRefGoogle ScholarPubMed
Huang, Y., Huo, L., Zhang, S., Guo, X., Han, C. C., Li, Y., and Hou, J., ‘Sulfonyl: A new application of electron-withdrawing substituent in highly efficient photovoltaic polymer’, Chemical Communications, vol. 47, pp. 89048906, 2011.CrossRefGoogle ScholarPubMed
Jo, J. W., Bae, S., Liu, F., Russell, T. P., and Jo, W. H., ‘Comparison of two D-A type polymers with each being fluorinated on D and A unit for high performance solar cells’, Advanced Functional Materials, vol. 25, pp. 120125, 2015.CrossRefGoogle Scholar
Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., et al., ‘Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells’, Nature Communications, vol. 5, p. 5293, 2014.CrossRefGoogle ScholarPubMed
Huo, L., Zhang, S., Guo, X., Xu, F., Li, F., and Hou, J., ‘Replacing alkoxy groups with alkylthienyl groups: A feasible approach to improve the properties of photovoltaic polymers’, Angewandte Chemie, International Edition, vol. 50, pp. 96979702, 2011.CrossRefGoogle ScholarPubMed
Kim, J.-H., Song, C. E., Kim, B. J., Kang, I.-N., Shin, W. S., and Hwang, D. H., ‘Thieno[3,2-b]thiophene-substituted benzo[1,2-b:4,5-b’]dithiophene as apromising building block for low bandgap semiconducting polymers for high performance singale and tandem organic photovoltaic cells’, Chemistry of Materials, vol. 26, pp. 12341242, 2014.CrossRefGoogle Scholar
Liao, S.-H., Jhuo, H.-J., Yeh, P.-N., Cheng, Y.-S., Li, Y.-L., Lee, Y.-H., et al., ‘Single-junction inverted polymer solar cell reaching power conversion efficiency by employing dual-doped zinc oxide nano-film as cathode interlayer’, Scientific Reports, vol. 4, pp. 6813/16813/7, 2014.CrossRefGoogle ScholarPubMed
Nian, L., Zhang, W., Zhu, N., Liu, L., Xie, Z., Wu, H., et al., ‘Photoconductive cathode interlayer for highly efficient inverted polymer solar cells’, Journal of the American Chemical Society, vol. 137, pp. 69956998, 2015.CrossRefGoogle ScholarPubMed
Zhou, H., Zhang, Y., Mai, C.-K., Collins, S. D., Bazan, G. C., Nguyen, T.-Q., and Heeger, A. J., ‘Polymer homo-tandem solar cells with best efficiency of 11.3%’, Advanced Materials, vol. 27, pp. 17671773, 2015.CrossRefGoogle ScholarPubMed
Chang, W.-H., Meng, L., Dou, L., You, J., Chen, C.-C., Yang, Y., et al., ‘A selenophene containign benzodithiophene-alt-thienothiophene polymer for additive-free high performance solar cell’, Macromolecules, vol. 48, pp. 562568, 2015.CrossRefGoogle Scholar
Huo, L., Liu, T., Sun, X., Cai, Y., Heeger, A. J., and Sun, Y., ‘Single-junction organic solar cells based on a novel wde-bandgap polymer with efficiency of 9.7%’, Advanced Materials, vol. 27, pp. 29382944, 2015.CrossRefGoogle ScholarPubMed
Zhao, W., Li, S., Yao, H., Zhang, S., Zhang, Y., Yang, B., and Hou, J., ‘Molecular optimization enables over 13% efficiency in organic solar cells’, Journal of the American Chemical Society, vol. 139, p. 71487151, 2017.CrossRefGoogle ScholarPubMed
Fei, Z., Eisner, F. D., Jiao, X., Azzouzi, M., Röhr, J. A., Han, Y., et al., ‘An alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses’, Advanced Materials, vol. 30, p. 1705209, 2018.CrossRefGoogle ScholarPubMed
Cui, Y.-Z., Yao, H., Zhang, J., Zhang, T., Wang, Y., Hong, L., et al., ‘Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages’, Nature Communications, vol. 10, p. 2515, 2019.CrossRefGoogle ScholarPubMed
Wang, J., Zheng, Z., Zu, Y., Wang, Y., Liu, X., Zhang, S., et al., ‘A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control’, Advanced Materials, vol. 33, p. 2102787, 2021.CrossRefGoogle ScholarPubMed
Liu, Q., Jiang, Y., Jin, K., Qin, J., Xu, J., Li, W., et al., ‘18% Efficiency solar cells’, Science Bulletin, vol. 65, pp. 272275, 2020.CrossRefGoogle Scholar
You, J., Dou, L., Yoshimura, K., Kato, T., Ohya, K., Moriarty, T., et al., ‘A polymer tandem solar cell with 10.6% power conversion efficiency’, Nature Communications, vol. 4, p. 1446, 2013.CrossRefGoogle ScholarPubMed
Cao, J., Qian, L., Lu, F., Zhang, J., Feng, Y., Qiu, X., et al., ‘A lactam building block for efficient polymer solar cells’, Chemical Communications, vol. 51, pp. 1183011833, 2015.CrossRefGoogle ScholarPubMed
Chen, C.-C., Chang, W.-H., Yoshimura, K., Ohya, K., You, J., Gao, J., et al., ‘An efficient triple-junction polymer solar cell having a power efficiency exceeding 11%’, Advanced Materials, vol. 26, pp. 56705677, 2014.CrossRefGoogle Scholar
bin Mohd Yusoff, A. R., Kim, D. H., Kim, H. P., Shneider, F. K., da Silva, W. J., and Jang, J., ‘A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%’, Energy and Environmental Science, vol. 8, pp. 303316, 2015.CrossRefGoogle Scholar
Meng, L., Zhang, Y., Wan, X., Li, C., Zhang, X., Wang, Y., et al., ‘Organic and solution-processed tandem solar cells with 17.3% efficiency’, Science, vol. 361, pp. 10941098, 2019.CrossRefGoogle Scholar
Mulligan, C. J., Wilson, M., Bryant, G., Vaughan, B., Zhou, X., Belcher, W. J., and Dastoor, P. C., ‘A projection of commercial-scale organic photovoltaic module costs’, Solar Energy Materials and Solar Cells, vol. 120, pp. 917, 2014.CrossRefGoogle Scholar
Mulligan, C. J., Bilen, C., Zhou, X., Belcher, W. J., and Dastoor, P. C., ‘Levelised cost of electricity for organic photovoltaics’, Solar Energy Materials and Solar Cells, vol. 133, pp. 2631, 2015.CrossRefGoogle Scholar
Gambhir, A., Sandwell, P., and Nelson, J., ‘The future costs of OPV: A bottom-up model of material and manufacturing costs with uncertainty analysis’, Solar Energy Materials and Solar Cells, vol. 156, pp. 4958, 2016.CrossRefGoogle Scholar
Cooling, N. A., Barnes, E. F., Almyadi, F., Feron, K., Al-Mudhaffer, M. F., Al-Ahmad, A., et al., ‘A low-cost mixed fullerene acceptor blend for printed electronics’, Journal of Materials Chemistry A, vol. 4, pp. 1027410281, 2016.CrossRefGoogle Scholar
Po, R., Bianchi, G., Carbonera, C., and Pellegrino, A., ‘“All that glisters is not gold”: An analysis of the synthetic complexity of efficient polymer donors for polymer cells’, Macromolecules, vol. 48, pp. 453461, 2015.CrossRefGoogle Scholar
Li, C.-Z., Yip, H.-L., and Jen, A. K.-Y., ‘Functional fullerenes for organic photovoltaics’, Journal of Materials Chemistry, vol. 22, pp. 41614177, 2012.CrossRefGoogle Scholar
Zhong, Y., Trinh, M. T., Chen, R., Purdam, G. E., Khlyabich, P. P., Sezen, M., et al., ‘Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells’, Nature Communications, vol. 6, pp. 8242/18242/8, 2015.CrossRefGoogle ScholarPubMed
Mori, D., Benten, H., Okada, I., Ohkita, H., and Ito, S., ‘Low-bandgap donor/acceptor polymer blend solar cell with efficiency exceeding 4%’, Advanced Energy Materials, vol. 4, p. 1301006, 2014.CrossRefGoogle Scholar
Hwang, Y.-J., Courtright, B. A. E., Ferreira, A. S., Tolbert, S. H., and Jenekhe, S. A., ‘7.7% Efficient all-polymer solar cells’, Advanced Materials, vol. 27, pp. 45784584, 2015.CrossRefGoogle ScholarPubMed
Fan, B., Ying, L., Zhu, P., Pan, F., Liu, F., Chen, J., et al., ‘All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10%’, Advanced Materials, vol. 29, p. 1703906, 2017.CrossRefGoogle ScholarPubMed
Genene, Z., Mammo, W., Wang, E., and Andersson, M. R., ‘Recent advances in n-type polymers for all-polymer solar cells’, Advanced Materials, vol. 31, p. 18027275, 2019.CrossRefGoogle ScholarPubMed
