Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T04:49:48.021Z Has data issue: false hasContentIssue false

10 - Suppression of immune responses by bacteria and their products through dendritic cell modulation and regulatory T cell induction

from IV - Dendritic cells and immune evasion of bacteria in vivo

Published online by Cambridge University Press:  12 August 2009

Maria Rescigno
Affiliation:
European Institute of Oncology, Milan
Get access

Summary

INTRODUCTION

Infection with pathogenic bacteria can result in acute or chronic disease, which can be life threatening, especially in young, elderly or other immunocompromised individuals. Humans are also infected with a wide range of commensal bacteria, as part of our normal gut flora, and the immune system must be capable of controlling immune responses against these beneficial bacteria, while at the same time generating effector immune responses against pathogenic micro-organisms. In addition, pathogenic bacteria have evolved strategies for delaying or preventing their elimination by evading or subverting protective immune responses of the host.

Innate immunity to bacteria

The initial inflammatory response to pathogenic bacteria involves the release of cytokines and chemokines and the recruitment of neutrophils, monocytes, dendritic cells (DCs) and lymphocytes to the site of infection. Tissue macrophages and neutrophils quickly phagocytose and attempt to kill the bacteria. Macrophages and DCs are activated through binding of conserved, secreted or cell surface bacterial products to pathogen recognition receptors (PRR). This leads to activation of immune response genes, including those coding for inflammatory cytokines, chemokines and co-stimulatory molecules expressed on the surface of DCs and macrophages, that are involved in antigen presentation (Janeway and Medzhitov, 2002).

Bacteria are phagocytosed by neutrophils and macrophages and this is facilitated through activation of the alternative complement pathway by bacterial cell wall components, resulting in the production of C3b, which together with antibodies help to opsonize the bacteria.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, V. C., Hunt, J. R., Martinelli, R., Palmer, R., Rook, G. A., and Brunet, L. R. (2004). Mycobacterium vaccae induces a population of pulmonary CD11c+ cells with regulatory potential in allergic mice. Eur. J. Immunol. 34, 631–8CrossRefGoogle ScholarPubMed
Agrawal, A., Lingappa, J., Leppla, S. H., Agrawal, S., Jabbar, A., Quinn, C., and Pulendran, B. (2003). Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature 424, 329–34CrossRefGoogle ScholarPubMed
al-Ramadi, B. K., Brodkin, M. A., Mosser, D. M., and Eisenstein, T. K. (1991a). Immunosuppression induced by attenuated Salmonella. Evidence for mediation by macrophage precursors. J. Immunol. 146, 2737–46Google Scholar
al-Ramadi, B. K., Chen, Y. W., Meissler, J. J. Jr., and Eisenstein, T. K. (1991b). Immunosuppression induced by attenuated Salmonella. Reversal by interleukin-4. J. Immunol. 147, 1954–61Google Scholar
Anjuere, F., Luci, C., Lebens, M., Rousseau, D., Hervouet, C., Milon, G., Holmgren, J., Ardavin, C., and Czerkinsky, C. (2004). In vivo adjuvant-induced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin. J. Immunol. 173, 5103–11CrossRefGoogle ScholarPubMed
