Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T07:30:51.142Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 February 2019

Doyle D. Knight
Affiliation:
Rutgers University, New Jersey
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, T., eds (1965), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York.Google Scholar
Abria, M. (1848), ‘Sur les Lois de L’Induction des Couants par les Courants’, Annales de Chimie et de Physique 7(3), 462488.Google Scholar
Adelgren, R., Elliott, G., Knight, D., Zheltovodov, A. and Buetner, T. (2001), Energy Deposition in Hypersonic Flows, AIAA Paper 2001–0885, American Institute of Aeronautics and Astronautics.Google Scholar
Adelgren, R., Yan, H., Elliott, G., Knight, D., Beutner, T. and Zheltovodov, A. (2005), ‘Control of Edney IV Interaction by Pulsed Laser Energy Deposition’, AIAA Journal 43(2), 256269.Google Scholar
Aerosoft, I. (2012), ‘GASPex Reference Guide’, Version 5.1.2. www.aerosoftinc.com.Google Scholar
Alakbarli, F. (2001), ‘A 13th Century Darwin? Tusi’s Views on Evolution’, Azerbaijan International 9(2), 4849.Google Scholar
Alcock, A. and Ramsden, S. (1966), ‘Two Wavelength Interferometry of a Laser Induced Spark in Air’, Applied Physics Letters 8(8), 187188.Google Scholar
Allis, W. and Brown, S. (1952), ‘High Frequency Electrical Breakdown of Gases’, Physical Review 87(3), 419424.Google Scholar
Allison, J., Cullen, A. and Závody, A. (1962), ‘A Microwave Plasma Discharge’, Nature 193, 156.Google Scholar
Anderson, D., Lisak, M. and Lewin, T. (1984), ‘Breakdown in Air-Filled Microwave Waveguides During Pulsed Operation’, Journal of Applied Physics 56(5), 14141419.Google Scholar
Anderson, D., Lisak, M. and Lewin, T. (1989), ‘Generalized Criteria for Microwave Breakdown in Air-Filled Waveguides’, Journal of Applied Physics 65(8), 29352945.Google Scholar
Anderson, K. and Knight, D. (2011), ‘Interaction of Heated Filaments with a Blunt Cylinder in Supersonic Flow’, Shock Waves 21, 141161.Google Scholar
Anderson, K. and Knight, D. (2012), ‘Plasma Jet for Flight Control’, AIAA Journal 50(9), 18551872.Google Scholar
Arafilov, S. (1987), ‘Effect of Energy Release in the Shock Layer on Supersonic Flight’, Mekhanika Zhidkosti i Gaza 4, 178182.Google Scholar
Arfken, G. (1966), Mathematical Methods for Physicists, Academic Press, New York.Google Scholar
Arsenyeva-Heil, A. and Heil, O. (1935), ‘Eine neue Methode zur Erzengung Kurzer, ungedäpfter elekrotmagnetischer Wellen grosser Intensität. (A New Method for Producing Short, Undamped Electromagnetic Waves of High Intensity)’, Zeitschrift für Physik pp. 752–762.Google Scholar
Artem’ev, V., Bergel’son, A., Kalmykov, A., Nemchinov, I., Orlova, T., Rybakov, V., Smirnov, V. and Khazins, V. (1988), ‘Development of a Forerunner in Interaction of a Shock Wave with a Layer of Reduced Density’, Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkostii Gaza 2, 158163.Google Scholar
Artem’ev, V., Bergel’son, V., Nemchinov, I., Orlova, T., Smirnov, A. and Khazins, V. (1989), ‘Change of Regime in Supersonic Flow Past an Obstacle Preceded by a Thin Channel of Reduced Density’, Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkostii Gaza 5, 146151.Google Scholar
Aston, F. (1907), ‘Experiments on the Length of the Cathode Dark Space with Varying Current Densities and Pressures in Different Gases’, Proceedings of the Royal Society of London, Series A 79(528), 8095.Google Scholar
Ayrton, H. (1902), The Electric Arc, Van Nostrand & Company, New York.Google Scholar
Azarova, O. (2009), ‘A Minimum-Stencil Difference Scheme for Computing Two-Dimensional Axisymmetric Gas Flows: Examples of Pulsating Flows with Instabilities’, Computational Mathematics and Mathematical Physics 49(4), 710728.Google Scholar
Azarova, O., Kolesnichenko, Y. and Knight, D. (2011), ‘Pulsating Stochastic Flows Accompanying Microwave Filament/Supersonic Shock Layer Interaction’, Shock Waves 11, 439450.Google Scholar
Babaeva, N., Mnatsakanyan, A. and Naidis, G. (1992), ‘Dynamics of Nitrogen Discharges in Beams of Electromagnetic Radiation’, Soviet Journal of Plasma Physics 18(8), 549554.Google Scholar
Babaeva, N. and Naidis, G. (2000), Dynamics and Structure of Microwave Discharges in Nitrogen, in Bityurin, V., ed., ‘The Second Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications’, Institute for High Temperatures of Russian Academy of Sciences, Institute for High Temperatures, Moscow, Russian Federation, pp. 175179.Google Scholar
Baeva, M., Luo, X., Pfelzer, B. and Uhlenbusch, J. (1999), ‘Theoretical Investigation of Pulsed Microwave Discharge in Nitrogen’, Plasma Sources Science and Technology 8, 404411.Google Scholar
Bandel, H. (1954), ‘Measurement of the Current during the Formative Time Lag of Sparks in Uniform Fields in Air’, Physical Review 95(5), 11171125.Google Scholar
Baravian, G., Godart, J. and Sultan, G. (1982), ‘Multiphoton Ionization of Molecular Nitrogen by a Neodymium–Glass Laser’, Physical Review A 25(3), 14831495.Google Scholar
Barrow, W. and Chu, L. (1939), ‘Theory of the Electromagnetic Horn’, Proceedings of the Institute of Radio Engineers 27(1), 5164.Google Scholar
Bazelyan, E. and Raizer, Y. (1998), Spark Discharge, CRC Press, New York.Google Scholar
Bebb, H. and Gold, A. (1966), ‘Multiphoton Ionization of Hydrogen and Rare-Gas Atoms’, Physical Review 143(1), 124.Google Scholar
Belokon, V., Rudenko, O. and Khokhlov, R. (1977), ‘Aerodynamic Effects of Supersonic Flow Past a Laser Beam’, Soviet Physics Acoustics 23(4), 361362.Google Scholar
Bertin, J. and Cummings, R. (2009), Aerodynamics for Engineers, Prentice Hall, Upper Saddle River, NJ.Google Scholar
Beust, W. and Ford, W. (1961), ‘Arcing in CW Transmitters’, The Microwave Journal 10, 9195.Google Scholar
Bhatnagar, P., Gross, E. and Krook, M. (1954), ‘A Model for Collision Processes in Gases: I. Small Amplitude Processes in Charged and Neutral One-Component Systems’, Physical Review 94(3), 511525.Google Scholar
Bindhu, C., Harilal, S., Tillack, M., Najmabad, F. and Gaerls, A. (2003), ‘Laser Propagation and Energy Absorption by an Argon Spark’, Journal of Applied Physics 94(12), 74027407.Google Scholar
Bisek, N., Rizzetta, D. and Poggie, J. (2013), ‘Plasma Control of a Turbulent Shock Boundary Layer Interaction’, AIAA Journal 51(8), 17891804.Google Scholar
Bityurin, V., Klimov, A. and Leonov, S. (1999), Assessment of a Concept of Advanced Flow/Flight Control for Hypersonic Flights in Atmosphere, AIAA Paper 1999–4820, American Institute of Aeronautics and Astronautics.Google Scholar
Bletzinger, P., Ganguly, B., Wie, D. V. and Garscadden, A. (2005), ‘Plasmas in High Speed Aerodynamics’, Journal of Physics D: Applied Physics 38, R33–57.Google Scholar
Blevin, H., Fletcher, J. and Hunter, S. (1976), ‘The Electron Drift Velocity and Longitudinal Diffusion Coefficient of an Electron Swarm in Hydrogen at Elevated Swarm Energies’, Journal of Physics D 9(12), 16711679.Google Scholar
Blevin, H., Fletcher, J. and Hunter, S. (1978), ‘The Effect of Non-Uniformities on the Measured Transport Parameters of Electron Swarms in Hydrogen’, Journal of Physics D 1(12), 16631665.Google Scholar
