Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T06:50:08.918Z Has data issue: false hasContentIssue false

18 - Data assimilation – static models: concepts and formulation

from PART V - DATA ASSIMILATION: STOCHASTIC/STATIC MODELS

Published online by Cambridge University Press:  18 December 2009

John M. Lewis
Affiliation:
National Severe Storms Laboratory, Oklahoma
S. Lakshmivarahan
Affiliation:
University of Oklahoma
Sudarshan Dhall
Affiliation:
University of Oklahoma
Get access

Summary

In this opening chapter of Part V we develop the basic concepts leading to the formulation of the so-called data assimilation problem for static models. This problem arises in a wide variety of application domains and accordingly it goes with different terminologies that are unique to an application domain. For example, in oceanography and geological exploration, it is known as the inverse problem. In meteorology, this is known as the retrieval problem, objective analysis, three dimensional variational assimilation (3DVAR) problem, to mention a few. Henceforth, we use the term static data assimilation problem, retrieval problem, and inverse problem interchangeably. Despite these differences in the origin and the peculiarities of the labels, there is a common mathematical structure – a unity in diversity – that underlie all of these problems. The primary aim of this chapter is to develop this common framework. In Part VI we develop the data assimilation for dynamic models.

In Section 18.1, we describe the basic building blocks leading to the statement of the data assimilation problem for the static model. It turns out that this problem is intrinsically under-determined (where the number n of unknown variables is larger than the number, m of equations) which in turn implies that the solution space has a large degree of freedom (equal to n–m) leading to infinitely many solutions. Any attempt to induce uniqueness of the solution calls for the reduction of the dimensionality of the solution space. This is achieved by a general technique that is called regularization. A comprehensive review of the various regularization techniques that are commonly used is given in Section 18.2.

Type
Chapter
Information
Dynamic Data Assimilation
A Least Squares Approach
, pp. 285 - 299
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×