Chen, M.-H., Hou, J., Hong, Z., Yan, G., Chen, L.-M., and Yang, Y., ‘Efficient polymer solar cells with thin active layers based on alternating fluorene copolymer/fullerene bulk heterojunction’, Advanced Materials, vol. 21, pp. 42384242, 2009.CrossRefGoogle Scholar
Du, C., Li, C., Li, W., Chen, X., Bo, Z., Veit, C., et al., ‘9-Alkylidene-9H-fluorene-containing polymer for high-efficiency polymer solar cells’, Macromolecules, vol. 44, pp. 76177624, 2011.CrossRefGoogle Scholar
Li, H., Sun, S., Mhaisalkar, S. G., Zin, M. T., Lam, Y. M., and Grimsdale, A. C., ‘A high voltage solar cell using a donor-acceptor conjugated polymer based on pyrrolo[3,4-f]-2,1,3-benzothiadiazole-5,7-dione’, Journal of Materials Chemistry A, vol. 2, pp. 1792517933, 2014.CrossRefGoogle Scholar
Manceau, M., Bundgaard, E., Carlé, J. E., Hagemann, O., Helgesen, M., Søndergaard, R., et al., ‘Photochemical stability of π-conjugated polymers for polymer solar cells: A rule of thumb’, Journal of Materials Chemistry, vol. 21, pp. 41324141, 2011.CrossRefGoogle Scholar
Song, J., Du, C., Li, C., and Bo, Z., ‘Silole-containing polymers for high-efficiency polymer solar cells’, Journal of Polymer Science (A), Polymer Chemistry, vol. 49, pp. 42674278, 2011.CrossRefGoogle Scholar
Shin, N., Yun, H.-J., Yoon, Y., Son, H. J., Ju, S.-Y., Kwon, S.-K., et al., ‘Highly stable polymer solar cells based on poly(dithienobenzodithiophene-co-thienothiophene)’, Macromolecules, vol. 48, pp. 38903899, 2015.CrossRefGoogle Scholar
Dettinger, U., Egelhaaf, H.-J., Brabec, C. J., Latteyer, F., Peisert, H., and Chasse, T., ‘FTIR study of the impact of PC[60]BM on the photodegradation of the low band gap polymer PCPDTBT under O2 environment’, Chemistry of Materials, vol. 27, pp. 22992308, 2015.CrossRefGoogle Scholar
Kesters, J., Verstappen, P., Raymakers, J., Vanormelingen, W., Drijkoningen, J., D’Haen, J., et al., ‘Enhanced organic solar cell stability by polymer (PCPDTBT) side chain functionalization’, Chemistry of Materials, vol. 27, pp. 13321341, 2015.CrossRefGoogle Scholar
Nikiforov, M. P., Lai, B., Chen, W., Chen, S., Schaller, R. D., Strzalka, J., et al., ‘Detection and role of trace impurities in high-performance organic solar cells’, Energy and Environmental Science, vol. 6, pp. 15131520, 2013.CrossRefGoogle Scholar
Vangerven, T., Verstappen, P., Drijkoningen, J., Dierckx, W., Himmelberger, S., Salleo, A., et al., ‘Molar mass versus polymer solar cell performance: Highlighting the role of homocouplings’, Chemistry of Materials, vol. 27, pp. 37263732, 2015.CrossRefGoogle Scholar
Lu, L., Zheng, T., Xu, T., Zhao, D., and Yu, L., ‘Mechanistic study of effect of dispersity on the photovoltaic performance of PTB7 polymer solar cells’, Chemistry of Materials, vol. 27, pp. 537543, 2015.CrossRefGoogle Scholar
Park, J. K., Jo, J., Seo, J. H., Moon, J. S., Park, Y. D., Lee, K., et al., ‘End-capping effect of a narrow bandgap conjugated polymer on bulk heterojunction solar cells’, Advanced Materials, vol. 23, pp. 24302435, 2011.CrossRefGoogle ScholarPubMed
Chang, W., Congreve, D. N., Hontz, E., Bahlke, M. E., McMahon, D. P., Reineke, S., et al., ‘Spin-dependent charge transfer state design rules in organic photovoltaics’, Nature Communications, vol. 6, pp. 6415/16415/6, 2015.CrossRefGoogle ScholarPubMed
Qian, M., Zhang, R., Hao, J., Zhang, W., Zhang, Q., Wang, J., et al., ‘Dramatic enhancement of power conversion efficiency in polymer solar cells by conjugated very low ratio of triplet iridium complexes to PTB7’, Advanced Materials, vol. 27, pp. 35463552, 2015.CrossRefGoogle ScholarPubMed
Kesters, J., Verstappen, P., Raymakers, J., Vanormelingen, W., Drijkoningen, J., D’Haen, J., et al., ‘Enhanced organic solar cell stability by polymer (PBPDTBT) side chain functionalization’, Chemistry of Materials, vol. 27, pp. 13321341, 2015.CrossRefGoogle Scholar
Jikei, M. and Kakimoto, M., ‘Hyperbranched polymers: A promising new class of materials’, Progress in Polymer Science, vol. 26, pp. 12331285, 2001.CrossRefGoogle Scholar
Lin, T., He, Q., Bai, F., and Dai, L., ‘Synthesis and photophysics of a hyperbranched conjugated polymer’, Thin and Solid Films, vol. 363, pp. 122125, 2000.CrossRefGoogle Scholar
Lim, S.-J., Seok, D. Y., An, B.-K., Jung, S. D., and Park, S. Y., ‘Modified strategy for the synthesis of hyperbranched PPV: Achieving extended π-conjugation with growing molecular weight’, Macromolecules, vol. 39, pp. 911, 2006.CrossRefGoogle Scholar
Xie, Z., Yoon, S.-J., and Park, S. Y., ‘Synthesis of highly fluorescent and soluble 1,2,4-linking hyperbranched poly(arylenevinylene) featuring intramolecular energy funneling’, Advanced Functional Materials, vol. 20, pp. 16381644, 2010.CrossRefGoogle Scholar
Mangold, H. S., Richter, T. V., Link, S., Würfel, U., and Ludwigs, S., ‘Optoelectronic properties of hyperbranched polythiophenes’, Journal of Physical Chemistry B, vol. 116, pp. 154159, 2012.CrossRefGoogle ScholarPubMed
Ma, C.-Q., Mena-Osteritz, E., Debaerdemaeker, T., Wienk, M. M., Janssen, R. A. J., and Bäuerle, P., ‘Functionalized 3D oligothiophene dendrons and dendrimers: Novel macromolecules for organic electronics’, Angewandte Chemie, International Edition, vol. 46, pp. 16791683, 2007.CrossRefGoogle ScholarPubMed
Ma, C.-Q., Mena-Osteritz, E., Wunderlin, M., Schulz, G., and Bäuerle, P., ‘2,2’:3’,2’’-Terthiophene-based all-thiophene dendrons and dendrimers: Synthesis, structuural characterization, and properties’, Chemistry: A European Journal, vol. 18, pp. 1288012901, 2012.CrossRefGoogle Scholar
Dong, H., Lam, J. W. Y., Haeussler, M., Zheng, R., Peng, H., Law, C. C. W., and Tang, B. Z., ‘Constructions of conjugated macromolecules from acetylenic building blocks: Syntheses and properties of hyperbranched polyarylenes and polyynes’, Current Trends in Polymer Science, vol. 9, pp. 1531, 2004.Google Scholar
Dong, H., Dong, Y., Lam, J. W. Y., Häussler, M., Peng, H., and Tang, B. Z., ‘Synthesis of a hyperbranched polyarylene with phenylenevinylene chromophore’, Polymer Preprints, vol. 45, no. 2, pp. 831832, 2004.Google Scholar
Peng, H., Zheng, R., Dong, H., Jia, D., and Tang, B. Z., ‘Synthesis of hyperbranched conjugative poly(aryleneethynylene)s by alkyne polycyclotrimerization’, Chinese Journal of Polymer Science, vol. 23, pp. 13, 2005.CrossRefGoogle Scholar
Peng, H., Lam, J. W. Y., and Tang, B. Z., ‘Hyperbranched poly(aryleneethynylene)s: Synthesis, thermal stability and optical properties’, Macromolecular Rapid Communications, vol. 26, pp. 673677, 2005.CrossRefGoogle Scholar
Shih, H.-M., Wu, R.-C., Shih, P.-I., Wang, C.-L., and Hsu, C.-S., ‘Synthesis of fluorene-based hyperbranched polymers for solution processable blue, green, red, and white light-emitting devices’, Journal of Polymer Science (A), Polymer Chemistry, vol. 50, pp. 696710, 2012.CrossRefGoogle Scholar
Coya, C., Alvarez, A. L., Yoon, W. S., and Park, S. Y., ‘Influence of the 1,2,4-linking hyperbranched poly(arylenevinylene) structure on organic light emitting diode performance as compared to conventional 1,3,5-linking one’, Journal of Applied Physics, vol. 109, p. 094507, 2011.CrossRefGoogle Scholar
Ma, X.-S., Cui, Y.-Z., Ding, Y.-Q., Tao, F.-R., Zheng, B., Yu, R.-H., and Huang, W., ‘2D hyperbranched conjugated polymer for detecting TNT with excellent exciton migration’, Sensors and Actuators B, vol. 238, pp. 4857, 2017.CrossRefGoogle Scholar