Boenig, H. (1982), Plasma Science and Technology, Cornell University Press, Ithaca, NY.Google Scholar
Boeuf, J.-P., Chaudhury, B. and Zhu, G.-Q. (2010), ‘Theory and Modeling of Self-Organization and Propagation of Filamentary Plasma Arrays in Microwave Breakdown at Atmospheric Pressure’, Physical Review Letters 104, 015002.Google Scholar
Bogoliubov, N. (1946), ‘Problems of a Dynamical Theory in Statistical Physics’, Journal of Physics 10, 256. Translated by Gora, E. in Studies in Statistical Mechanics, 1, de Boer, J. and Uhlenbeck, G., eds., North-Holland Publishing Co., Amsterdam, 1962.Google Scholar
Böhm, J. (1982), Electrostatic Precipitators, Elsevier Science Ltd, New York.Google Scholar
Bollen, W., Yee, C., Ali, A., Nagurney, M. and Read, M. (1983), ‘High-Power Microwave Energy Coupling to Nitrogen During Breakdown’, Journal of Applied Physics 54(1), 101–1–6.Google Scholar
Boltzmann, L. (1872), ‘Weitere Studien über das Wärmegleichgewicht unter Gasmoleculen (Further Studies on the Thermal Equilibrium Among Gas-Molecules)’, Wien. Ber. 66, 275. Collected Works, 1, pp. 316–402.Google Scholar
Bonaventura, Z., Trunec, D., Mes̆ko, M., Vas̆ina, P. and Kudrle, V. (2005), ‘Theoretical Study of Pulsed Microwave Discharge in Nitrogen’, Plasma Sources Science and Technology 14, 571756.Google Scholar
Boot, H. and Randall, J. (1976), ‘Historical Notes on the Cavity Magnetron’, IEEE Transactions on Electron Devices ED-23(7), 724729.Google Scholar
Borisov, N., Kovlov, S. and Smirnova, N. (1993), ‘Changes in the Chemical Composition of the Middle Atmosphere During Multiple Microwave Pulse Discharges in the Air’, Kosmicheskie Issledovaniya 31(2), 6374.Google Scholar
Born, M. and Green, H. (1946), ‘A General Kinetic Theory of Liquids: I. The Molecular Distribution Functions’, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 188(1012), 1018.Google Scholar
Born, M. and Green, H. (1947), ‘A General Kinetic Theory of Liquids: III. Dynamical Properties’, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 190(1023), 455474.Google Scholar
Born, M. and Wolf, E. (1964), Principles of Optics, Pergammon, Oxford.Google Scholar
Borzov, V., Rybka, I. and Yur’ev, A. (1994), ‘Effect of Local Energy Supply to a Hypersonic Flow on the Drag of Bodies with Different Nose Bluntness’, Journal of Engineering Physics and Thermophysics 67(5–6), 9971002.Google Scholar
Bracken, R., Myrabo, L., Nagamatsu, H. and Meloney, E. (2001), Experimental Investigation of an Electric Arc Air-Spike With and Without Blunt Body in Hypersonic Flow, AIAA Paper 2001–796, American Institute of Aeronautics and Astronautics.Google Scholar
Bracken, R., Myrabo, L., Nagamatsu, H., Meloney, E. and Shneider, M. (2001a), Experimental Investigation of an Electric Arc Air-Spike in Mach 10 Flow with Preliminary Drag Measurements, AIAA Paper 2001–2734, American Institute of Aeronautics and Astronautics.Google Scholar
Bracken, R., Myrabo, L., Nagamatsu, H., Meloney, E. and Shneider, M. (2001b), Experimental/Computational Investigation of Electric Arc Air-Spikes in Hypersonic Flow with Drag Measurements, AIAA Paper 2001–3797, American Institute of Aeronautics and Astronautics.Google Scholar
Braunbek, W. (1926), ‘Zur Theorie des Funkenpotentials und der Funkenverzögerung’, Zeitschrift für Physik 39, 623.Google Scholar
Braunbek, W. (1937), ‘Zur Frage der Spannungsabhängigketi des Zündverzugs’, Zeitschrift für Physik 107, 180181.Google Scholar
Bridges, W. (1964), ‘Laser Oscillation in Singly Ionized Argon in the Visible Spectrum’, Applied Physics Letters 4(7), 128130. Also, Applied Physics Letters, 5(2), p. 39.Google Scholar
Brieschenk, S., Kleine, H. and O’Byrne, S. (2013), ‘On the Measurement of Laser-Induced Plasma Breakdown Thresholds’, Journal of Applied Physics 114, 093101.Google Scholar
Brittain, J. (1985), ‘The Magnetron and the Beginnings of the Microwave Age’, Physics Today 38(7), 6067.Google Scholar
Buckingham, E. (1915), ‘The Principle of Similitude’, Nature 96(2406), 396397.Google Scholar
Carrier, G., Krook, M. and Pearson, C. (1966), Functions of a Complex Variable, McGraw-Hill, New York.Google Scholar
Caruana, D., Barricau, P. and Hardy, P. (2009), The”Plasma Synthetic Jet” Actuator. Aero-thermodynamic Characterization and First Flow Control Applications, AIAA Paper 2009–1307, American Institute of Aeronautics and Astronautics.Google Scholar
Caryotakis, G. (1998), The Klystron: A Microwave Source of Surprising Range and Endurance, SLAC Publication 7731, Stanford Linear Accelerator, Stanford University, CA.Google Scholar
Cattafesta, L. and Sheplak, M. (2011), Actuators for Active Flow Control, in Davis, S. and Moin, P., eds, ‘Annual Review of Fluid Mechanics’, Annual Reviews, Inc., Palo Alto, CA, pp. 247272.Google Scholar
Cercignani, C. (1988), The Boltzmann Equation and Its Applications, Springer-Verlag, Berlin.Google Scholar
Chang, J.-S., Lawless, P. and Yamamoto, T. (1991), ‘Corona Discharge Processes’, IEEE Transactions on Plasma Science 19(6), 11521166.Google Scholar
Chapman, S. (1916), ‘On the Law of Distribution of Velocities, and on the Theory of Viscosity and Thermal Conduction, in a Non-Uniform Simple Monatomic Gas’, Philosophical Transactions of the Royal Society of London. Series A 216, 279348.Google Scholar
Chapman, S. (1918), ‘On the Kinetic Theory of a Gas. Part II: A Composite Monatomic Gas: Diffusion, Viscosity, and Thermal Conduction’, Philosophical Transactions of the Royal Society of London. Series A 217, 115197.Google Scholar
Chapman, S. and Cowling, T. (1952), The Mathematical Theory of Non-uniform Gases, second edn, Cambridge University Press, London.Google Scholar
Chapman, S. and Cowling, T. (1970), The Mathematical Theory of Non-Uniform Gases, third edn, Cambridge University Press, Cambridge.Google Scholar
Chaudhury, B. and Boeuf, J.-P. (2010), ‘Computational Studies of Filamentary Pattern Formation in a High Power Microwave Breakdown Generated Air Plasma’, IEEE Transactions on Plasma Science 38(9), 22812288.Google Scholar
Chaudhury, B., Boeuf, J.-P. and Zhu, G.-Q. (2010), ‘Pattern Formation and Propagation During Microwave Breakdown’, Physics of Plasmas 17, 123505–1–123505–11.Google Scholar
Chaudhury, B., Boeuf, J.-P., Zhu, G.-Q. and Pascal, O. (2011), ‘Physics and Modeling of Microwave Streamers at Atmospheric Pressure’, Journal of Applied Physics 110(11), 113306.Google Scholar
Chen, Y.-L., Lewis, J. and Parigger, C. (2000), ‘Spatial and Temporal Profiles of Pulsed Laser-Induced Air Plasma Emissions’, Journal of Quantitative Spectroscopy and Radiative Transfer 67, 91103.Google Scholar
Chernyi, G. (1999), Some Recent Results in Aerodynamic Applications of Flows with Localized Energy Addition, AIAA Paper 1999–4819, American Institute of Aeronautics and Astronautics.Google Scholar
Chevalier, P. (2005), CEDRE: Development and Validation of a Multiphysic Computational Software, Technical report, 1st European Conference for Aerospace Sciences (EUCASS). Moscow, Russian Federation.Google Scholar