Bagley, K. C., Abdelwahab, S. F., Tuskan, R. G., Fouts, T. R., and Lewis, G. K. (2002a). Cholera toxin and heat-labile enterotoxin activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cyclic AMP-dependent pathway. Infect. Immun. 70, 5533–9CrossRefGoogle Scholar
Bagley, K. C., Abdelwahab, S. F., Tuskan, R. G., Fouts, T. R., and Lewis, G. K. (2002b). Pertussis toxin and the adenylate cyclase toxin from Bordetella pertussis activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cAMP-dependent pathway. J. Leukoc. Biol. 72, 962–9Google Scholar
Bagley, K. C., Abdelwahab, S. F., Tuskan, R. G., and Lewis, G. K. (2005). Pasteurella multocida toxin activates human monocyte-derived and murine bone marrow-derived dendritic cells in vitro but suppresses antibody production in vivo. Infect. Immun. 73, 413–21CrossRefGoogle ScholarPubMed
Balkhi, M. Y., Sinha, A., and Natarajan, K. (2004). Dominance of CD86, transforming growth factor- beta 1, and interleukin-10 in Mycobacterium tuberculosis secretory antigen-activated dendritic cells regulates T helper 1 responses to mycobacterial antigens. J. Infect. Dis. 189, 1598–609CrossRefGoogle Scholar
Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y. J., Pulendran, B., and Palucka, K. (2000). Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811CrossRefGoogle ScholarPubMed
Barnes, P. F., Chatterjee, D., Abrams, J. S., Lu, S., Wang, E., Yamamura, M., Brennan, P. J., and Modlin, R. L. (1992). Cytokine production induced by Mycobacterium tuberculosis lipoarabinomannan. Relationship to chemical structure. J. Immunol. 149, 541–7Google ScholarPubMed
Barrat, F. J., Cua, D. J., Boonstra, A., Richards, D. F., Crain, C., Savelkoul, H. F., Waal-Malefyt, R., Coffman, R. L., Hawrylowicz, C. M., and O'Garra, A. (2002). In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med. 195, 603–16CrossRefGoogle Scholar
Beuscher, H. U., Rodel, F., Forsberg, A., and Rollinghoff, M. (1995). Bacterial evasion of host immune defense: Yersinia enterocolitica encodes a suppressor for tumor necrosis factor alpha expression. Infect. Immun. 63, 1270–7Google ScholarPubMed
Boirivant, M., Fuss, I. J., Ferroni, L., Pascale, M., and Strober, W. (2001). Oral administration of recombinant cholera toxin subunit B inhibits interleukin-12-mediated murine experimental (trinitrobenzene sulfonic acid) colitis. J. Immunol. 166, 3522–32CrossRefGoogle Scholar
Bonecini-Almeida, M. G., Ho, J. L., Boechat, N., Huard, R. C., Chitale, S., Doo, H., Geng, J., Rego, L., Lazzarini, L. C., Kritski, A. L., Johnson, W. D. Jr., McCaffrey, T. A., and Silva, J. R. (2004). Down-modulation of lung immune responses by interleukin-10 and transforming growth factor beta (transforming growth factor-beta) and analysis of transforming growth factor-beta receptors I and II in active tuberculosis. Infect. Immun. 72, 2628–34CrossRefGoogle ScholarPubMed
Boussiotis, V. A., Tsai, E. Y., Yunis, E. J., Thim, S., Delgado, J. C., Dascher, C. C., Berezovskaya, A., Rousset, D., Reynes, J. M., and Goldfeld, A. E. (2000). interleukin-10-producing T cells suppress immune responses in anergic tuberculosis patients. J. Clin. Invest. 105, 1317–25CrossRefGoogle Scholar
Boyd, A. P., Ross, P. J., Conroy, H., Mahon, N., Lavelle, E. C., and Mills, K. H. (2005). Bordetella pertussis adenylate cyclase toxin modulates innate and adaptive immune responses: distinct roles for acylation and enzymatic activity in immunomodulation and cell death. J. Immunol. 175, 730–8CrossRefGoogle ScholarPubMed