Wu, X., Zhang, Z., Hang, H., Chen, Y., Xu, Y., Tong, H., and Wang, L., ‘Solution-processable hyperbranched conjugated polymer nanoparticles based on C3h-symmetric benzotrithiophene for polymer solar cells’, Macromolecular Rapid Communications, vol. 38, p. 1700001, 2017.CrossRefGoogle Scholar
Burn, P. L., Lo, S.-C., and Samuel, I. D. W., ‘The development of light-emitting dendrimers for displays’, Advanced Materials, vol. 19, pp. 16751688, 2007.CrossRefGoogle Scholar
Grimsdale, A. C., Vosch, T., Lor, M., Cotlet, M., Habuchi, S., Hofkens, J., et al., ‘Synthesis of and excited state processes in multichromophoric dendritic systems’, Journal of Luminescence, vol. 111, pp. 239253, 2005.CrossRefGoogle Scholar
Grimsdale, A. C. and Müllen, K., ‘The chemistry of organic nanomaterials’, Angewandte Chemie, International Edition, vol. 44, pp. 55925629, 2005.CrossRefGoogle ScholarPubMed
Pillow, J. N. G., Burn, P. L., Samuel, I. D. W., and Halim, M., ‘Synthetic routes to phenylene vinylene dendrimers’, Synthetic Metals, vol. 102, pp. 14681469, 1999.CrossRefGoogle Scholar
Pillow, J. N. G., Halim, M., Lupton, J. M., Burn, P. L., and Samul, I. D. W., ‘Facile iterative procedure for making luminescent dendrimers’, Macromolecules, vol. 32, pp. 59855993, 1999.CrossRefGoogle Scholar
Halim, M., Samuel, I. D. W., Pillow, J. N. G., and Burn, P. L., ‘Conjugated dendrimers for OLEDs: Control of colour’, Synthetic Metals, vol. 102, pp. 11131114, 1999.CrossRefGoogle Scholar
Halim, M., Pillow, J. N. G., Samuel, I. D. W., and Burn, P. L., ‘Conjugated dendrimers for LEDs: Effect of generation’, Advanced Materials, vol. 11, pp. 371374, 1999.3.0.CO;2-1>CrossRefGoogle Scholar
Bauer, R., Grimsdale, A. C., and Müllen, K., ‘Functionalised polyphenylene dendrimers and their applications’, Topics in Current Chemistry, vol. 245, p. 253, 2004.CrossRefGoogle Scholar
Weil, T., Reuther, E., and Müllen, K., ‘Polyphenylene dyads and triad for transduction of excitation energy’, Angewandte Chemie International Edition, vol. 41, pp. 19001904, 2002.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Freeman, A. W., Koene, S. C., Malefant, P. R. L., Thompson, M. E., and Fréchet, J. M. J., ‘Dendrimer-containing LEDs’, Journal of the American Chemical Society, vol. 122, pp. 1238512386, 2000.CrossRefGoogle Scholar
Kwon, T. W., Alam, M. M., and Jenekhe, S. A., ‘N-type conjugated dendrimers: Synthesis, electroluminescence and use as electron transporting materials for LEDs’, Chemistry of Materials, vol. 16, pp. 46574666, 2004.CrossRefGoogle Scholar
Ren, H., Li, J., Wang, R., Zhang, T., Gao, Z., and Liu, D., ‘Synthesis and luminescent properties of perylene bisimide-cored dendrimers witrh carbazole surface groups’, Polymer, vol. 52, pp. 36393646, 2011.CrossRefGoogle Scholar
Lo, S.-C. and Burn, P. L., ‘Development of dendrimers: Macromolecules for use in organic light-emitting diodes and solar cells’, Chemical Reviews, vol. 107, pp. 10971116, 2007.CrossRefGoogle ScholarPubMed
Tang, G., Chen, S. S. Y., Shaw, P. E., Hegedus, K., Wang, X., Burn, P. L., and Meredith, P., ‘Fluorescent carbazole dendrimers for the detection of explosives’, Polymer Chemistry, vol. 2, pp. 23602368, 2011.CrossRefGoogle Scholar
Ali, M. A., Chen, S. S. Y., Cavaye, H., Smith, A. R. G., Burn, P. L., Gentle, I. R., et al., ‘Diffusion of nitroaromatic vapours into fluorescent dendrimer films for explosives detection’, Sensors and Actuators B, vol. 210, pp. 550557, 2015.CrossRefGoogle Scholar
Shoaee, S., Chen, S. S. Y., Cavaye, H., Smith, A. R. G., Burn, P. L., Gentle, I. R., et al., ‘Assessing the sensing limits of fluorescent dendrimer thin films for the detection of explosive vapors’, Sensors and Actuators B, vol. 239, pp. 727733, 2017.CrossRefGoogle Scholar
Kopidakis, N., Mitchell, W. J., van de Lagemaat, J., Ginley, D. S., Rumbles, G., Shaheen, S. E., and Rance, W. L., ‘Bulk heterojunction organic photovoltaic devices based on phenyl-cored thiophene dendrimers’, Applied Physics Letters, vol. 89, p. 103524, 2006.CrossRefGoogle Scholar
Ma, C.-Q., Fonrodona, M., Schikora, M. C., Wienk, M. M., Janssen, R. A. J., and Bäuerle, P., ‘Solution-processed bulk-heterojunction solar cells based on monodisperse dendritic oligothiophenes’, Advanced Functional Materials, vol. 18, pp. 33233331, 2008.CrossRefGoogle Scholar
Stoltzfus, D. M., Ma, C.-Q, Nagiri, R. C. R., Clulow, A. J., Bäuerle, P., Burn, P. L., et al., ‘Thiophene dendrimer-based low donor content solar cells’, Applied Physics Letters, vol. 109, p. 103302, 2016.CrossRefGoogle Scholar
Li, B., Xu, X., Sun, M., Fu, Y., Yu, G., Liu, Y., and Bo, Z., ‘Porphyrin-cored star polymers as efficient nondoped red light-emitting materials’, Macromolecules, vol. 39, pp. 456461, 2006.CrossRefGoogle Scholar
Kim, H. J., Cho, K. Y., Hwang, S. S., Choi, D. H., Ko, M. J., and Baek, K. Y., ‘Controlled synthesis of multi-armed P3HT star polymers with gold nanoparticle core’, RSC Advances, vol. 6, pp. 4920649213, 2016.CrossRefGoogle Scholar
Li, X.-C., Grimsdale, A. C., Cervini, R., Holmes, A. B., Moratti, S. C., Yong, T. M., et al., ‘Synthesis and properties of novel high-electron-affinity polymers for electroluminescent devices’, ACS Symposium Series, vol. 672, pp. 322344, 1997.CrossRefGoogle Scholar
Sommer, M., Huettner, S., and Thelekkat, M., ‘Donor-acceptor block copolymers for photovoltaic applications’, Journal of Materials Chemistry, vol. 20, pp. 1078810797, 2010.CrossRefGoogle Scholar
Lee, J.-K., Schrock, R. R., Baigent, D. R., and Friend, R. H., ‘A new type of blue-light-emitting electroluminescent polymer’, Macromolecules, vol. 28, pp. 19661971, 1995.CrossRefGoogle Scholar
Hesemann, P., Vestweber, H., Pommerehne, J., Mahrt, R. F., and Greiner, A., ‘A blue light emitting polymer with phenylenevinylene segments in the side-chains’, Advanced Materials, vol. 7, pp. 388390, 1995.CrossRefGoogle Scholar
Sanetra, J., Armatys, P., Niziol, S., Bogdal, D., Warzala, M., and Pielichowski, J., ‘Light from electroluminescent diodes made from copolymers’, Synthetic Metals, vol. 121, pp. 17331734, 2001.CrossRefGoogle Scholar
Sanetra, J., Bogdal, D., Niziol, S., Armatys, P., and Pielichowski, J., ‘Electroluminescence of poly(N-vinylcarbazole) (PVK) and its blends with 3-(-2-methacrylate-ethaoxy)carbonyl dimethylocoumarine’, Synthetic Metals, vol. 121, pp. 17311732, 2001.CrossRefGoogle Scholar
Vollbrecht, J., ‘Excimers in organic electronics’, New Journal of Chemistry, vol. 42, pp. 1124911254, 2018.CrossRefGoogle Scholar
Li, C. and Wonneberger, H., ‘Perylene imides for organic photovoltaics: Yesterday, today, and tomorrow’, Advanced Materials, vol. 24 pp. 613636, 2012.CrossRefGoogle ScholarPubMed
Stevens, A. L., Novakovic, S., White, J. M., Wong, W. W. H., Smith, T. A., Ghiggino, K. P., et al., ‘Exciton dynamics of photoexcited pendant porphyrin polymers in solution and in thin films’, Journal of Physical Chemistry A, vol. 122, pp. 96059614, 2018.CrossRefGoogle ScholarPubMed
Leclerc, N., Pasareanu, M.-C., and Attias, A.-J., ‘Synthesis and photophysical properties of polymers containing a novel class of light emitters’, Macromolecules, vol. 38, pp. 15311534, 2005.CrossRefGoogle Scholar