Chýlek, P., Jarzembski, M. and Chou, N. (1986), ‘Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown’, Applied Physics Letters 49(21), 14751477.Google Scholar
Clark, M., Sobieradzki, E. and Howard, C. (1988), ‘Magnetrons’. US Patent 4774436.Google Scholar
Clausius, R. (1854), ‘Ueber eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheoriein’, Annalen der Physik und Chemie 93(12), 481506.Google Scholar
Clogston, A. (1941), Forced Oscillations of Electromagnetic Cavity Resonances, PhD thesis, Massachusetts Institute of Technology.Google Scholar
Cobine, J. (1941), Gaseous Conductors: Theory and Engineering Applications, Dover Publications, New York.Google Scholar
Collins, R., Nelson, D., Schawlow, A., Bond, W., Garrett, C. and Kaiser, W. (1960), ‘Coherence, Narrowing, Directionality, and Relaxation Oscillations in the Light Emission from Ruby’, Physical Review Letters 5(7), 303305.Google Scholar
Compton, K. (1923), ‘On the Motion of Electrons in Gases’, Physical Review 22(4), 333346.Google Scholar
Cook, A., Shapiro, M. and Temkin, R. (2010), ‘Pressure Dependence of Plasma Structure in Microwave Gas Breakdown’, Applied Physics Letters 97, 011504–1.Google Scholar
Corrson, D. and Lorrain, P. (1962), Introduction to Electromagnetic Fields and Waves, W. H. Freeman and Company, San Francisco, CA.Google Scholar
Cravath, A. (1930), ‘The Rate at Which Ions Lose Energy in Elastic Collisions’, Physical Review 36, 248250.Google Scholar
Crompton, R., Huxley, L. and Sutton, D. (1953), ‘Experimental Studies of the Motions of Slow Electrons in Air with Application to the Ionosphere’, Proceedings of the Royal Society of London. Series A 218(1135), 508519.Google Scholar
Cybyk, B., Wilkerson, J. and Grossman, K. (2004), Performance Characteristics of the SparkJet Flow Control Actuator, AIAA Paper 2004–2131, American Institute of Aeronautics and Astronautics.Google Scholar
Daiber, J. and Thompson, H. (1967), ‘Laser Driven Detonation Waves in Gases’, Physics of Fluids 10, 11621169.Google Scholar
Damon, E. and Tomlinson, R. (1963), ‘Observation of Ionization of Gases by a Ruby Laser’, Applied Optics 2(5), 546547.Google Scholar
Davy, H. (1812), Elements of Chemical Philosophy, Bradford and Inskeep, Philadelphia, PA.Google Scholar
Davy, H. (1821), ‘On the Magnetic Phenomena Produced by Electricity’, Philosophical Transactions of the Royal Society of London 111, 719.Google Scholar
DeMichelis, C. (1969), ‘Laser Induced Gas Breakdown: A Bibliographical Review’, IEEE Journal of Quantum Electronics QE-5(4), 188202.Google Scholar
Donahue, T. and Dieke, G. (1951), ‘Oscillatory Phenomena in Direct Current Glow Discharges’, Physical Review 51(2), 248261.Google Scholar
Dors, I. and Parigger, C. (2003), ‘Computational Fluid-Dynamic Model of Laser-Induced Breakdown in Air’, Applied Optics 42(30), 59785985.Google Scholar
Dors, I., Parigger, C. and Lewis, J. (2000), Fluid Dynamic Effects Following Laser-Induced Optical Breakdown, AIAA Paper 2000–717, American Institute of Aeronautics and Astronautics.Google Scholar
Druyvesteyn, M. and Penning, F. (1940), ‘The Mechanism of Electrical Discharges in Gases of Low Pressure’, Reviews of Modern Physics 12(2), 87174.Google Scholar
Dvonč, L. and Janda, M. (2015), ‘Study of Transient Spark Discharge Properties Using Kinetic Modeling’, IEEE Transactions on Plasma Science 45(8), 25622570.Google Scholar
Eberly, J. and O’Neil, S. (1979), ‘Coherence versus Incoherence: Time-independent Rates for Resonant Two-Photon Ionization’, Physical Review A 19(3), 11611168.Google Scholar
Eckart, C. (1926), ‘Operational Calculus and the Solution of the Equations of Quantum Dynamics’, Physical Review 28, 711726.Google Scholar
Edney, B. (1968 a), Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock, FAA Report 115, Aeronautical Research Institute of Sweden, Stockholm.Google Scholar
Edney, B. (1968 b), ‘Effects of Shock Impingement on the Heat Transfer Around Blunt Bodies’, AIAA Journal 6(1), 1521.Google Scholar
Einfeldt, B., Munz, C., Roe, P. and Sjogreen, S. (1991), ‘On Godunov-Type Methods Near Low Densities’, Journal of Computational Physics 92(2), 273295.Google Scholar
Elenbaas, W. (1934), ‘Die Quecksilber-Hochdruckentladung’, Physica 1 211, 673688.Google Scholar
Elenbaas, W. (1951), The High Pressure Mercury Vapor Discharge, North Holland Publishers, Amsterdam.Google Scholar
Eliasson, B. and Kogelschatz, U. (1991), ‘Nonequilibrium Volume Plasma Chemical Processing’, IEEE Transactions on Plasma Science 19(6), 10631077.Google Scholar
Enskog, D. (1917), The Kinetic Theory of Phenomena in Fairly Rare Gases, PhD thesis, Uppsala University.Google Scholar
Enskog, D. (1921), ‘The Numerical Calculation of Phenomena in Fairly Rare Gases’, Arkiv för Matematik, Astronomi och Fysik 16(1).Google Scholar
Epstein, B. (1962), Partial Differential Equations: An Introduction, McGraw-Hill, New York.Google Scholar
Espersen, G. (1961), ‘Klystron’. US Patent 2972080.Google Scholar
Evans, L. and Morgan, C. G. (1969), ‘Intensity Distribution of Focused Laser Beams in Bio-medical Studies’, Physical Medical Biology 14(2), 208212.Google Scholar
Eyring, C., Mackeown, S. and Millikan, R. (1928), ‘Fields Currents from Points’, Physical Review 31(5), 900909.Google Scholar
Fedorchenko, A. (1981), ‘Two-Dimensional Nonlinear Wave Processes Associated with Impulsive Local Heat Release in a Gas Flow’, Soviet Physics Acoustics 27(4), 330335.Google Scholar
Fedorchenko, A. (1986), ‘Generation of Nonlinear Waves in a Supersonic Flow by Volume Heat Release Sources’, Soviet Physics Acoustics 32(2), 135139.Google Scholar
Fomin, V., Tretyakov, P. and Taran, J.-P. (2004), ‘Flow Control Using Various Plasma and Aerodynamic Approaches (Short Review)’, Aerospace Science and Technology 8, 411421.Google Scholar
Forkey, J., Finkelstein, N., Lempert, W. and Miles, R. (1994), ‘Demonstration and Characterization of Filtered Rayleigh Scattering for Planar Velocity Measurements’, AIAA Journal 34(3), 442448.Google Scholar
Fridman, A. (2008), Plasma Chemistry, Cambridge University Press, Cambridge.Google Scholar
Fridman, A. and Kennedy, L. (2004), Plasma Physics and Engineering, Taylor & Francis, New York.Google Scholar
Gad-El-Hak, M. (2007), Flow Control: Passive, Active, and Reactive Flow Management, Cambridge University Press, London.Google Scholar
Georgievsky, P. and Levin, V. (2009), Instability of Front Separation Regions Initiated by Energy Deposition of Various Geometrical Configurations, AIAA Paper 2009–1223, American Institute of Aeronautics and Astronautics.Google Scholar
Georgievsky, P., Levin, V. and Sutyrun, O. (2010), ‘Two-Dimensional Self-Similar Flows Generated by the Interaction between a Shock and Low-Density Gas Regions’, Fluid Dynamics 45(2), 281288. Translation from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkostii Gaza, 2010, 45(2), pp. 126134.Google Scholar
Gerling, T., Hoder, T., Bussiahn, R., Brandenburg, R. and Weltmann, K.-D. (2013), ‘On the Spatio-Temporal Dynamics of a Self-Pulsed Nanosecond Transient Spark Discharge: A Spectroscopic and Electrical Analysis’, Plasma Sources Science and Technology 22, 065012.Google Scholar
