Published online by Cambridge University Press: 13 August 2009
Background and Plan of the Work
The purpose of this monograph is to present a fairly complete account of the development of the theory of continuous lattices as it currently exists. An attempt has been made to keep the body of the text expository and reasonably self-contained; somewhat more leeway has been allowed in the exercises. Much of what appears here constitutes basic, foundational or elementary material needed for the theory, but a considerable amount of more advanced exposition is also included.
Background and Motivation
The theory of continuous lattices is of relatively recent origin and has arisen more or less independently in a variety of mathematical contexts. We attempt a brief survey in the following paragraphs in the hope of pointing out some of the motivation behind the current interest in the study of these structures. We first indicate a definition for these lattices and then sketch some ways in which they arise.
A DEfiNITION. In the body of the Compendium the reader will find many equivalent characterizations of continuous lattices, but it would perhaps be best to begin with one rather straightforward definition – though it is not the primary one employed in the main text. Familiarity with algebraic lattices will be assumed for the moment, but even if the exact details are vague, the reader is surely familiar with many examples: the lattice of ideals of a ring, the lattice of subgroups of a group.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.