Yang, Z., Karasz, F. E., and Geise, H. J., ‘Intrinsically soluble copolymers with well-defined alternating substituted p-phenylenevinylene and ethylene oxide blocks’, Macromolecules, vol. 26, pp. 65706575, 1993.CrossRefGoogle Scholar
Yang, Z., Sokolik, I., and Karasz, F. E., ‘A soluble blue-light-emitting polymer’, Macromolecules, vol. 26, pp. 11881190, 1993.CrossRefGoogle Scholar
Pasco, S. T., Lahti, P. M., and Karasz, F. E., ‘Synthesis of substituted poly(p-phenylenevinylene) copolymers by the Heck method for luminescence studies’, Macromolecules, vol. 32, pp. 69336937, 1999.CrossRefGoogle Scholar
Benfaremo, N., Sandman, D. J., Tripathy, S., Kumar, J., Yang, K., Rubner, M. F., and Lyons, C., ‘Synthesis and characterization of luminescent polymers of distrylbenzenes with oligo(ethylene glycol) spacers’, Macromolecules, vol. 31, pp. 35953599, 1998.CrossRefGoogle Scholar
Parker, I. D., Pei, Q., and Marrocco, M., ‘Efficient blue electroluminescence from a fluorinated polyquinoline’, Applied Physics Letters, vol. 65, pp. 12721274, 1994.CrossRefGoogle Scholar
Yasarapudi, V. B., Frazer, L., Davis, N. J. L. K., Booker, E. P., Macmillan, A., Gallaher, J. K., et al., ‘Optimization of energy transfer in a polymer composite with perylene chromophores’, Journal of Materials Chemistry C, vol. 6, pp. 73337342, 2018.CrossRefGoogle Scholar
Yang, Z., Hu, B., and Karsz, F. E., ‘Contributions of nonconjugated spacers to EL properties of copolymers’, Journal of Macromolecular Science: Pure and Applied Chemistry, vol. A35, pp. 233247, 1998.CrossRefGoogle Scholar
Cacialli, F., Friend, R. H., Feast, W. J., and Lovenich, P. W., ‘Poly(distyrylbenzene-block-sexi(ethylene oxide)), a highly luminescent processable derivative of PPV’, Chemical Communications, pp. 1778–1779, 2001.Google Scholar
Duan, L., Qiu, Y., and Wang, H., ‘Blue electroluminescence from a processable derivative of PPV based copolymer with tri(ethylene oxide) segements in the backbone’, Synthetic Metals, vol. 137, pp. 11331135, 2003.CrossRefGoogle Scholar
Aitken, B. S., Wieruszewski, P. M., Graham, K. R., Reynolds, J. R., and Wagener, K. B., ‘Perfeectly regioregular electroactive polyolefin: Impact of interchromophore distance on PLED EQE’, Macromolecules, vol. 45, pp. 705712, 2012.CrossRefGoogle Scholar
Zheng, M., Sarker, A. M., Gürel, E. E., Lahti, P. M., and Karasz, F. E., ‘Structure–property relationships in light-emitting polymers’, Macromolecules, vol. 33, pp. 74267430, 2000.CrossRefGoogle Scholar
Konstandakopoulou, F. D. and Kallitsis, J. K., ‘Polyethers containing bisphenyl- or bisstyrylanthracenes’, Journal of Polymer Science: Part A: Polymer Chemistry, vol. 37, pp. 38263837, 1999.Google Scholar
Park, L. S., Han, Y. S., Hwang, J. S., and Kim, S. D., ‘Copolymer of poly(anthracene vinylene) and MEHPPV’, Journal of Polymer Science: Part A: Polymer Chemistry, vol. 38, pp. 31733180, 2000.3.0.CO;2-7>CrossRefGoogle Scholar
Gather, M. C., Köber, S., Heun, S., and Meerholz, K., ‘Improving the lifetime of white polymeric organic light-emitting diodes’, Journal of Applied Physics, vol. 106, p. 024506, 2009.CrossRefGoogle Scholar
Liu, S.-Y., Chen, Z.-K., Wang, L.-H., Kang, E.-T., Lai, Y.-H., Chua, S.-J., and Huang, W., ‘Novel blue photoluminescent copolymers containing bipyridine and organosilicon’, Synthetic Metals, vol. 114, pp. 101104, 2000.CrossRefGoogle Scholar
Wu, A., Akagi, T., Jikei, M., Kakimoto, M.-A., Imai, Y., Ukishima, S., and Takahashi, Y., ‘New fluorescent polyimides for electroluminescent devices based on 2,5-distyrylpyrazine’, Thin Solid Films, vol. 273, pp. 214217, 1996.CrossRefGoogle Scholar
Grimsdale, A. C., Cervini, R., Friend, R. H., Holmes, A. B., Kim, S. T., and Moratti, S. C., ‘Model compounds for novel high electron affinity polymers’, Synthetic Metals, vol. 85, pp. 12571258, 1997.CrossRefGoogle Scholar
Peng, Z. and Galvin, M. E., ‘Novel polymers for light emitting diodes’, Acta Polymerica, vol. 49, pp. 244247, 1998.3.0.CO;2-9>CrossRefGoogle Scholar
Konstandakopoulou, F. D., Iconomopoulou, S. M., Gravalos, K. G., and Kallitsis, J. K., ‘Rigid-flexible copolymers containing blue and yellow emitting units’, Chemistry of Materials, vol. 12, pp. 29572963, 2000.CrossRefGoogle Scholar
Yu, S.-C., Kwok, C.-C., Chan, W.-K., and Che, C.-M., ‘Self-assembled EL polymers derived from terpyridine-based moieties’, Advanced Materials, vol. 15, pp. 16431647, 2003.CrossRefGoogle Scholar
Chen, Y.-Y. and Lin, H.-C., ‘Synthesis and characterization of light-emitting main-chain metallo-polymers containing bis-terpyridyl ligands with various lateral substituents’, Journal of Polymer Science Part A: Polymer Chemistry, vol. 45, no. 15, pp. 32433255, 2007.CrossRefGoogle Scholar
Lim, Z. B., Li, H., Sun, S., Lek, J. Y., Trewin, A., Lam, Y. M., and Grimsdale, A. C., ‘New 3D supramolecular Zn(II)-coordinated self-assembled organic networks’, Journal of Materials Chemistry, vol. 22, pp. 62186231, 2012.CrossRefGoogle Scholar
Padhy, H., Sahu, D., Chiang, I.-H., Patra, D., Kekuda, D., Chu, C.-W., and Lin, H.-C., ‘Synthesis and applications of main-chain Ru(II) metallo-polymers containing bis-terpyridyl ligands with various benzodiazole cores for solar cells’, Journal of Materials Chemistry, vol. 21, no. 4, pp. 11961205, 2011.CrossRefGoogle Scholar
Dudek, S. P., Pouderoijen, M., Abbel, R., Schenning, A. P. H. J., and Meijer, E. W., ‘Synthesis and energy-transfer properties of hydrogen-bonded oligofluorenes’, Journal of the American Chemical Society, vol. 127, pp. 1176311768, 2005.CrossRefGoogle ScholarPubMed
Lin, H.-C., Tsai, C.-M., Huang, G.-H., and Tao, Y.-T., ‘Synthesis and characterization of light-emitting H-bonded complexes and polymer containing bispyridyl emitting acceptors’, Macromolecules, vol. 39, pp. 557568, 2006.CrossRefGoogle Scholar
Brulatti, P., Fattori, V., Muzzioli, S., Stagni, S., Mazzeo, P. P., Braga, D., et al., ‘Tuning the colour and efficiency in OLEDs by using amorphous or polycrystalline emitting layers’, Journal of Materials Chemistry C, vol. 1, pp. 18231831, 2013.CrossRefGoogle Scholar
Cocchi, M., Kalinowski, J., Murphy, L., Williams, J. A. G., and Fattori, V., ‘Mixing of molecular exciton and excimer phosphorescence to tune color and efficiency of organic LEDs’, Organic Electronics, vol. 11, pp. 388396, 2010.CrossRefGoogle Scholar
Wilde, S., Ma, D., Koch, T., Bakker, A., Gonzalez-Abradelo, D., Stegemann, L., et al., ‘Toward tunable electroluminescent devices by correlating function and submolecular structure in 3D crystals, 2D-confined monolayers, and dimers’, ACS Applied Materials and Interfaces, vol. 10, pp. 2246022473, 2018.CrossRefGoogle ScholarPubMed
Tao, Y., Yuan, K., Chen, T., Xu, P., Li, H., Chen, R., et al., ‘Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics’, Advanced Materials, vol. 26, pp. 79317958, 2014.CrossRefGoogle ScholarPubMed
Dias, F. B., Penfold, T. J., and Monkman, A. P., ‘Photophysics of thermally activated delayed fluorescence molecules’, Methods and Applications in Fluorescence, vol. 5, p. 012001, 2017.CrossRefGoogle ScholarPubMed
Shakeel, U. and Singh, J., ‘Study of processes of reverse intersystem crossing (RISC) and thermally activated delayed fluorescence (TADF) in organic light emitting diodes (OLEDs)’, Organic Electronics, vol. 59, pp. 121124, 2018.CrossRefGoogle Scholar
