Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T22:49:49.302Z Has data issue: false hasContentIssue false

14 - Statistical least squares estimation

from PART IV - STATISTICAL ESTIMATION

Published online by Cambridge University Press:  18 December 2009

John M. Lewis
Affiliation:
National Severe Storms Laboratory, Oklahoma
S. Lakshmivarahan
Affiliation:
University of Oklahoma
Sudarshan Dhall
Affiliation:
University of Oklahoma
Get access

Summary

This chapter provides an introduction to the principles and techniques of statistical least squares estimation of an unknown vector x ∈ ℝn when the observations are corrupted by additive random noise. While the techniques and developments in this chapter parallel those of Chapter 5, the key assumption relative to the random nature of the observation sets this chapter apart. An immediate consequence is that the estimates are random variables and we now need to contend with the additional challenge of quantifying its mean, variance and many of the other desirable attributes such as unbiasedness, efficiency, consistency, to mention a few.

Section 14.1 contains the derivation of the statistical least squares estimate. An analysis of the quality of the fit between the linear model and the data is presented in Section 14.2. The Gauss–Markov theorem and its implications of optimality of the linear least squares estimates are covered in Section 14.3. A discussion of the model error and its impact on the quality of the least squares estimate is presented in Section 14.4.

Statistical least squares estimate

Consider the linear estimation problem where the unknown x ∈ ℝn and the known observation z ∈ ℝm are related as

where H ∈ ℝm×n is a known matrix and v is the additive random noise corrupting the observations. For definiteness, it is assumed that m > n. This noise vector v is not observable and to render the problem tractable, the following assumptions are made.

Type
Chapter
Information
Dynamic Data Assimilation
A Least Squares Approach
, pp. 240 - 253
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×