Book contents
- Frontmatter
- PREFACE
- PREFACE TO SECOND EDITION
- Contents
- REFERENCES
- Chap. I Introduction
- Chap. II Bernoulli's Equation
- Chap. III The Stream Function
- Chap. IV Circulation and Vorticity
- Chap. V The Velocity Potential and the Potential Function
- Chap. VI The Transformation of a Circle into an Aerofoil
- Chap. VII The Aerofoil in Two Dimensions
- Chap. VIII Viscosity and Drag
- Chap. IX The Basis of Aerofoil Theory
- Chap. X The Aerofoil in Three Dimensions
- Chap. XI The Monoplane Aerofoil
- Chap. XII The Flow round an Aerofoil
- Chap. XIII Biplane Aerofoils
- Chap. XIV Wind Tunnel Interference on Aerofoils
- Chap. XV The Airscrew: Momentum Theory
- Chap. XVI The Airscrew: Blade Element Theory
- Chap. XVII The Airscrew: Wind Tunnel Interference
- Appendix
- Bibliography
- Index
- Frontmatter
- PREFACE
- PREFACE TO SECOND EDITION
- Contents
- REFERENCES
- Chap. I Introduction
- Chap. II Bernoulli's Equation
- Chap. III The Stream Function
- Chap. IV Circulation and Vorticity
- Chap. V The Velocity Potential and the Potential Function
- Chap. VI The Transformation of a Circle into an Aerofoil
- Chap. VII The Aerofoil in Two Dimensions
- Chap. VIII Viscosity and Drag
- Chap. IX The Basis of Aerofoil Theory
- Chap. X The Aerofoil in Three Dimensions
- Chap. XI The Monoplane Aerofoil
- Chap. XII The Flow round an Aerofoil
- Chap. XIII Biplane Aerofoils
- Chap. XIV Wind Tunnel Interference on Aerofoils
- Chap. XV The Airscrew: Momentum Theory
- Chap. XVI The Airscrew: Blade Element Theory
- Chap. XVII The Airscrew: Wind Tunnel Interference
- Appendix
- Bibliography
- Index
Summary
Note 1. (See p. 2.) It is now more usual to use the “quarter-chord point” as the point of reference for the measurement of moments. “The quarter-chord point” is the point on the chord line one quarter of the chord length from the leading edge.
Note 2. (See p. 39.) The contribution of the pressure and momentum integrals to the lift depends upon the shape of the large contour and the conclusion given on page 39 is not true for all shapes of contour; see Prandtl and Tietjens, Applied Hydro- and Aeromechanics, § 106.
Note 3. (See p. 95.) Since the publication of the first edition of this book a great deal of information on viscous flow and drag has been collected. This seems to show that vortex streets occupy a less significant place in the general picture than is indicated in Chap. VIII. For example, the wake of a circular cylinder takes the form of a vortex street in the range of Reynolds' numbers between 102 and 105, but at higher Reynolds' numbers the flow in the wake is turbulent but not periodic. Similarly, for aerofoils below the stalling incidence, a vortex street is only present in the wake for Reynolds' numbers below 105, which is outside the practical range. An account of modern work on this subject is given in Modern Developments in Fluid Dynamics (referred to elsewhere as FD).
- Type
- Chapter
- Information
- The Elements of Aerofoil and Airscrew Theory , pp. 227 - 229Publisher: Cambridge University PressPrint publication year: 1983