Jhulki, S., Cooper, M. W., Barlow, S., and Marder, S. R., ‘Phosphorescent and TADF polymers and dendrimers in solution-processed self-host organic light-emitting diodes: Structure analysis and design perspectives’, Materials Chemistry Frontiers, vol. 3, pp. 16991721, 2019.CrossRefGoogle Scholar
Nobuyasu, R. S., Ren, Z., Griffiths, G. C., Batsanov, A. S., Data, P., Yan, S., et al., ‘Rational design of TADF polymers using a donor–acceptor monomer with enhanced TADF efficiency induced by the energy alignment of charge transfer and local triplet excited states’, Advanced Optical Materials, vol. 4, pp. 597607, 2016.CrossRefGoogle Scholar
Xie, Y. and Li, Z., ‘Thermally activated delayed fluorescent polymers’, Journal of Polymer Science Part A: Polymer Chemistry, vol. 55, pp. 575584, 2017.CrossRefGoogle Scholar
Wei, Q., Ge, Z., and Voit, B., ‘Thermally activated delayed fluorescent polymers: Structures, properties, and applications in OLED devices’, Macromolecular Rapid Communications, vol. 40, p. 1800570, 2019.CrossRefGoogle Scholar
Virgili, T., Lidzey, D. G., and Bradley, D. D. C., ‘Efficient energy transfer in porphyrin doped polyfluorene LEDs’, Advanced Materials, vol. 12, pp. 5862, 2000.3.0.CO;2-E>CrossRefGoogle Scholar
van Dijken, A., Bastiaansen, J. J. A. M., Kiggen, N. M. M., Langeveld, B. M. W., Rothe, C., Monkman, A., et al., ‘Carbazole compounds as host materials for triplet emitters in OLEDs: Polymer hosts for high efficiency LEDS’, Journal of the American Chemical Society, vol. 126, pp. 77187727, 2004.CrossRefGoogle Scholar
Yang, X. H., Neher, D., Scherf, U., Bagnich, S. A., and Bässler, H., ‘Polymer electrophosphorescent devices using a LPPP host’, Journal of Applied Physics, vol. 93, pp. 44134419, 2003.CrossRefGoogle Scholar
Williams, E. L., Li, J., and Jabbour, G. E., ‘Organic light-emitting diodes having exclusive near-infrared electrophosphorescence’, Applied Physics Letters, vol. 89, p. 083506, 2006.CrossRefGoogle Scholar
Yang, X., Müller, D. C., Neher, D., and Meerholz, K., ‘Highly efficient polymeric electrophosphorescent diodes’, Advanced Materials, vol. 18, pp. 948954, 2006.CrossRefGoogle Scholar
Jiang, C., Yang, W., Peng, J., Xiao, S., and Cao, Y., ‘High efficiency saturated red phosphorescent polymer light-emitting diodes based on conjugated and non-conjugated polymers doped with an Ir complex’, Advanced Materials, vol. 16, pp. 537541, 2004.CrossRefGoogle Scholar
Zhang, Y., Zuniga, C., Kim, S.-J., Cai, D., Barlow, S., Salman, S., et al., ‘Polymers with carbazole-oxadiazole side chains as ambipolar hosts for phosphorescent light-emitting diodes’, Chemistry of Materials, vol. 23, pp. 40024015, 2011.CrossRefGoogle Scholar
Sandee, A. J., Williams, C. K., Evans, N. R., Davies, J. E., Boothby, C. E., Köhler, A., et al., ‘Solution-processible conjugated electrophosphorescent polymers’, Journal of the American Chemical Society, vol. 126, pp. 70417048, 2004.CrossRefGoogle ScholarPubMed
Galbrecht, F., Yang, X. H., Nehls, B. S., Neher, D., Farrell, T., and Scherf, U., ‘Semiconducting polyfluorenes with electrophosphorescent on-chain platinum-salen chromophores’, Chemical Communications, no. 18, pp. 23782380, 2005.CrossRefGoogle Scholar
Peng, Q., Xie, M., Huang, Y., Lu, Z., and Cao, Y., ‘Novel supramolecular polymers based on zinc-salen chromophores for efficient LEDs’, Macromolecular Chemistry and Physics, vol. 206, pp. 23732380, 2005.CrossRefGoogle Scholar
Hou, Q., Zhang, Y., Yang, R. Q., Yang, W., and Cao, Y., ‘Synthesis and EL properties of copolymers derived from fluorene and metal-free and Pt(II)tetraphenylporphyrin’, Synthetic Metals, vol. 153, pp. 193196, 2005.CrossRefGoogle Scholar
Zhuang, W., Zhang, Y., Hou, Q., Wang, L., and Cao, Y., ‘High-efficiency electrophosphorescent polymers with porphyrin platinum complexes in the conjugated backbone: Synthesis and device performance’, Journal of Polymer Science (A), Polymer Chemistry, vol. 44, pp. 41744186, 2006.CrossRefGoogle Scholar
Chien, C.-H., Liao, S.-F., Wu, C.-H., Shu, C.-F., Chang, S.-Y., Chi, Y., et al., ‘Electrophosphorescent polyfluorenes containing osmium complexes in the conjugated backbone’, Advanced Functional Materials, vol. 18, pp. 14301439, 2008.CrossRefGoogle Scholar
Tan, H., Yu, J., Wang, Y., Li, J., Cui, J., Luo, J., et al., ‘Improving optoelectronic properties of the 2,7-polyfluorene derivatives with carbazole and oxadiazole pendants by incorporating the blue-emitting iridium complex pendants in C-9 position of fluorene unit’, Journal of Polymer Science (A), Polymer Chemistry, vol. 50, pp. 149155, 2012.CrossRefGoogle Scholar
Yang, W., Zhen, H. Y., Jiang, C. Y., Su, L. J., Jiang, J. X., Shi, H. H., and Cao, Y., ‘Synthesis of electrophosphorescent polymers based on PPPs with Ir complexes’, Synthetic Metals, vol. 153, pp. 189192, 2005.CrossRefGoogle Scholar
Hwang, S.-H., Moorefield, C. N., and Newkome, G. R., ‘Dendritic macromolecules for organic light-emitting diodes’, Chemical Society Reviews, vol. 37, pp. 25432547, 2008.CrossRefGoogle ScholarPubMed
Ding, J. Q., Gao, J., Cheng, Y. X, Xie, Z. Y., Wang, L. X., Dongge, M. A., et al., ‘Highly efficient green-emitting phosphorescent iridium dendrimers based on carbazole dendrons’, Advanced Functional Materials, vol. 16, pp. 575581, 2006.CrossRefGoogle Scholar
Zhu, M., Zou, J., Hu, S., Li, C., Yang, C., Wu, H., et al., ‘Highly efficient single-layer white polymer light-emitting devices employing iridium dendritic complexes as orange emissive component’, Journal of Materials Chemistry, vol. 22, pp. 361366, 2012.CrossRefGoogle Scholar
Lee, S. Y., Yasuda, T., Komiyama, H., Lee, J., and Adachi, C., ‘Thermally activated delayed fluorescence polymers for efficient solution-processed organic light-emitting diodes’, Advanced Materials, vol. 28, pp. 40194024, 2016.CrossRefGoogle ScholarPubMed
Rao, J., Liu, X., Li, X., Yang, L., Zhao, L., Wang, S., et al., ‘Bridging small molecules to conjugated polymers: Efficient thermally activated delayed fluorescence with a methyl-substituted phenylene linker’, Angewandte Chemie, International Edition, vol. 59, pp. 13201326, 2020.CrossRefGoogle ScholarPubMed
Tokito, S., Suzuki, M., Sato, F., Kamachi, M., and Shirane, K., ‘High-efficiency phosphorescent PLEDs’, Organic Electronics, vol. 4, pp. 105111, 2003.CrossRefGoogle Scholar
Lee, C.-L., Kang, N.-G., Cho, Y.-S., Lee, J.-S., and Kim, J.-J., ‘Polymer electrophosphorescent device: Comparison of dye doped and coordinated systems’, Optical Materials, vol. 21, pp. 119123, 2002.CrossRefGoogle Scholar
Wang, S., Li, X., Xun, S., Wan, X., and Wang, Z. Y., ‘Near infrared electrochromic and electroluminescent polymers containing pendant ruthenium complex groups’, Macromolecules, vol. 39, pp. 75027507, 2006.CrossRefGoogle Scholar
Deng, L., Furuta, P. T., Garon, S., Li, J., Kavulak, D., Thompson, M. E., and Fréchet, J. M. J., ‘Living radical polymerization of bipolar transport materials for highly efficient LEDs’, Chemistry of Materials, vol. 18, pp. 386395, 2006.CrossRefGoogle Scholar
Carlise, J. R., Wang, X.-Y., and Weck, M., ‘Phophorescent side-chain functionalized polynorbornenes containing Ir complexes’, Macromolecules, vol. 38, pp. 90009008, 2005.CrossRefGoogle Scholar