Geusic, J., Hensel, M. and Smith, R. (1965), ‘A Repetitively Q-Switched, Continuously Pumped YAG:Nd Laser’, Applied Physics Letters 6(9), 175177.Google Scholar
Geusic, J., Marcos, H. and Uitert, L. V. (1964), ‘Laser Oscillations in Nd-doped Yttrium Aluminum, Yttrium Gallium and Gadolinium Garnets’, Applied Physics Letters 4(10), 182184.Google Scholar
Ghosh, S. and Mahesh, K. (2008), ‘Numerical Simulation of the Fluid Dynamic Effects of Laser Energy Deposition in Air’, Journal of Fluid Mechanics 605, 329354.Google Scholar
Girgis, I., Shneider, M., Macheret, S., Brown, G. and Miles, R. (2002), Creation of Steering Moments in Supersonic Flow by Off-Axis Plasma Heat Addition, AIAA Paper 2002–129, American Institute of Aeronautics and Astronautics.Google Scholar
Glumac, N. and Elliott, G. (2007), ‘The Effect of Ambient Pressure on Laser-Induced Plasmas in Air’, Optics and Lasers in Engineering 45, 2735.Google Scholar
Glumac, N., Elliott, G. and Boguszko, M. (2005), ‘Temporal and Spatial Evolution of a Laser Spark in Air’, AIAA Journal 43(9), 19841994.Google Scholar
Gnemmi, P., Charon, R., Dupéroux, J.-P. and George, A. (2008), ‘Feasibility Study for Steering a Supersonic Projectile by a Plasma Actuator’, AIAA Journal 46(6), 13081317.Google Scholar
Golbabaei-Asl, M. and Knight, D. (2014), ‘Numerical Characterization of High-Temperature Filament Interaction with Blunt Cylinder at Mach 3’, Shock Waves 24(2), 123138.Google Scholar
Golbabaei-Asl, M., Knight, D., Anderson, K. and Wilkinson, S. (2013), SparkJet Efficiency, AIAA Paper 2013–0928, American Institute of Aeronautics and Astronautics.Google Scholar
Gold, A. and Bebb, B. (1965), ‘Theory of Multiphoton Ionization’, Physical Review Letters 14(3), 6063.Google Scholar
Goldsmith, E. and Seddon, J. (1993), Practical Intake Aerodynamic Design, American Institute of Aeronautics and Astronautics, Reston, VA.Google Scholar
Golovachev, Y. and Leont’eva, N. (1989), ‘Unsteady Supersonic Flow Past a Sphere Moving Through a Thermal Inhomogeneity’, Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkostii Gaza 2, 186189.Google Scholar
Gontier, Y., Rahman, N. and Trahin, M. (1976), ‘Exact Summation of Higher Order Terms in Multi-Photon Processes’, Physical Review 14(6), 21092125.Google Scholar
Gontier, Y. and Trahin, M. (1979), ‘Theory of Resonant Multiphoton Ionization: Application to the Cesium Atom.’, Physical Review 19(1), 264277.Google Scholar
Gordeev, V., Krasil’nikov, A., Lagutin, V. and Osmennikov, V. (1996), ‘Experimental Study of the Possibility of Reducing Supersonic Drag by Employing Plasma Technology’, Fluid Dynamics 31(2), 313317.Google Scholar
Gordon, E., Labuda, E. and Bridges, W. (1964), ‘Continuous Visible Laser Action in Singly Ionized Argon, Krypton, and Xenon’, Applied Physics Letters 4(10), 178180.Google Scholar
Gordon, J., Zeiger, H. and Townes, C. (1954), ‘Molecular Microwave Oscillator and New Hyperfine Structure in the Microwave Spectrum of NH3’, Physical Review 95(1), 282284.Google Scholar
Gould, L. and Roberts, L. (1956), ‘Breakdown of Air at Microwave Frequencies’, Journal of Applied Physics 27(10), 11621170.Google Scholar
Green, H. (1947), ‘A General Kinetic Theory of Liquids: II Equilibrium Properties’, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 189(1016), 103117.Google Scholar
Grossman, K., Cybyk, B., Rigling, M. and VanWie, D. (2004), Characterization of SparkJet Actuators for Flow Control, AIAA Paper 2004–0089, American Institute of Aeronautics and Astronautics.Google Scholar
Grossman, K., Cybyk, B. and VanWie, D. (2003), SparkJet Actuators for Flow Control, AIAA Paper 2003–0057, American Institute of Aeronautics and Astronautics.Google Scholar
Grove, W. (1846), ‘On the Correlation of Physical Forces’, a course of lectures delivered at the London Institution.Google Scholar
Haack, S., Taylor, T., Emhoff, J. and Cybyk, B. (2010), Development of an Analytical SparkJet Model, AIAA Paper 2010–4979, American Institute of Aeronautics and Astronautics.Google Scholar
Hahn, W. (1939 a), ‘Small Signal Theory of Velocity-Modulated Electron Beams’, General Electric Review 42, 258.Google Scholar
Hahn, W. (1939 b), ‘Wave Energy and Transconductance of Velocity Modulated Beams’, General Electric Review 42, 497.Google Scholar
Hale, D. (1939), ‘The Townsend Ionization Coefficient for Ni and Al Cathods in an Atmosphere of Hydrogen’, Physical Review 56, 11991202.Google Scholar
Hall, R. (1960), The Lift and Drag on a Rotating Cylinder in Supersonic Flow, NAVORD Report 6039, US Naval Ordnance Laboratory.Google Scholar
Hansen, W. (1938), ‘A Type of Electrical Resonator’, Journal of Applied Physics 9, 654663.Google Scholar
Hansen, W. (1939), ‘On the Resonant Frequency of Closed Concentric Lines’, Journal of Applied Physics 10, 3845.Google Scholar
Hansen, W. and Richtmyer, R. (1939), ‘On Resonators Suitable for Klystron Oscillators’, Journal of Applied Physics 10, 189199.Google Scholar
Hardy, P., Barricau, P., Caruana, D., Gleyzes, C., Belinger, A. and Cambronne, J. (2010), Plasma Synthetic Jet for Flow Control, AIAA Paper 2010–5103, American Institute of Aeronautics and Astronautics.Google Scholar
Harrison, A. (1947), Klystron Tubes, McGraw-Hill, New York.Google Scholar
Harrison, M. and Geballe, R. (1953), ‘Simultaneous Measurement of Ionization and Attachment Coefficients’, The Physical Review 91(1), 17.Google Scholar
Harten, A. and Chakravarthy, S. (1991), Multi-dimensional ENO Schemes for General Geometries, Technical Report 91–76, Institute for Computer Applications in Science and Engineering.Google Scholar
Hartree, D. (1943), ‘‘, Committee for Valve Development Report, Report 1536, Mag. 17 (unpublished), as cited in Lindsay, P. et al., Physics of Plasmas 4(2), 1997.Google Scholar
Haus, H. and Melcher, J. (1989), Electromagnetic Fields and Energy, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Hecht, J. (1992), Laser Pioneers, Academic Press, San Diego, CA.Google Scholar
Heisenberg, W. (1925), ‘Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen’, Zeitschrift fü Physik 33, 879893.Google Scholar
Herlin, M. and Brown, S. (1948), ‘Breakdown of a Gas at Microwave Frequencies’, Physical Review 74(3), 291296.Google Scholar
Hertz, G. (1937), ‘Zur Frage der Spannungsabhängigkeit des Zündverzuges’, Zeitschrift für Physik 106, 102107.Google Scholar
Hidaka, Y., Choi, E., Mastovsky, I., Shapiro, M., Sirigiri, J., Temkin, R., Edmiston, G., Neuber, A. and Oda, Y. (2009), ‘Plasma Structures Observed in Gas Breakdown Using a 1.5 MW 110 GHz Pulsed Gyrotron’, Physics of Plasmas 16, 055702.Google Scholar
Holst, G. and Oosterhuis, E. (1923), ‘The Sparking-Potential of Gases’, Philosophical Magazine 46, 11171122.Google Scholar
Howatson, A. (1976), An Introduction to Gas Discharges, second edn, Pergammon, Oxford.Google Scholar
Hull, A. (1921), ‘The Effect of a Uniform Magnetic Field on the Motion of Electrons Between Coaxial Cylinders’, Physical Review 18(1), 3162.Google Scholar
Janda, M., Machala, Z., Niklová, A. and Martišovitš, V. (2012), ‘The Streamer-to-Spark Transition in a Transient Spark: A DC-Driven Nanosecond-Pulsed Discharge in Atmospheric Air’, Plasma Sources Science and Technology 21, 045006.Google Scholar