Braun, M. C., He, J., Wu, C. Y., and Kelsall, B. L. (1999). Cholera toxin suppresses interleukin (interleukin)-12 production and interleukin-12 receptor beta1 and beta2 chain expression. J. Exp. Med. 189, 541–52CrossRefGoogle ScholarPubMed
Brzoza, K. L., Rockel, A. B., and Hiltbold, E. M. (2004). Cytoplasmic entry of Listeria monocytogenes enhances dendritic cell maturation and T cell differentiation and function. J. Immunol. 173, 2641–51CrossRefGoogle Scholar
Byrne, P., McGuirk, P., Todryk, S., and Mills, K. H. (2004). Depletion of natural killer cells results in disseminating lethal infection with Bordetella pertussis associated with a reduction of antigen-specific Th1 and enhancement of Th2, but not Tr1 cells. Eur. J. Immunol. 34, 2579–88CrossRefGoogle Scholar
Chen, W., Shu, D., and Chadwick, V. S. (2001). Helicobacter pylori infection: mechanism of colonization and functional dyspepsia reduced colonization of gastric mucosa by Helicobacter pylori in mice deficient in interleukin-10. J. Gastroenterol. Hepatol. 16, 377–83CrossRefGoogle ScholarPubMed
Chiao, J. W., Villalon, P., Schwartz, I., and Wormser, G. P. (2000). Modulation of lymphocyte proliferative responses by a canine Lyme disease vaccine of recombinant outer surface protein A (OspA). FEMS Immunol. Med. Microbiol. 28, 193–6CrossRefGoogle Scholar
Chieppa, M., Bianchi, G., Doni, A., Del Prete, A., Sironi, M., Laskarin, G., Monti, P., Piemonti, L., Biondi, A., Mantovani, A., Introna, M., and Allavena, P. (2003). Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J. Immunol. 171, 4552–60CrossRefGoogle ScholarPubMed
Christensen, H. R., Frokiaer, H., and Pestka, J. J. (2002). Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 168, 171–8CrossRefGoogle ScholarPubMed
Dahl, K. E., Shiratsuchi, H., Hamilton, B. D., Ellner, J. J., and Toossi, Z. (1996). Selective induction of transforming growth factor beta in human monocytes by lipoarabinomannan ofMycobacterium tuberculosis. Infect. Immun. 64, 399–405Google Scholar
Souza, M. S., Smith, A. L., Beck, D. S., Terwilliger, G. A., Fikrig, E., and Barthold, S. W. (1993). Long-term study of cell-mediated responses to Borrelia burgdorferi in the laboratory mouse. Infect. Immun. 61, 1814–22Google ScholarPubMed
Deckert, M., Soltek, S., Geginat, G., Lutjen, S., Montesinos-Rongen, M., Hof, H., and Schluter, D. (2001). Endogenous interleukin-10 is required for prevention of a hyperinflammatory intracerebral immune response in Listeria monocytogenes meningoencephalitis. Infect. Immun. 69, 4561–71CrossRefGoogle ScholarPubMed
Delgado, J. C., Tsai, E. Y., Thim, S., Baena, A., Boussiotis, V. A., Reynes, J. M., Sath, S., Grosjean, P., Yunis, E. J., and Goldfeld, A. E. (2002). Antigen-specific and persistent tuberculin anergy in a cohort of pulmonary tuberculosis patients from rural Cambodia. Proc. Natl Acad. Sci. U S A 99, 7576–81CrossRefGoogle Scholar
Demangel, C., Bertolino, P., and Britton, W. J. (2002). Autocrine interleukin-10 impairs dendritic cell (dendritic cell)-derived immune responses to mycobacterial infection by suppressing dendritic cell trafficking to draining lymph nodes and local interleukin-12 production. Eur. J. Immunol. 32, 994–10023.0.CO;2-6>CrossRefGoogle Scholar