Meyers, A., Kimyonok, A., and Weck, M., ‘IR-emitting polynorbornenes and polycyclooctenes’, Macromolecules, vol. 38, pp. 86718678, 2005.CrossRefGoogle Scholar
Hu, J., Li, Q., Wang, X., Shao, S., Wang, L., Jing, X., and Wang, F., ‘Developing through-space charge transfer polymers as a general approach to realize full-color and white emission with thermally activated delayed fluorescence’, Angewandte Chemie, International Edition, vol. 58, pp. 84058409, 2019.CrossRefGoogle ScholarPubMed
Pode, R., ‘Organic light emitting diode devices: An energy efficient solid state lighting for applications’, Renewable and Sustainable Energy Reviews, vol. 133, p. 110043, 2020.CrossRefGoogle Scholar
Farinola, G. M. and Ragni, R., ‘Electroluminescent materials for white organic light emitting diodes’, Chemical Society Reviews, vol. 40, pp. 34673482, 2011.CrossRefGoogle ScholarPubMed
D’Andrade, B. W. and Forrest, S. R., ‘White organic light‐emitting devices for solid‐state lighting’, Advanced Materials, vol. 16, pp. 15851595, 2004.CrossRefGoogle Scholar
Hayashida, T., Iwasaki, H., Masaoka, K., Shimizu, M., Yamashita, T., and Iwai, W., ‘Appropriate indices for color rendition and their recommended values for UHDTV production using white LED lighting’, Optics Express, vol. 25, pp. 1501015027, 2017.CrossRefGoogle ScholarPubMed
Tasch, S., List, E. J. W., Hochfilzer, C., Leising, G., Schlichting, P., Rohr, U., et al., ‘Efficient red- and orange-light-emitting diodes realized by excitation energy transfer from blue-light-emitting conjugated polymers’, Physical Review B, vol. 56, pp. 44794483, 1997.CrossRefGoogle Scholar
Leising, G., List, E. J. W., Zenz, C., Tasch, S., Brandstaetter, C., Graupner, W., et al., ‘Efficient full-colour electroluminescence and stimulated emission with polyphenylenes’, Proceedings of the Society of Photo-Optical Instrumentation Engineers, vol. 3476, pp. 7687, 1998.Google Scholar
List, E. W. J., Tasch, S., Hochfilzer, C., Leising, G., Schlichting, P., Rohr, U., et al., ‘Efficient color tuning (blue, reds-orange, white) of light emitting diodes by excitation energy transfer’, Optical Materials, vol. 9, pp. 183187, 1998.CrossRefGoogle Scholar
Leising, G., Tasch, S., Brandstätter, C., Graupner, W., Hampel, S., List, E. J. W., et al., ‘Efficient full-colour electroluminescence and stimulated emission with polyphenylenes’, Synthetic Metals, vol. 91, pp. 4147, 1997.CrossRefGoogle Scholar
Huang, J., Li, G., Wu, E., Xu, Q., and Yang, Y., ‘Achieving high-efficiency polymer white-light-emitting devices’, Advanced Materials, vol. 18, pp. 114117, 2006.CrossRefGoogle Scholar
Lee, J.-I., Chu, H. Y., Kim, S. H., Do, L.-M., Zyung, T., and Hwang, D.-H., ‘White LEDs using polymer blends’, Optical Materials, vol. 21, pp. 205210, 2002.CrossRefGoogle Scholar
Shih, P.-I., Tseng, Y.-H., Wu, F.-I., Dixit, A. K., and Shu, C.-F., ‘Stable and efficient white EL devices based on a single emitting layer of polymer blends’, Advanced Functional Materials, vol. 16, pp. 15821589, 2006.CrossRefGoogle Scholar
Gong, X., Wang, S., Moses, D., Bazan, G. C., and Heeger, A. J., ‘Multilayer PLEDs: White-light emission with high efficiency’, Advanced Materials, vol. 17, pp. 20532058, 2005.CrossRefGoogle Scholar
Shih, P.-I., Shu, C.-F., Tung, Y.-L., and Chi, Y., ‘Efficient white LEDs based on PVK doped with blue fluorescent and orange phosphorescent materials’, Applied Physics Letters, vol. 88, p. 251110, 2006.CrossRefGoogle Scholar
Tsai, M.-L., Liu, C.-Y., Wang, Y.-Y., Chen, J.-Y., Chou, T.-C., Lin, H-M., et al., ‘Preparation and luminescence of polymers containing dialkoxyacenes’, Chemistry of Materials, vol. 16, pp. 33733380, 2004.CrossRefGoogle Scholar
Kim, H. K., Ryu, M.-K., Kim, K.-D., Lee, S.-M., Cho, S.-W., and Park, J.-W., ‘Tunable EL from Si-PPV copolymers with well-defined structures’, Macromolecules, vol. 31, pp. 11141123, 1998.CrossRefGoogle Scholar
Jung, S.-H. and Kim, H. K., ‘New Si-based copolymers for tunable LEDs’, Journal of Luminescence, vol. 87–89, pp. 5155, 2000.CrossRefGoogle Scholar
Paik, K. L., Baek, N. S., Kim, H. K., Lee, J.-H., and Lee, Y., ‘White LEDs from novel Si-based copolymers’, Macromolecules, vol. 35, pp. 67826791, 2002.CrossRefGoogle Scholar
Furuta, P. T., Deng, L., Garon, S., Thompson, M. E., and Fréchet, J. M. J., ‘Platinum-functionalized random copolymers for use in solution-processable efficient near-white OLEDs’, Journal of the American Chemical Society, vol. 126, pp. 1538815389, 2004.CrossRefGoogle Scholar
Liu, J., Zhou, Q. G., Cheng, Y. X., Geng, Y. H., Wang, L. X., Ma, D. G., et al., ‘White electroluminescence from a single-polymer system with simulataneous two-color emission: Polyfluorene as the blue host and a 2,1,3-benzothiadiazole derivative as the orange dopant’, Advanced Functional Materials, vol. 19, pp. 957965, 2006.CrossRefGoogle Scholar
Zhang, L., Hu, S., Chen, J., Chen, Z., Wu, H., Peng, J., and Cao, Y., ‘A series of energy-transfer copolymers derived from fluorene and 4,7-dithienylbenzotriazole for high efficiency yellow, orange, and white ligh-emitting diodes’, Advanced Functional Materials, vol. 21, pp. 37603769, 2011.CrossRefGoogle Scholar
Rao, J., Yang, L., Li, X., Zhao, L., Wang, S., Ding, J., and Wang, L., ‘Meta junction promoting efficient thermally activated delayed fluorescence in donor-acceptor conjugated polymers’, Angewandte Chemie, International Edition, vol. 59, pp. 1790317909, 2020.CrossRefGoogle ScholarPubMed
Wang, Y., Zhu, Y., Xie, G., Zhan, H., Yang, C., and Cheng, Y., ‘Bright white elctroluminescence from a single polymer containing a thermally activated delayed fluorescence unit and a solution-processed OLED approaching 20% external quantum efficiency’, Journal of Materials Chemistry C, vol. 5, pp. 1071510720, 2017.CrossRefGoogle Scholar
Luo, J., Li, X., Chen, J., Huang, F., and Cao, Y., ‘Efficient three-colour white light-emitting diodes from a single polymer with PFN/Al bilayer cathode’, Synthetic Metals, vol. 161, pp. 19821986, 2011.CrossRefGoogle Scholar
Coya, C., Blanco, R., Juárez, R., Gómez, R., Martínez, R., de Andrés, A., et al., ‘Synthesis and tunable emission of novel polyfluorene co-polymers with 1,8-naphthalimide pendant groups and application in a single layer-single component white emitting device’, European Polymer Journal, vol. 46, pp. 17781789, 2010.CrossRefGoogle Scholar
Poulsen, D. A., Kim, B. J., Ma, B., Zonte, S., and Frechet, J. M. J., ‘Site isolation in phosphorescent bichromophoric block copolymers designed for white electroluminescence’, Advanced Materials, vol. 22, pp. 7782, 2010.CrossRefGoogle ScholarPubMed
Chen, L., Li, P., Cheng, Y., Xie, Z., Wang, L., Jing, X., and Wang, F., ‘White electroluminescence from star-like single polymer systems: 2,1,3-benzothiadiazole derivatives dopant as orange cores and polyfluorene host as six blue arms’, Advanced Materials, vol. 23, pp. 29862990, 2011.CrossRefGoogle ScholarPubMed
Abbel, R., Grenier, C., Pouderoijen, M. J., Stouwdam, J. W., Leclère, P. E. L. G., Sijbesma, R. P., et al., ‘White-light emitting hydrogen-bonded supramolecular copolymers based on π-conjugated oligomers’, Journal of the American Chemical Society, vol. 131, pp. 833843, 2009.CrossRefGoogle ScholarPubMed
Mitschke, U. and Bäuerle, P., ‘Electroluminescence of organic materials’, Journal of Materials Chemistry, vol. 10, pp. 14711507, 2000.CrossRefGoogle Scholar