Janda, M., Martišovitš, V., Hensel, K. and Dvonč, L. (2014), ‘Measurement of the Electron Density in Transient Spark Discharge’, Plasma Sources Science and Technology 23, 065016.Google Scholar
Javan, A., Bennett, W. and Herriott, D. (1961), ‘Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He–Ne Mixture’, Physical Review Letters 6(3), 106110.Google Scholar
Jeans, J. (1925), The Dynamical Theory of Gases, Cambridge University Press, Cambridge.Google Scholar
Jeans, J. (1946), An Introduction to the Kinetic Theory of Gases, Cambridge University Press, Cambridge.Google Scholar
Jiang, Z., Takayama, K., Moosad, K., Onodera, O. and Sun, M. (1998), ‘Numerical and Experimental Study of a Micro-Blast Wave Generated by Pulsed-Laser Beam Focusing’, Shock Waves 8, 337349.Google Scholar
Joarder, R., Gebel, G. and Mosbach, T. (2013), ‘Two-Dimensional Numerical Simulation of a Decaying Laser Spark in Air with Radiation Loss’, International Journal of Heat and Mass Transfer 63, 284300.Google Scholar
Jones, D. (1968), ‘Intermediate Strength Blast Wave’, Physics of Fluids 11(8), 16641667.Google Scholar
Joule, J. (1843), ‘On the Calorific Effects of Magneto-Electricity, and on the Mechanical Value of Heat’, Philosophical Magazine 23(3), 263276, 347–355, 435–443.Google Scholar
Kakos, A., Ostrovskaya, G., Ostrovskii, Y. and Zaidel, Y. (1966), ‘Interferometry Holographic Investigation of a Laser Spark’, Physics Letters 23(1), 8183.Google Scholar
Kandala, R. (2005), Numerical Simulations of Laser Energy Deposition for Supersonic Flow Control, PhD thesis, Department of Aerospace Engineering and Mechanics, University of Minnesota.Google Scholar
Kandala, R. and Candler, G. (2004), ‘Numerical Studies of Laser-Induced Energy Deposition for Supersonic Flow Control’, AIAA Journal 42(11), 22662275.Google Scholar
Kennard, E. (1938), Kinetic Theory of Gases, McGraw-Hill, New York.Google Scholar
Khinchin, A. (1949), Mathematical Foundations of Statistical Mechanics, Dover Publications, New York.Google Scholar
Khmara, D., Kolesnichenko, Y. and Knight, D. (2006), A Kinetic Model of Microwave Energy Deposition in Air, in Kuranov, A., ed., ‘Fifth Workshop on Thermochemical Processes in Plasmadynamics’, Leninetz Holding Company, Leninetz Holding Company, St. Petersburg, Russian Federation.Google Scholar
Kianvashrad, N., Knight, D., Wilkinson, S., Chou, A., Horne, R., Herring, G., Beeler, G. and Jangda, M. (2017), Effect of Off-Body Laser Discharge on Drag Reduction of Hemisphere Cylinder in Supersonic Flow, AIAA Paper 2017–3478, American Institute of Aeronautics and Astronautics.Google Scholar
Kim, A. and Fraiman, G. (1983), ‘Nonlinear Stage of the Thermal-Ionization Instability in a High Pressure RF Discharge’, Soviet Journal of Plasma Physics 9(3), 358360.Google Scholar
Kim, J.-H., Kastner, J. and Samimy, M. (2009), ‘Active Control of a High Reynolds Number Mach 0.9 Axisymmetric Jet’, AIAA Journal 47(1), 116128.Google Scholar
Kirk, B., Raven, J. and Schofield, M. (1983), The Presocratic Philosophers: A Critical History with a Selection of Texts, 2nd edn, Cambridge University Press, London.Google Scholar
Kirkwood, J. (1946), ‘The Statistical Mechanical Theory of Transport Processes: I. General Theory’, Journal of Chemical Physics 14(3), 180201 and p. 347 (errata).Google Scholar
Kirkwood, J. (1947), ‘The Statistical Mechanical Theory of Transport Processes: II. Transport in Gases’, Journal of Chemical Physics 15(1), 7276.Google Scholar
Knight, D. (2006), Elements of Numerical Methods for Compressible Flows, Cambridge University Press, New York.Google Scholar
Knight, D. (2008), ‘Survey of Aerodynamic Drag Reduction at High Speed by Energy Deposition’, Journal of Propulsion and Power 24(6), 11531167.Google Scholar
Knight, D., Kolesnichenko, Y., Brovkin, V., Khmara, D., Lashkov, V. and Mashek, I. (2009), ‘Interaction of Microwave-Generated Plasma with a Hemisphere Cylinder at Mach 2.1’, AIAA Journal 47(12), 29963010.Google Scholar
Knight, D., Kuchinskiy, V., Kuranov, A. and Sheikin, E. (2002), Aerodynamic Flow Control at High Speed Using Energy Deposition, in Bityurin, V., ed., ‘Fourth Workshop on Magneto-Plasma Aerodynamics for Aerospace Applications’, Joint Institutes for High Temperatures, Russian Academy of Sciences, Moscow, Russian Federation, pp. 1430.Google Scholar
Knight, D., Kuchinskiy, V., Kuranov, A. and Sheikin, E. (2003), Survey of Aerodynamic Flow Control at High Speed by Energy Deposition, AIAA Paper 2003–0525, American Institute of Aeronautics and Astronautics.Google Scholar
Koch, B.-P., Goepp, N. and Bruhn, B. (1997), ‘Hopf Bifurcations in Balance Equations of Glow Discharges’, Physical Review E 56(2), 21182129. Erratum: Physics Review E, Vol. 62, No. 1, pp. 1455.Google Scholar
Koga, T. (1970), Introduction to Kinetic Theory Stochastic Processes in Gaseous Systems, Pergammon Press, New York.Google Scholar
Kogan, M., Ivanov, D., Shapiro, E. and Yegorov, I. (2000), Local Heat Supply Influence on a Flow Over a Sphere, AIAA Paper 2000–0209, American Institute of Aeronautics and Astronautics.Google Scholar
Kogan, M., Kucherov, A., Mikhailov, V. and Fonarev, A. (1978), ‘Planar Gas Flows with Weak Energy Supply’, Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkostii Gaza 5, 95102.Google Scholar
Kogan, M. and Mikhailov, V. (1974), ‘Self-Similar Solutions for Energy Liberation in a Gas Stream’, Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkostii Gaza 6, 106113.Google Scholar
Kolesnichenko, Y., Brovkin, V., Azarova, O., Grudnitsky, V., Lashkov, V. and Mashek, I. (2003), Microwave Energy Deposition for Aerodynamic Application, AIAA Paper 2003–0361, American Institute of Aeronautics and Astronautics.Google Scholar
Korobkin, V., Mandel’shtam, S., Pashinin, P., Prokhindeev, A., Prokhorov, A., Skkhodrev, N. and Shchelev, M. (1968), ‘Investigation of the Air Spark Produced by Focused Laser Radiation, III’, Soviet Physics – JETP 26(1), 7985.Google Scholar
Korobkin, V., Marin, M., Pil’skii, V., Polonskii, L. and Pyatnitskii, L. (1985), ‘Formation of a Continuous Laser Spark in Air’, Soviet Journal of Quantum Electronics 15(5), 631633.Google Scholar
Kourtzanidis, K., Boeuf, J.-P. and Rogier, F. (2014), ‘Three Dimensional Simulations of Pattern Formation During High-Pressure Freely Localized Microwave Breakdown in Air’, Physics of Plasmas 21, 123513.Google Scholar
Kourtzanidis, K., Rogier, F. and Boeuf, J.-P. (2015), ‘ADI-FDTD Modeling of Microwave Plasma Discharges in Air Towards Fully Three-Dimensional Simulations’, Computer Physics Communications 195, 4960.Google Scholar
Krasnobaev, K. (1984), ‘Supersonic Flow Past Weak Sources of Radiation’, Mekhanika Zhidkosti i Gaza 4, 133136.Google Scholar
Krasnobaev, K. and Syunyaev, R. (1983), ‘Calculation of Flow of Stellar Wind Past an X-ray Source’, Mekhanika Zhidkosti i Gaza 4, 106111.Google Scholar
Kremeyer, K., Sebastian, K. and Shu, C.-W. (2006), ‘Computational Study of Shock Mitigation and Drag Reduction by Pulsed Energy Lines’, AIAA Journal 44(8), 17201731.Google Scholar