d'Ostiani, C. F., Del Sero, G., Bacci, A., Montagnoli, C., Spreca, A., Mencacci, A., Ricciardi-Castagnoli, P., and Romani, L. (2000). Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661–74CrossRefGoogle ScholarPubMed
Erfurth, S. E., Grobner, S., Kramer, U., Gunst, D. S., Soldanova, I., Schaller, M., Autenrieth, I. B., and Borgmann, S. (2004). Yersinia enterocolitica induces apoptosis and inhibits surface molecule expression and cytokine production in murine dendritic cells. Infect. Immun. 72, 7045–54CrossRefGoogle ScholarPubMed
Gagliardi, M. C., Sallusto, F., Marinaro, M., Langenkamp, A., Lanzavecchia, A., and Magistris, M. T. (2000). Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. Eur. J. Immunol. 30, 2394–4033.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Gagliardi, M. C., Teloni, R., Giannoni, F., Pardini, M., Sargentini, V., Brunori, L., Fattorini, L., and Nisini, R. (2005). Mycobacterium bovis Bacillus Calmette-Guerin infects dendritic cell-SIGN-dendritic cell and causes the inhibition of interleukin-12 and the enhancement of interleukin-10 production. J. Leukoc. Biol. 78, 106–13CrossRefGoogle Scholar
Geijtenbeek, T. B., Vliet, S. J., Koppel, E. A., Sanchez-Hernandez, M., Vandenbroucke-Grauls, C. M., Appelmelk, B., and Kooyk, Y. (2003). Mycobacteria target dendritic cell-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17CrossRefGoogle Scholar
Happel, K. I., Zheng, M., Young, E., Quinton, L. J., Lockhart, E., Ramsay, A. J., Shellito, J. E., Schurr, J. R., Bagby, G. J., Nelson, S., and Kolls, J. K. (2003). Cutting edge: roles of Toll-like receptor 4 and interleukin-23 in interleukin-17 expression in response to Klebsiella pneumoniae infection. J. Immunol. 170, 4432–6CrossRefGoogle ScholarPubMed
Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–5CrossRefGoogle ScholarPubMed
Higgins, S. C., Lavelle, E. C., McCann, C., Keogh, B., McNeela, E., Byrne, P., O'Gorman, B., Jarnicki, A., McGuirk, P., and Mills, K. H. (2003). Toll-like receptor 4-mediated innate interleukin-10 activates antigen-specific regulatory T cells and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology. J. Immunol. 171, 3119–27CrossRefGoogle ScholarPubMed
Hoover, D. L., Friedlander, A. M., Rogers, L. C., Yoon, I. K., Warren, R. L., and Cross, A. S. (1994). Anthrax edema toxin differentially regulates lipopolysaccharide-induced monocyte production of tumor necrosis factor alpha and interleukin-6 by increasing intracellular cyclic AMP. Infect. Immun. 62, 4432–9Google ScholarPubMed
Hori, S. and Sakaguchi, S. (2004). Foxp3: a critical regulator of the development and function of regulatory T cells. Microbes Infect. 6, 745–51CrossRefGoogle ScholarPubMed
Ishibashi, Y., Claus, S., and Relman, D. A. (1994). Bordetella pertussis filamentous hemagglutinin interacts with a leukocyte signal transduction complex and stimulates bacterial adherence to monocyte CR3 (CD11b/CD18). J. Exp. Med. 180, 1225–33CrossRefGoogle Scholar
Jacobs, M., Brown, N., Allie, N., Gulert, R., and Ryffel, B. (2000). Increased resistance to mycobacterial infection in the absence of interleukin-10. Immunology 100, 494–501CrossRefGoogle ScholarPubMed
Jacobs, M., Fick, L., Allie, N., Brown, N., and Ryffel, B. (2002). Enhanced immune response in Mycobacterium bovis bacille Calmette Guerin (bacillus Calmette-Guerin)-infected interleukin-10-deficient mice. Clin. Chem. Lab. Med. 40, 893–902CrossRefGoogle Scholar