Wang, H. L., MacDiarmid, A. G., Wang, Y. Z., Gebler, D. D., and Epstein, A. J., ‘Application of polyaniline (emeraldine base, EB) in polymer light-emitting devices’, Synthetic Metals, vol. 78, pp. 3337, 1996.CrossRefGoogle Scholar
Epstein, A. J., Blatchford, J. W., Wang, Y. Z., Jessen, S. W., Gebler, D. D., Lin, L. B., et al., ‘Poly (p-pyridine) – and poly (p-pyridyl vinylene) – based polymers: Their photophysics and application to SCALE devices’, Synthetic Metals, vol. 78, pp. 253261, 1996.CrossRefGoogle Scholar
Wang, H. L., Huang, F., MacDiarmid, A. G., Wang, Y. Z., Gebler, D. D., and Epstein, A. J., ‘Application of aluminum, copper and gold electrodes in a.c. polymer light-emitting devices’, Synthetic Metals, vol. 80, pp. 97104, 1996.CrossRefGoogle Scholar
Chaudhry, M. U., Muhieddine, K., Wawrzinek, R., Sobus, J., Tandy, K., Lo, S.-C., and Namdas, E. B., ‘Organic light‐emitting transistors: Advances and perspectives’, Advanced Functional Materials, vol. 30, p. 1905282, 2020.CrossRefGoogle Scholar
Chen, H. Y., Huang, W., Marks, T. J., Facchetti, A., and Meng, H., ‘Recent advances in multi‐layer light‐emitting heterostructure transistors’, Small, vol. 17, p. 2007661, 2021.CrossRefGoogle ScholarPubMed
Liu, C. F., Liu, X., Lai, W. Y., and Huang, W., ‘Organic light‐emitting field‐effect transistors: Device geometries and fabrication techniques’, Advanced Materials, vol. 30, p. 1802466, 2018.CrossRefGoogle ScholarPubMed
Yuan, D., Sharapov, V., Liu, X., and Yu, L., ‘Design of high-performance organic light-emitting transistors’, ACS Omega, vol. 5, pp. 6874, 2019.CrossRefGoogle ScholarPubMed
Varghese, M. A., Anshika, A., Deivendran, H., and Samuthira, N., ‘Organic light-emitting transistors: From understanding to molecular design and architecture’, ACS Applied Electronic Materials, vol. 3, pp. 550573, 2021.Google Scholar
Yuan, D., Awais, M. A., Sharapov, V., Liu, X., Neshchadin, A., Chen, W., and Yu, L., ‘Highly emissive semi-ladder-type copolymers, aggregation state, and solution-processed organic light-emitting transistor’, Chemistry of Materials, vol. 32, pp. 46724680, 2020.CrossRefGoogle Scholar
Yuan, D., Awais, M. A., Sharapov, V., Liu, X., Neshchadin, A., Chen, W., and Yu, L., ‘Synergy between photoluminescence and charge transport achieved by finely tuning polymeric backbones for efficient light-emitting transistor’, Journal of the American Chemical Society, vol. 143, pp. 52395246, 2021.CrossRefGoogle ScholarPubMed
Qin, Z., Gao, H., Dong, H., and Hu, W., ‘Organic light‐emitting transistors entering a new development stage’, Advanced Materials, vol. 33, p. 2007149, 2021.CrossRefGoogle ScholarPubMed
Pei, Q., Yu, G., Zhang, C., Yang, Y., and Heeger, A. J., ‘Polymer light-emitting electrochemical cells’, Science, vol. 269, pp. 10861088, 1995.CrossRefGoogle ScholarPubMed
Pei, Q. and Yang, Y., ‘Solid-state polymer light-emitting electrochemical cells’, Synthetic Metals, vol. 80, pp. 131136, 1996.CrossRefGoogle Scholar
Yu, G., ‘High performance photonic devices made with semiconducting polymers’, Synthetic Metals, vol. 80, pp. 143150, 1996.CrossRefGoogle Scholar
Pei, Q. and Yang, Y., ‘Efficient photoluminescence and electroluminescence from a soluble polyfluorene’, Journal of the American Chemical Society, vol. 118, pp. 74167417, 1996.CrossRefGoogle Scholar
Pei, Q., Yang, Y., Yu, G., Zhang, C., and Heeger, A. J., ‘Polymer light-emitting electrochemical cells: In situ formation of a light-emitting p−n junction’, Journal of the American Chemical Society, vol. 118, pp. 39223929, 1996.CrossRefGoogle Scholar
Cao, Y., Yu, G., Heeger, A. J., and Yang, C. Y., ‘Efficient, fast response light-emitting electrochemical cells: Electroluminescent and solid electrolyte polymers with interpenetrating network morphology’, Applied Physics Letters, vol. 68, pp. 32183220, 1996.CrossRefGoogle Scholar
Yu, G., Pei, Q., and Heeger, A. J., ‘Planar light-emitting devices fabricated with luminescent electrochemical polyblends’, Applied Physics Letters, vol. 70, pp. 934936, 1997.CrossRefGoogle Scholar
Neher, D., Grüner, J., Cimrová, V., Schmidt, W., Rulkens, R., and Lauter, U., ‘Light-emiting devices based on solid electrolytes and polyelectrolytes’, Polymers for Advanced Technologies, vol. 9, pp. 461475, 1998.3.0.CO;2-R>CrossRefGoogle Scholar
Dick, D. J., Heeger, A. J., Yang, Y., and Pei, Q., ‘Imaging the structure of the p–n junction in polymer light-emitting electrochemical cells’, Advanced Materials, vol. 8, pp. 985987, 1996.CrossRefGoogle Scholar
de Mello, J. C., Tessler, N., Graham, S. C., Li, X., Holmes, A. B., and Friend, R. H., ‘Ionic space-charge assisted current injection into organic LEDs’, Synthetic Metals, vol. 85, pp. 12771278, 1997.CrossRefGoogle Scholar
Gao, J., Yu, G., and Heeger, A. J., ‘Polymer light-emitting electrochemical cells with frozen p-i-n junction’, Applied Physics Letters, vol. 71, pp. 12931295, 1997.CrossRefGoogle Scholar
Li, Y., Gao, J., Wang, D., Yu, G., Cao, Y., and Heeger, A. J., ‘A.C. impedance of frozen junction polymer light-emitting electrochemical cells’, Synthetic Metals, vol. 97, pp. 191194, 1998.Google Scholar
Gao, J., Li, Y., Yu, G., and Heeger, A. J., ‘Polymer light-emitting electrochemical cells with frozen junctions’, Journal of Applied Physics, vol. 86, pp. 45944599, 1999.CrossRefGoogle Scholar
Dane, J., Tracy, C., and Gao, J., ‘Direct observation of a frozen junction in polymer light-emitting electrochemical cells’, Applied Physics Letters, vol. 86, p. 153509, 2005.CrossRefGoogle Scholar
Yu, G., Cao, Y., Andersson, M. R., Gao, J., and Heeger, A. J., ‘Polymer light-emitting electrochemical cells with frozen p-i-n junction at room temperature’, Advanced Materials, vol. 10, pp. 385388, 1998.3.0.CO;2-M>CrossRefGoogle Scholar
Shin, J.-H., Xiao, S., Fransson, Å., and Edman, L., ‘Polymer light-emitting electrochemical cells: Frozen-junction operation of an “ionic liquid” device’, Applied Physics Letters, vol. 87, p. 043506, 2005.CrossRefGoogle Scholar
Zhang, Y., Hu, Y., and Gao, J., ‘Improving the efficiency of polymer light-emitting electrochemical cells by controlled doping relaxation’, Applied Physics Letters, vol. 88, p. 163507, 2006.CrossRefGoogle Scholar
Richter, M. M., Fan, F.-R. F., Klavetter, F., Heeger, A. J., and Bard, A. J., ‘Electrochemistry and electrogenerated chemiluminescence of films of the conjugated polymer 4-methoxy-(2-ethylhexoxyl)-2,5-polyphenylenevinylene’, Chemical Physics Letters, vol. 226, pp. 115120, 1994.CrossRefGoogle Scholar
Nambu, H., Hamaguchi, M., and Yoshino, K., ‘A comparative study of electrogenerated chemiluminescence in poly(3-hexylthiophene) and poly(2-methoxy-5-dodecyloxy-p-phenylenevinylene)’, Journal of Applied Physics, vol. 82, pp. 18471852, 1997.CrossRefGoogle Scholar
Hamaguchi, M., Nambu, H., Ohsawa, T., and Yoshino, K., ‘A comparative study of D-C electrochemiluminescence from poly(2-methoxy-5-dodecyloxy-p-pheynylenevinylene) in solution and in solid polymer electrolyte media’, Japanese Journal of Applied Physics, Part 2, vol. 36, pp. L679L681, 1997.Google Scholar
Chang, S.-C. and Yang, Y., ‘Polymer solution and gel light-emitting devices’, Polymer News, vol. 25, pp. 401404, 2000.Google Scholar