Kroll, N. (1948), The Unstrapped Resonant System, in Collins, G., ed., ‘Microwave Magnetrons’, McGraw-Hill, New York, pp. 4982.Google Scholar
Kroll, N. and Lamb, W. (1948), ‘The Resonant Modes of the Rising Sun and Other Unstrapped Magnetron Anode Blocks’, Journal of Applied Physics 19, 166186.Google Scholar
Kroll, N. and Watson, K. (1973), ‘Charged-Particle Scattering in the Presence of a Strong Electromagnetic Wave’, Physical Review 8(2), 803809.Google Scholar
Kuhn, K. (1998), Laser Engineering, Prentice-Hall, Inc., Upper Saddle River, NJ.Google Scholar
Kuiken, H. (1991 a), ‘An Asymptotic Treatment of the Elenbaas–Heller Equation for a Radiating Wall-Stabilized High-Pressure Gas Discharge’, Journal of Applied Physics 70(10), 52825291.Google Scholar
Kuiken, H. (1991 b), ‘Asymptotic Treatment of the Elenbaas–Heller Equation’, Applied Physics Letters 58(17), 18331835.Google Scholar
Kuiken, H. (1992 a), ‘Higher Approximations to the Solution of a Problem Concerning a High Pressure Gas-Discharge Arc’, Applied Mathematics Letters 5(2), 1318.Google Scholar
Kuiken, H. (1992 b), ‘Structure of the Temperature Profile within a High-Pressure Gas-Discharge Lamp Operating Near Maximum Radiation Efficiency’, Journal of Engineering Mathematics 26, 3950.Google Scholar
Lamb, L. and Lin, S.-C. (1957), ‘Electrical Conductivity of Thermally Ionized Air Produced in a Shock Tube’, Journal of Applied Physics 28(7), 754759.Google Scholar
Langevin, P. (1905), ‘Une Formule Fondamentale de Théorie Cinétique’, Annales de Chimie et de Physique 8, 245288.Google Scholar
Langmuir, I. (1913), ‘The Effect of Space Charge and Residual Gases on Thermionic Currents in High Vacuum’, Physical Review 2(6), 450486.Google Scholar
Langmuir, I. (1923), ‘Positive Ion Currents from the Positive Column of Mercury Arcs’, Science 58(1502), 290291.Google Scholar
Langmuir, I. (1928), ‘Oscillations in Ionized Gases’, Proceedings of the National Academy of Sciences of the United States 14(8), 627637.Google Scholar
Lashkov, V., Mashek, I., Anisimov, Y., Ivanov, V., Kolesnichenko, Y., Ryvkin, M. and Gorynya, A. (2004), Gas Dynamic Effect of Microwave Discharge on Supersonic Cone-Shaped Bodies, AIAA Paper 2004–0671, American Institute of Aeronautics and Astronautics.Google Scholar
Lauer, E., Yu, S. and Cox, D. (1981), ‘Onset of Self-Breakdown in a Low-Pressure Spark Gap’, Physical Review A 23(5), 22502259.Google Scholar
Lavoisier, A.-L. (1789), ‘Traité élémentaire de chimie, présenté dans un ordre nouveau, et d’après les découvertes modernes.’, Chez Couchet, Libraire, rue & hôtel Serpente .Google Scholar
Lencioni, D. (1973), ‘The Effect of Dust on 10.6 µm Laser-Induced Air Breakdown’, Applied Physics Letters 23(1), 1214.Google Scholar
Leonov, S., Yanantsev, D. and Falempin, F. (2012), Flow Control in a Supersonic Inlet Model by Electrical Discharge, in Reijasse, P., Knight, D., Ivanov, M. and Lipatov, I., eds, ‘Progress in Flight Physics, Vol. 3’, Torus Press, Moscow, pp. 557568.Google Scholar
Levin, V. and Terent’eva, L. (1993), ‘Supersonic Flow Over a Cone with Heat Release in the Neighborhood of the Apex’, Mekhanika Zhidkosti i Gaza 2, 110114.Google Scholar
Lieberman, M. and Lichtenberg, A. (1994), Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, New York.Google Scholar
Liepmann, H. and Roshko, A. (1957), Elements of Gasdynamics, John Wiley & Sons, Inc, New York.Google Scholar
Light, G. and Taylor, E. (1968), ‘Microwave Breakdown in High-Temperature Air’, Journal of Applied Physics 39(3), 15911597.Google Scholar
Lin, S. (1954), ‘Cylindrical Shock Waves Produced by Instantaneous Energy Release’, Journal of Applied Physics 25(1), 5457.Google Scholar
Lindsay, P., Esterson, M. and Chen, X. (1997), ‘The Magnetron’Threshold Voltage’ Revisited’, Physics of Plasmas 4(2), 463468.Google Scholar
Liouville, J. (1838), Journal de Mathématiques Pures et Appliquées 3, 348.Google Scholar
Lisovskiĭ, V. (1999), ‘Criterion for Microwave Breakdown of Gases’, Technical Physics 44(11), 12821285.Google Scholar
Litton, C. (1943), ‘Electrode Structure for Velocity Modulation Tubes’. US Patent 2325865.Google Scholar
Loeb, L. (1924), ‘Gas Ion Mobilities and Their Independence of the Nature of the Ion’, Philosophical Magazine 48, 446458.Google Scholar
Loeb, L. (1925), ‘Gas Ion Mobilities’, Philosophical Magazine 49, 517519.Google Scholar
Loeb, L. (1929), ‘The Mechanism of Spark Discharge in Air at Atmospheric Pressure’, Science 69(1794), 509512.Google Scholar
Loeb, L. (1934), The Kinetic Theory of Gases, McGraw-Hill, New York.Google Scholar
Loeb, L. (1939), Fundamental Processes of Electrical Discharge in Gases, John Wiley & Sons, New York.Google Scholar
Loeb, L. (1948), ‘Certain Aspects of the Mechanism of Spark Discharge’, Proceedings of the Physical Society, London 60, 561573.Google Scholar
Lofthus, A. and Krupenie, P. (1977), ‘The Spectrum of Molecular Nitrogen’, Journal of Physical and Chemical Reference Data 6, 113307.Google Scholar
Loginov, M., Adams, N. and Zheltovodov, A. (2006), ‘Large Eddy Simulation of Shock-Wave/Turbulent Boundary-Layer Interaction’, Journal of Fluid Mechanics 565, 135169.Google Scholar
Longnecker, M., Huwel, L., Cadwell, L. and Nassif, D. (2003), ‘Laser-Generated Spark Morphology and Temperature Records from Emission and Rayleigh Scattering Studies’, Applied Optics 42(6), 990996.Google Scholar
Lowke, J. (1979), ‘Calculated Properties of Vertical Arcs Stabilized by Natural Convection’, Journal of Applied Physics 50(1), 147157.Google Scholar
Ma, L. (2004), 3D Computer Modeling of Magnetrons, PhD thesis, Department of Electrical Engineering, Queen Mary, University of London.Google Scholar
MacDonald, A. (1966), Microwave Breakdown in Gases, John Wiley & Sons, New York.Google Scholar
MacDonald, A. and Betts, D. (1952), ‘High Frequency Gas Discharge Breakdown in Neon’, Canadian Journal of Physics 30, 565576.Google Scholar
MacDonald, A. and Brown, S. (1949 a), ‘High Frequency Gas Discharge in Helium’, Physical Review 75(3), 411418.Google Scholar
MacDonald, A. and Brown, S. (1949 b), ‘High Frequency Gas Discharge in Hydrogen’, Physical Review 76(11), 16341639.Google Scholar
MacDonald, A., Gaskell, D. and Gitterman, H. (1963), ‘Microwave Breakdown in Air, Oxygen and Nitrogen’, Physical Review 130(5), 18411850.Google Scholar
MacDonald, H. (1902), Electric Waves, Cambridge University Press, Cambridge.Google Scholar
Maiman, T. (1960), ‘Stimulated Optical Radiation in Ruby’, Nature 187, 494.Google Scholar
Maker, P., Terhune, R. and Savage, C. (1963), Optical Third Harmonic Generation, in Grivet, P. and Bloembergen, N., eds, ‘Proceedings of the 3rd International Conference on Quantum Electronics’, Columbia University Press, New York.Google Scholar
Mandel’shtam, S., Pashinin, P., Raizer, A. P. Y. and Sukhodrev, N. (1966), ‘Investigation of the Spark Discharge Produced in Air by Focusing Laser Radiation II’, Soviet Physics JETP 22(1), 9196.Google Scholar
March, V., Arrayas, M., Trueba, J., Montanya, J., Romero, D., Sola, G. and Aranguren, D. (2009), ‘Features of Electrical Discharges in Air Triggered by Laser’, Journal of Electrostatics 67, 301306.Google Scholar