Janeway, C. A. Jr. and Medzhitov, R. (2002). Innate immune recognition. Annu. Rev. Immunol. 20, 197–216CrossRefGoogle ScholarPubMed
Kalinski, P., Hilkens, C. M., Wierenga, E. A., and Kapsenberg, M. L. (1999). T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today 20, 561–7CrossRefGoogle ScholarPubMed
Kaplan, G., Gandhi, R. R., Weinstein, D. E., Levis, W. R., Patarroyo, M. E., Brennan, P. J., and Cohn, Z. A. (1987). Mycobacterium leprae antigen-induced suppression of T cell proliferation in vitro. J. Immunol. 138, 3028–34Google Scholar
Khoo, U. Y., Proctor, I. E., and Macpherson, A. J. (1997). CD4+ T cell down-regulation in human intestinal mucosa: evidence for intestinal tolerance to luminal bacterial antigens. J. Immunol. 158, 3626–34Google ScholarPubMed
Knipp, U., Birkholz, S., Kaup, W., Mahnke, K., and Opferkuch, W. (1994). Suppression of human mononuclear cell response by Helicobacter pylori: effects on isolated monocytes and lymphocytes. FEMS Immunol. Med. Microbiol. 8, 157–66CrossRefGoogle ScholarPubMed
Kullberg, M. C., Jankovic, D., Gorelick, P. L., Caspar, P., Letterio, J. J., Cheever, A. W., and Sher, A. (2002). Bacteria-triggered CD4+ T regulatory cells suppress Helicobacter hepaticus-induced colitis. J. Exp. Med. 196, 505–15CrossRefGoogle Scholar
Kullberg, M. C., Rothfuchs, A. G., Jankovic, D., Caspar, P., Wynn, T. A., Gorelick, P. L., Cheever, A. W., and Sher, A. (2001). Helicobacter hepaticus-induced colitis in interleukin-10-deficient mice: cytokine requirements for the induction and maintenance of intestinal inflammation. Infect. Immun. 69, 4232–41CrossRefGoogle ScholarPubMed
Lanzavecchia, A. and Sallusto, F. (2001). Regulation of T cell immunity by dendritic cells. Cell 106, 263–6CrossRefGoogle ScholarPubMed
Lavelle, E. C., McNeela, E., Armstrong, M. E., Leavy, O., Higgins, S. C., and Mills, K. H. (2003). Cholera toxin promotes the induction of regulatory T cells specific for bystander antigens by modulating dendritic cell activation. J. Immunol. 171, 2384–92CrossRefGoogle ScholarPubMed
Lopes, L. M., Maroof, A., Dougan, G., and Chain, B. M. (2000). Inhibition of T-cell response by Escherichia coli heat-labile enterotoxin-treated epithelial cells. Infect. Immun. 68, 6891–5CrossRefGoogle ScholarPubMed
Lundgren, A., Suri-Payer, E., Enarsson, K., Svennerholm, A. M., and Lundin, B. S. (2003). Helicobacter pylori-specific CD4+ CD25high regulatory T cells suppress memory T-cell responses to H. pylori in infected individuals. Infect. Immun. 71, 1755–62CrossRefGoogle Scholar
MacFarlane, A. S., Schwacha, M. G., and Eisenstein, T. K. (1999). In vivo blockage of nitric oxide with aminoguanidine inhibits immunosuppression induced by an attenuated strain of Salmonella typhimurium, potentiates Salmonella infection, and inhibits macrophage and polymorphonuclear leukocyte influx into the spleen. Infect. Immun. 67, 891–8Google Scholar
Mahon, B. P., Sheahan, B. J., Griffin, F., Murphy, G., and Mills, K. H. (1997). Atypical disease after Bordetella pertussis respiratory infection of mice with targeted disruptions of interferon-gamma receptor or immunoglobulin mu chain genes. J. Exp. Med. 186, 1843–51CrossRefGoogle ScholarPubMed