Chang, S.-C. and Yang, Y., ‘Polymer gel light-emitting devices’, Applied Physics Letters, vol. 75, pp. 27132715, 1999.CrossRefGoogle Scholar
Chang, S.-C., Yang, Y., and Pei, Q., ‘Polymer solution light-emitting devices’, Applied Physics Letters, vol. 74, pp. 20812083, 1999.CrossRefGoogle Scholar
Lemmer, U., ‘Stimulated emission and lasing in conjugated polymers’, Polymers for Advanced Technologies, vol. 9, pp. 476487, 1998.3.0.CO;2-8>CrossRefGoogle Scholar
Tessler, N., ‘Lasers based on semiconducting organic materials’, Advanced Materials, vol. 11, pp. 363370, 1999.3.0.CO;2-Y>CrossRefGoogle Scholar
McGehee, M. D. and Heeger, A. J., ‘Semiconducting conjugated polymers as materials for solid-state lasers’, Advanced Materials, vol. 12, pp. 16551668, 2000.3.0.CO;2-2>CrossRefGoogle Scholar
Samuel, I. D. W. and Turnbull, G. A., ‘Organic semiconductor lasers’, Chemical Reviews, vol. 107, pp. 12721295, 2007.CrossRefGoogle ScholarPubMed
Moses, D., ‘High quantum efficiency luminescence from a conducting polymer in solution: A novel polymer laser dye’, Applied Physics Letters, vol. 60, pp. 32153217, 1992.CrossRefGoogle Scholar
Hide, F., Díaz-Garcia, M. A., Schwartz, B. J., Andersson, M. R., Pei, Q., and Heeger, A. J., ‘Semiconducting polymers: A new class of solid-state laser materials’, Science, vol. 273, pp. 18331836, 1996.CrossRefGoogle Scholar
Tessler, N., Denton, G. J., and Friend, R. H., ‘Lasing from conjugated-polymer microcavities’, Nature, vol. 382, pp. 695697, 1996.CrossRefGoogle Scholar
Brouwer, H. J., Krasnikov, V. V., Hilberer, A., and Hadziioannou, G., ‘Blue superradiance from neat semiconducting alternating copolymer films’, Advanced Materials, vol. 8, pp. 935937, 1996.CrossRefGoogle Scholar
Holzer, W., Penzkofer, A., Gong, S.-H., Bleyer, A., and Bradley, D. D. C., ‘Laser action in poly (m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene)’, Advanced Materials, vol. 8, pp. 975978, 1996.CrossRefGoogle Scholar
Frolov, S. V., Ozaki, M., Gellermann, W., Vardeny, Z. V., and Yoshino, K., ‘Mirrorless lasing in conducting polymer poly(2,5-dioctyloxy-p-phenylenevinylene) films’, Japanese Journal of Applied Physics, vol. 35, pp. L1371L1373, 1996.CrossRefGoogle Scholar
Fisher, T. A., Lidzey, D. G., Pate, M. A., Weaver, M. S., Whittaker, D. M., Skolnick, M. S., and Bradley, D. D. C., ‘Electroluminescence from a conjugated polymer microcavity structure’, Applied Physics Letters, vol. 67, pp. 13551357, 1995.CrossRefGoogle Scholar
Wittmann, H. F., Grüner, J., Friend, R. H., Spencer, G. W. C., Moratti, S. C., and Holmes, A. B., ‘Microcavity effect in a single-layer polymer light-emitting diode’, Advanced Materials, vol. 7, pp. 541544, 1995.CrossRefGoogle Scholar
Berggren, M., Ingänas, O., Granlund, T., Guo, S., Gustafsson, G., and Andersson, M. R., ‘Polymer light-emitting diodes placed in microcavities’, Synthetic Metals, vol. 76, pp. 121123, 1996.CrossRefGoogle Scholar
Cimrová, V. and Neher, D., ‘Microcavity effects in single-layer light-emitting devices based on poly(p-phenylene vinylene)’, Journal of Applied Physics, vol. 79, pp. 32993307, 1996.CrossRefGoogle Scholar
Grüner, J., Cacialli, F., and Friend, R. H., ‘Emission enhancement in single-layer conjugated polymer microcavities’, Journal of Applied Physics, vol. 80, pp. 207215, 1996.CrossRefGoogle Scholar
Cimrová, V., Scherf, U., and Neher, D., ‘Microcavity devices based on a ladder-type poly(p-phenylene) emitting blue, green, and red light’, Applied Physics Letters, vol. 69, pp. 608610, 1996.CrossRefGoogle Scholar
Kallinger, C., Hilmer, M., Haugeneder, A., Perner, M., Spirkl, W., Lemmer, U., et al., ‘A flexible conjugated polymer laser’, Advanced Materials, vol. 10, pp. 920923, 1998.3.0.CO;2-7>CrossRefGoogle Scholar
Riechel, S., Kallinger, C., Lemmer, U., Feldmann, J., Gombert, A., Wittwer, V., and Scherf, U., ‘Nearly diffraction limited surface emitting conjugated polymer laser’, Applied Physics Letters, vol. 77, pp. 23102312, 2000.CrossRefGoogle Scholar
Sandanayaka, A. S., Matsushima, T., Bencheikh, F., Terakawa, S., Potscavage, W. J., Qin, C., et al., ‘Indication of current-injection lasing from an organic semiconductor’, Applied Physics Express, vol. 31, no. 12, p. 061010, 2019.CrossRefGoogle Scholar
Yan, C. C., Wang, X. D., and Liao, L. S., ‘Thermally activated delayed fluorescent gain materials: Harvesting triplet excitons for lasing’, Advanced Science, vol. 9, p. 2200525, 2022.CrossRefGoogle ScholarPubMed
Zhang, Q., Tao, W., Huang, J., Xia, R., and Cabanillas-Gonzalez, J., ‘Toward electrically pumped organic lasers: A review and outlook on material developments and resonator architectures’, Advanced Photonics Research, vol. 2, p. 2000155, 2021.CrossRefGoogle Scholar
Yu, G., Zhang, C., Pakbaz, K., and Heeger, A. J., ‘Photonic devices made with semiconducting conjugated polymers: New developments’, Synthetic Metals, vol. 71, pp. 22412242, 1995.CrossRefGoogle Scholar
Sirringhaus, H., Tessler, N., and Friend, R. H., ‘Integrated optoelectronic devices based on conjugated polymers’, Science, vol. 280, pp. 17411744, 1998.CrossRefGoogle ScholarPubMed
Sirringhaus, H., Tessler, N., and Friend, R. H., ‘Integrated, high-mobility polymer field-effect transistors driving polymer light-emitting diodes’, Synthetic Metals, vol. 102, pp. 857860, 1999.CrossRefGoogle Scholar
Wu, C.-C., Chen, C.-W., Li, S.-H., Wu, E. H.-E., and Yang, Y., ‘Integration of organic light-emitting diode and organic transistor via a tandem structure’, Applied Physics Letters, vol. 86, p. 253503, 2005.Google Scholar
Heeger, A. J., Heeger, D. J., Langan, J., and Yang, Y., ‘Image enhancement with polymer grid triode arrays’, Science, vol. 270, pp. 16421644, 1995.CrossRefGoogle Scholar
Mathews, N., Lam, Y. M., Mhaisalkar, S. G., and Grimsdale, A. C., ‘Printing materials for electronic devices’, International Journal of Materials Research, vol. 101, pp. 236250, 2010.CrossRefGoogle Scholar
Chamberlain, G. A., ‘Organic solar cells: A review’, Solar Cells, vol. 8, pp. 4783, 1983.CrossRefGoogle Scholar
Li, G., Zhu, R., and Yang, Y., ‘Polymer solar cells’, Nature Photon, vol. 6, pp. 153161, 2012.CrossRefGoogle Scholar
Ragoussi, M. E. and Torres, T., ‘New generation solar cells: Concepts, trends and perspectives’, Chemical Communications, vol. 51, pp. 39573972, 2015.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Andrew Grimsdale, Nanyang Technological University, Singapore, Paul Dastoor, University of Newcastle, New South Wales
  • Book: Conjugated Polymers for Organic Electronics
  • Online publication: 28 March 2024
  • Chapter DOI: https://doi.org/10.1017/9781139035262.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Andrew Grimsdale, Nanyang Technological University, Singapore, Paul Dastoor, University of Newcastle, New South Wales
  • Book: Conjugated Polymers for Organic Electronics
  • Online publication: 28 March 2024
  • Chapter DOI: https://doi.org/10.1017/9781139035262.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Andrew Grimsdale, Nanyang Technological University, Singapore, Paul Dastoor, University of Newcastle, New South Wales
  • Book: Conjugated Polymers for Organic Electronics
  • Online publication: 28 March 2024
  • Chapter DOI: https://doi.org/10.1017/9781139035262.016
Available formats
×