Marion, J. (1965), Classical Electromagnetic Radiation, Academic Press, New York.Google Scholar
Maurer, F. and Brungs, W. (1968), Shock Wave and Drag Variation of Blunt Bodies in Supersonic Flow by Heat Addition in the Stagnation Point Region, in ’Sixth Congress of the International Council on Aeronautical Sciences’, München, Germany, pp. ICAS Paper No. 68–13.Google Scholar
Maxwell, J. (1861 a), ‘On Physical Lines of Force. Part I: The Theory of Molecular Vortices Applied to Magnetic Phenomena’, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 21, 161175. Fourth Series.Google Scholar
Maxwell, J. (1861 b), ‘On Physical Lines of Force. Part II: The Theory of Molecular Vortices Applied to Electric Currents’, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 21, 281291 and 338–348. Fourth Series.Google Scholar
Maxwell, J. (1861 c), ‘On Physical Lines of Force. Part III: The Theory of Molecular Vortices Applied to Statical Electricity’, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 21, 1224. Fourth Series.Google Scholar
Maxwell, J. (1861 d), ‘On Physical Lines of Force. Part IV: The Theory of Molecular Vortices Applied to the Action of Magnetism on Polarized Light’, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 21, 8595. Fourth Series.Google Scholar
Maxwell, J. (1865), ‘A Dynamical Theory of the Electromagnetic Field’, Philosophical Transactions of the Royal Society of London 155, 459512.Google Scholar
Mayhan, J. (1971), ‘Comparison of Various Microwave Breakdown Prediction Models’, Journal of Applied Physics 41(13), 53625369.Google Scholar
McCroskey, W. (1981), The Phenomenon of Dynamic Stall, NASA TM 81264, NASA Ames Research Center.Google Scholar
McTaggart, F. (1967), Plasma Chemistry in Electrical Discharges, Elsevier, Amsterdam.Google Scholar
Meek, J. (1940), ‘A Theory of Spark Discharge’, Physical Review 57, 722728.Google Scholar
Meek, J. and Craggs, J. (1953), Electrical Breakdown of Gases, Clarendon Press, Oxford.Google Scholar
Meshkov, E. (1969), ‘Instability of the Interface of Two Gases Accelerated by a Shock Wave’, Soviet Fluid Dynamics 4, 101104.Google Scholar
Meyerand, R. and Haught, A. (1963), ‘Gas Breakdown at Optical Frequencies’, Physical Review Letters 11(9), 401403.Google Scholar
Meyerand, R. and Haught, A. (1964), ‘Optical-Energy Absorption and High-Density Plasma Production’, Physical Review Letters 13(1), 79.Google Scholar
Miles, R. and Lempert, W. (1990), ‘Two-Dimensional Measurement of Density, Velocity and Temperature in Turbulent High-Speed Air Flows by UV Rayleigh Scattering’, Applied Physics B 51, 17.Google Scholar
Millikan, R. and White, D. (1963), ‘Systematics of Vibrational Relaxation’, The Journal of Chemical Physics 39(12), 32093213.Google Scholar
Minck, R. (1964), ‘Optical Frequency Electrical Discharges in Gases’, Journal of Applied Physics 35(1), 252254.Google Scholar
Mitchner, M. and Kruger, C. (1973), Partially Ionized Gases, John Wiley & Sons, New York.Google Scholar
Morgan, C. (1975), ‘Laser-Induced Breakdown of Gases’, Reports Progress in Physics 38, 621665.Google Scholar
Myrabo, L. and Raizer, Y. (1994), Laser-Induced Air Spike for Advanced Transatmospheric Vehicles, AIAA Paper 1994–2451, American Institute of Aeronautics and Astronautics.Google Scholar
Narayanaswamy, V., Raja, L. and Clemens, N. (2010), ‘Characterization of a High-Frequency Pulsed-Plasma Jet Actuator for Supersonic Flow Control’, AIAA Journal 48(2), 297305.Google Scholar
Nassif, D. and Huwel, L. (2000), ‘Appearance of Toroidal Structure in Dissipating Laser-Generated Sparks’, Journal of Applied Physics 87(5), 21272130.Google Scholar
Neubauer, M., Popovic, M. and Johnson, R. (2014), ‘Phase and Frequency Locked Magnetron’. US Patent 8624496.Google Scholar
Newton, I. (1687), Philosophiæ Naturalis Principia Mathematica, Jussu Societatis Regieæac Typis Josephi Streater (by command of the Royal Society and printer Joseph Streater), London.Google Scholar
Niemz, M. (1995), ‘Threshold Dependence of Laser-Induced Optical Breakdown on Pulse Duration’, Applied Physics Letters 66(10), 11811183.Google Scholar
Nottingham, W. (1926), ‘Normal Arc Characterization Curves: Dependence on the Absolute Temperature of Anode’, Physical Review 28(4), 764768.Google Scholar
Okabe, K. (1929), ‘On the Short-Wave Limit of Magnetron Oscillators’, Proceedings of the Institute of Radio Engineers 17(4), 652659.Google Scholar
Ono, R., Nifuku, M., Fujiwana, S. and Horiguchi, S. (2005), ‘Gas Temperature of Capacitance Spark Discharge in Air’, Journal of Applied Physics 97, 123307.Google Scholar
Orlov, A., Yavtushenko, I. and Bodnarskii, D. (2011), ‘Redistribution of Gas Phase Components During Spark Discharge’, Technical Physics Letters 37(6), 556560.Google Scholar
Ostrovskaya, G. and Zaĭdel, A. (1974), ‘Laser Spark in Gases’, Soviet Physics Uspekhi 16(6), 834855.Google Scholar
Pai, D., Cappelli, M. and Laux, C. (2011), ‘The Structure of Nanosecond Repetitively Pulsed Spark Discharges in Air’, IEEE Transactions on Plasma Science 39(11).Google Scholar
Pai, D., Lacoste, D. and Laux, C. (2010), ‘Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure: The Spark Regime’, Plasma Sources Science and Technology 19(6), 065015.Google Scholar
Palomares, J., Kohut, A., Galbács, G., Engeln, R. and Geretovszky, Z. (2015), ‘A Time-Resolved Imaging and Electrical Study on a High Current Atmospheric Pressure Spark Discharge’, Journal of Applied Physics 118, 233305.Google Scholar
Panton, R. (2013), Incompressible Fluid Dynamics, John Wiley & Sons, Hoboken, NJ.Google Scholar
Paschen, F. (1889), ‘Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz’, Annalen der Physik und Chemie 37, 6996.Google Scholar
Patel, C. (1964), ‘Continuous-Wave Laser Action on Vibrational–Rotational Transitions of CO2’, Physical Review 136(5A), A1187A1193.Google Scholar
Pauling, L. and Wilson, E. (1935), Introduction to Quantum Mechanics with Applications to Chemistry, McGraw Hill, New York.Google Scholar
Pearce, A. (1936), ‘The Variation of the Mobility of Gaseous Ions with Temperature: II. Caesium and Sodium Ions in Helium’, Proceedings of the Royal Society, Series A 155, 490498.Google Scholar
Pham, H., Myokan, M., Tamba, T., Iwakawa, A. and Sasoh, A. (2017), ‘Effects of Repetitive Laser Energy Deposition on Supersonic Duct Flows’, AIAA Journal 56, 542543.Google Scholar
Phuoc, P. (2005), ‘An Experimental and Numerical Study of Laser-Induced Spark in Air’, Optics and Lasers in Engineering 43, 113129.Google Scholar
Phuoc, T. (2006), ‘Laser-Induced Spark Ignition Fundamental and Applications’, Optics and Lasers in Engineering 44, 351397.Google Scholar
Pilon, A. (1957), ‘Oscillations in Direct Current Glow Discharges’, Physical Review 107(1), 2527.Google Scholar
Pjatnitsky, L., Polonsky, L. and Uvaliev, M. (1991), ‘Simple Laser Setup for Continuous Laser Spark Generation’, Review of Scientific Instruments 62(5), 11391141.Google Scholar