McBride, J. M., Jung, T., Vries, J. E., and Aversa, G. (2002). interleukin-10 alters dendritic cell function via modulation of cell surface molecules resulting in impaired T-cell responses. Cell Immunol. 215, 162–72CrossRefGoogle ScholarPubMed
McGuirk, P., Johnson, P. A., Ryan, E. J., and Mills, K. H. (2000). Filamentous hemagglutinin and pertussis toxin from Bordetella pertussis modulate immune responses to unrelated antigens. J. Infect. Dis. 182, 1286–9CrossRefGoogle ScholarPubMed
McGuirk, P., Mahon, B. P., Griffin, F., and Mills, K. H. (1998). Compartmentalization of T cell responses following respiratory infection with Bordetella pertussis: hyporesponsiveness of lung T cells is associated with modulated expression of the co-stimulatory molecule CD28. Eur. J. Immunol. 28, 153–633.0.CO;2-#>CrossRefGoogle Scholar
McGuirk, P., McCann, C., and Mills, K. H. (2002). Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses byBordetella pertussis. J. Exp. Med. 195, 221–31CrossRefGoogle Scholar
McGuirk, P. and Mills, K. H. (2000). Direct anti-inflammatory effect of a bacterial virulence factor: interleukin-10-dependent suppression of interleukin-12 production by filamentous hemagglutinin fromBordetella pertussis. Eur. J. Immunol. 30, 415–223.0.CO;2-X>CrossRefGoogle Scholar
Mehra, V., Brennan, P. J., Rada, E., Convit, J., and Bloom, B. R. (1984). Lymphocyte suppression in leprosy induced by unique M. leprae glycolipid. Nature 308, 194–6CrossRefGoogle ScholarPubMed
Mills, K. H. (2001). Immunity toBordetella pertussis. Microbes Infect. 3, 655–77CrossRefGoogle Scholar
Mills, K. H. (2004). Regulatory T cells: friend or foe in immunity to infection?Nat. Rev. Immunol. 4, 841–55CrossRefGoogle ScholarPubMed
Mills, K. H., Barnard, A., Watkins, J., and Redhead, K. (1993). Cell-mediated immunity to Bordetella pertussis: role of Th1 cells in bacterial clearance in a murine respiratory infection model. Infect. Immun. 61, 399–410Google Scholar
Modlin, R. L. (1994). Th1–Th2 paradigm: insights from leprosy. J. Invest. Dermatol. 102, 828–32CrossRefGoogle ScholarPubMed
Moore, K. W., Waal Malefyt, R., Coffman, R. L., and O'Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765CrossRefGoogle ScholarPubMed
Moser, M. and Murphy, K. M. (2000). Dendritic cell regulation of TH1–TH2 development. Nat. Immunol. 1, 199–205CrossRefGoogle ScholarPubMed
Moura, A. C., Modolell, M., and Mariano, M. (1997). Down-regulatory effect of Mycobacterium leprae cell wall lipids on phagocytosis, oxidative respiratory burst and tumour cell killing by mouse bone marrow derived macrophages. Scand. J. Immunol. 46, 500–5CrossRefGoogle ScholarPubMed
Nakane, A., Asano, M., Sasaki, S., Nishikawa, S., Miura, T., Kohanawa, M., and Minagawa, T. (1996). Transforming growth factor beta is protective in host resistance against Listeria monocytogenes infection in mice. Infect. Immun. 64, 3901–4Google ScholarPubMed
Natarajan, K., Latchumanan, V. K., Singh, B., Singh, S., and Sharma, P. (2003). Down-regulation of T helper 1 responses to mycobacterial antigens due to maturation of dendritic cells by 10-kDa Mycobacterium tuberculosis secretory antigen. J. Infect. Dis. 187, 914–28CrossRefGoogle Scholar
Nigou, J., Zelle-Rieser, C., Gilleron, M., Thurnher, M., and Puzo, G. (2001). Mannosylated lipoarabinomannans inhibit interleukin-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J. Immunol. 166, 7477–85CrossRefGoogle ScholarPubMed
Ostroukhova, M., Seguin-Devaux, C., Oriss, T. B., Dixon-McCarthy, B., Yang, L., Ameredes, B. T., Corcoran, T. E., and Ray, A. (2004). Tolerance induced by inhaled antigen involves CD4(+) T cells expressing membrane-bound transforming growth factor-beta and FOXP3. J. Clin. Invest. 114, 28–38CrossRefGoogle ScholarPubMed
Othieno, C., Hirsch, C. S., Hamilton, B. D., Wilkinson, K., Ellner, J. J., and Toossi, Z. (1999). Interaction of Mycobacterium tuberculosis-induced transforming growth factor beta1 and interleukin-10. Infect. Immun. 67, 5730–5Google ScholarPubMed
Pena, J. A., Li, S. Y., Wilson, P. H., Thibodeau, S. A., Szary, A. J., and Versalovic, J. (2004). Genotypic and phenotypic studies of murine intestinal lactobacilli: species differences in mice with and without colitis. Appl. Environ. Microbiol. 70, 558–68CrossRefGoogle ScholarPubMed
Pena, J. A., Rogers, A. B., Ge, Z., Ng, V., Li, S. Y., Fox, J. G., and Versalovic, J. (2005). Probiotic Lactobacillus spp. diminish Helicobacter hepaticus-induced inflammatory bowel disease in interleukin-10-deficient mice. Infect. Immun. 73, 912–20CrossRefGoogle ScholarPubMed
Powrie, F. (2004). Immune regulation in the intestine: a balancing act between effector and regulatory T cell responses. Ann. N Y Acad. Sci. 1029, 132–41CrossRefGoogle ScholarPubMed
Powrie, F., Carlino, J., Leach, M. W., Mauze, S., and Coffman, R. L. (1996). A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4+ T cells. J. Exp. Med. 183, 2669–74CrossRefGoogle ScholarPubMed
Powrie, F., Correa-Oliveira, R., Mauze, S., and Coffman, R. L. (1994). Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J. Exp. Med. 179, 589–600CrossRefGoogle ScholarPubMed
Price, J. D., Schaumburg, J., Sandin, C., Atkinson, J. P., Lindahl, G., and Kemper, C. (2005). Induction of a regulatory phenotype in human CD4+ T cells by streptococcal M protein. J. Immunol. 175, 677–84CrossRefGoogle ScholarPubMed
Redpath, S., Ghazal, P., and Gascoigne, N. R. (2001). Hijacking and exploitation of interleukin-10 by intracellular pathogens. Trends. Microbiol. 9, 86–92CrossRefGoogle ScholarPubMed
Sousa, C. Reis e (2004). Activation of dendritic cells: translating innate into adaptive immunity. Curr. Opin. Immunol. 16, 21–5CrossRefGoogle Scholar
Rosenfeldt, V., Benfeldt, E., Nielsen, S. D., Michaelsen, K. F., Jeppesen, D. L., Valerius, N. H., and Paerregaard, A. (2003). Effect of probiotic Lactobacillus strains in children with atopic dermatitis. J. Allergy Clin. Immunol. 111, 389–95CrossRefGoogle ScholarPubMed
Ross, P. J., Lavelle, E. C., Mills, K. H., and Boyd, A. P. (2004). Adenylate cyclase toxin from Bordetella pertussis synergizes with lipopolysaccharide to promote innate interleukin-10 production and enhances the induction of Th2 and regulatory T cells. Infect. Immun. 72, 1568–79CrossRefGoogle ScholarPubMed
Ryan, E. J., McNeela, E., Pizza, M., Rappuoli, R., O'Neill, L., and Mills, K. H. (2000). Modulation of innate and acquired immune responses by Escherichia coli heat-labile toxin: distinct pro- and anti-inflammatory effects of the nontoxic AB complex and the enzyme activity. J. Immunol. 165, 5750–9CrossRefGoogle ScholarPubMed
Ryan, M., Murphy, G., Gothefors, L., Nilsson, L., Storsaeter, J., and Mills, K. H. (1997). Bordetella pertussis respiratory infection in children is associated with preferential activation of type 1 T helper cells. J. Infect. Dis. 175, 1246–50CrossRefGoogle ScholarPubMed
Sakaguchi, S. (2000). Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–8CrossRefGoogle ScholarPubMed
Salgame, P. R., Birdi, T. J., Lad, S. J., Mahadevan, P. R., and Antia, N. H. (1984). Mechanism of immunosuppression in leprosy – macrophage membrane alterations. J. Clin. Lab. Immunol. 14, 145–9Google ScholarPubMed
Schaible, U. E., and Kaufmann, S. H. (2000). CD1 and CD1-restricted T cells in infections with intracellular bacteria. Trends Microbiol. 8, 419–25CrossRefGoogle ScholarPubMed
Schoppet, M., Bubert, A., and Huppertz, H. I. (2000). Dendritic cell function is perturbed by Yersinia enterocolitica infection in vitro. Clin. Exp. Immunol. 122, 316–23CrossRefGoogle ScholarPubMed
Sewnath, M. E., Olszyna, D. P., Birjmohun, R., ten Kate, F. J., Gouma, D. J., and Poll, T. (2001). interleukin-10-deficient mice demonstrate multiple organ failure and increased mortality during Escherichia coli peritonitis despite an accelerated bacterial clearance. J. Immunol. 166, 6323–31CrossRefGoogle Scholar
Shannon, J. G., Howe, D., and Heinzen, R. A. (2005). Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc. Natl Acad. Sci. U S A 102, 8722–7CrossRefGoogle Scholar
Sing, A., Roggenkamp, A., Geiger, A. M., and Heesemann, J. (2002). Yersinia enterocolitica evasion of the host innate immune response by V antigen-induced interleukin-10 production of macrophages is abrogated in interleukin-10-deficient mice. J. Immunol. 168, 1315–21CrossRefGoogle Scholar
Smits, H. H., Engering, A., Kleij, D., Jong, E. C., Schipper, K., Capel, T. M., Zaat, B. A., Yazdanbakhsh, M., Wierenga, E. A., Kooyk, Y., and Kapsenberg, M. L. (2005). Selective probiotic bacteria induce interleukin-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. 115, 1260–7CrossRefGoogle Scholar
Tournier, J. N., Quesnel-Hellmann, A., Mathieu, J., Montecucco, C., Tang, W. J., Mock, M., Vidal, D. R., and Goossens, P. L. (2005). Anthrax edema toxin cooperates with lethal toxin to impair cytokine secretion during infection of dendritic cells. J. Immunol. 174, 4934–41CrossRefGoogle ScholarPubMed
Turner, J., Gonzalez-Juarrero, M., Ellis, D. L., Basaraba, R. J., Kipnis, A., Orme, I. M., and Cooper, A. M. (2002). In vivo interleukin-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice. J. Immunol. 169, 6343–51CrossRefGoogle ScholarPubMed
Kooyk, Y.and Geijtenbeek, T. B. (2003). dendritic cell-SIGN: escape mechanism for pathogens. Nat. Rev. Immunol. 3, 697–709CrossRefGoogle Scholar
Yao, T., Mecsas, J., Healy, J. I., Falkow, S., and Chien, Y. (1999). Suppression of T and B lymphocyte activation by a Yersinia pseudotuberculosis virulence factor, yopH. J. Exp. Med. 190, 1343–50CrossRefGoogle Scholar
Zeidner, N., Mbow, M. L., Dolan, M., Massung, R., Baca, E., and Piesman, J. (1997). Effects of Ixodes scapularis and Borrelia burgdorferi on modulation of the host immune response: induction of a TH2 cytokine response in Lyme disease-susceptible (C3H/HeJ) mice but not in disease-resistant (BALB/c) mice. Infect. Immun. 65, 3100–6Google Scholar
Zuany-Amorim, C., Sawicka, E., Manlius, C., Moine, A., Brunet, L. R., Kemeny, D. M., Bowen, G., Rook, G., and Walker, C. (2002). Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat. Med. 8, 625–9CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×