Planck, M. (1926), ‘Über die Begründung des zweiten Hauptsatzes der Thermodynamik, Sitzungsberichte der Preussischen Akademie der Wissenschaften’, Physikalisch-mathematische Klasse pp. 453–463.Google Scholar
Plooster, M. (1970), ‘Shock Waves from Line Sources, Numerical Solutions and Experimental Measurements’, Physics of Fluids 13(11), 26652675.Google Scholar
Plooster, M. (1971), ‘Erratum: Shock Waves from Line Sources, Numerical Solutions and Experimental Measurements’, Physics of Fluids 14(10), 2248.Google Scholar
Pollack, G. and Stump, D. (2002), Electromagnetism, Addison Wesley, New York.Google Scholar
Popkin, S., Cybyk, B., Land, H., Emerick, T., Foster, C. and Alvi, F. (2013), Recent Performance-Based Advances in SparkJet Actuator Design for Supersonic Flow Applications, AIAA Paper 2013–0322, American Institute of Aeronautics and Astronautics.Google Scholar
Posthumus, K. (1935), ‘Oscillations in a Split Anode Magnetron’, The Wireless Engineer 12, 126132.Google Scholar
Press, W., Teukolsky, S., Vetterling, W. and Flannery, B. (2007), Numerical Recipes: The Art of Scientific Computing, third edn, Cambridge University Press, New York.Google Scholar
Radziemski, L. and Cremers, D., eds (1989), Laser-Induced Plasmas and Applications, Marcel Dekker, New York. chapters 1 and 2.Google Scholar
Raether, H. (1940), ‘Zur Entwicklung von Kanalentladungen’, Archiv für Elektrotechnik 34, 4956.Google Scholar
Raether, H. (1964), Electron Avalanches and Breakdown in Gases, Butterworth, London.Google Scholar
Rafatov, I. (2009), ‘Effect of Focusing Geometry on the Continuous Optical Discharge Properties’, Physics Letters A 373, 33363341.Google Scholar
Raizer, Y. (1965), ‘Heating of a Gas by a Powerful Light Pulse’, Soviet Physics JETP 21(5), 10091017. Translation from JETP, 48, 1965, 1508–1519.Google Scholar
Raizer, Y. (1966), ‘Breakdown and Heating of Gases Under the Influence of a Laser Beam’, Soviet Physics Uspekhi 8(5), 650673. Translation from Uspekhi Fiziki Nauk, Vol. 87, 1965, 29–64.Google Scholar
Raizer, Y. (1977), Laser-Induced Discharge Phenomena, Consultants Bureau, New York. Translated by A Tybulewicz.Google Scholar
Raizer, Y. (1991), Gas Discharge Physics, Springer-Verlag, Berlin.Google Scholar
Raizer, Y., Ebert, U. and Šijačić, D. (2004), ‘Dependence of the Transition from Townsend to Glow Discharge on Secondary Emission’, Physical Review E 70, 017401–1–017401–3.Google Scholar
Raizer, Y. and Surzhikov, S. (1988), ‘Two-Dimensional Structure in a Normal Glow Discharge and Diffusion Effects in Cathode and Anode Spot Formation’, High Temperature 26(3), 304311. Translated from Teplofizika Vysokikh Temperatur, 26(3), 1988, 428–435.Google Scholar
Ramsden, S. and Davies, W. (1964), ‘Radiation Scattered from the Plasma Produced by a Focused Ruby Laser’, Physical Review Letters 13(7), 227230.Google Scholar
Ramsden, S. and Savic, P. (1964), ‘A Radiative Detonation Model for the Development of a Laser-Induced Spark in Air’, Nature 203, 12071219.Google Scholar
Reedy, T., Kale, N., Dutton, J. and Elliott, G. (2012), Experimental Characterization of a Pulsed Plasma Jet, AIAA Paper 2012–0904, American Institute of Aeronautics and Astronautics.Google Scholar
Reedy, T., Kale, N., Dutton, J. and Elliott, G. (2013), ‘Experimental Characterization of a Pulsed Plasma Jet’, AIAA Journal 51(8), 20272031.Google Scholar
Rees, J., ed. (1973), Electrical Breakdown in Gases, John Wiley & Sons, New York.Google Scholar
Riabov, V. (2009), Rotational-Translational Relaxation Effects in Diatomic-Gas Flows, in Hannemann, K. and Seiler, F., eds, ‘Proceedings of the 26th International Symposium on Shock Waves’, Springer-Verlag, Berlin, pp. 11551160.Google Scholar
Richtmyer, R. (1960), ‘Taylor Instability in a Shock Acceleration of Compressible Fluids’, Communications on Pure and Applied Mathematics 13, 297329.Google Scholar
Ritchie, B. (1980), ‘Theory of Two Strongly Interacting Resonances in Multiphoton Ionization’, Physical Review A 21(2), 629632.Google Scholar
Rjasanow, S. and Wagner, W. (2005), Stochastic Numerics for the Boltzmann Equation, Springer-Verlag, Berlin. Springer Series in Computational Mathematics (Book 37).Google Scholar
Robertson, H. (1957), ‘Moving Striations in Direct Current Glow Discharges’, Physical Review 105(2), 368377.Google Scholar
Rockwell, D. and Naudascher, E. (1978), ‘Review: Self-Sustaining Oscillation of Flow Past Cavities’, Journal of Fluids Engineering 100(2), 152165.Google Scholar
Roe, P. (1981), ‘Approximate Roemann Solvers, Parameter Vectors, and Difference Schemes’, Journal of Computational Physics 43, 347372.Google Scholar
Rossiter, J. (1964), Wind Tunnel Experiments on the Flow Over Rectangular Cavities at Subsonic and Transonic Speeds, Technical Memorandum 754, The Aeronautical Research Council, Teddington, England.Google Scholar
Roth, J. (1995), Industrial Plasma Engineering, Vol. 1: Principles, Institute of Physics Publishing, Bristol, PA.Google Scholar
Roznerski, W. and Leja, K. (1980), ‘The Ratio of Lateral Diffusion Coefficient to Mobility for Electrons in Hydrogen and Nitrogen at Moderate E/N’, Journal of Physics D 13(10), L181–L184.Google Scholar
Roznerski, W. and Leja, K. (1984), ‘Electron Drift Velocity in Hydrogen, Nitrogen, Oxygen, Carbon Monoxide, Carbon Dioxide and Air at Moderate E/N’, Journal of Physics D 17(2), 279285.Google Scholar
Saelee, H. and Lucas, J. (1977), ‘Simulation of Electron Swarm Motion in Hydrogen and Carbon Monoxide for High E/N’, Journal of Physics D 10(3), 343354.Google Scholar
Saffman, P. (1992), Vortex Dynamics, Cambridge University Press, Cambridge.Google Scholar
Sakurai, A. (1953), ‘On the Propagation and Structure of the Blast Wave, I’, Journal of the Physical Society of Japan 8(5), 662669.Google Scholar
Samimy, M., Adamovich, I., Webb, B., Kastner, J., Hileman, J., Keshav, S. and Palmy, P. (2004), ‘Development and Characterization of Plasma Actuators for High-Speed Jet Control’, Experiments in Fluids 37, 577588.Google Scholar
Samimy, M., Kearney-Fischer, M., Kim, J.-H. and Sinha, A. (2012), ‘High-Speed and High-Reynolds-Number Jet Control Using Localized Arc Filament Plasma Actuators’, Journal of Propulsion and Power 28(2), 269280.Google Scholar
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. and Utkin, Y. (2007 a), ‘Active Control of a Mach 0.9 Jet for Noise Mitigation Using Plasma Actuators’, AIAA Journal 45(4), 890891.Google Scholar
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. and Utkin, Y. (2007 b), ‘Active Control of High-Speed and High-Reynolds-Number Jets Using Plasma Actuators’, Journal of Fluid Mechanics 578, 305330.Google Scholar
Sarbacher, R. and Edson, W. (1943), Hyper and Ultrahigh Frequency Engineering, John Wiley & Sons, New York.Google Scholar
Schade, R. (1937), ‘Über die Aufbauzeit einer Glimmentladung (About the Construction of a Glow Discharge)’, Zeitschrift für Physik 104, 487510.Google Scholar
Schawlow, A. and Devlin, G. (1961), ‘Simultaneous Optical Maser Action in Two Ruby Satellite Lines’, Physical Review Letters 6(3), 9698.Google Scholar
Schawlow, A. and Townes, C. (1958), ‘Infrared and Optical Masers’, Physical Review 112(6), 19401949.Google Scholar
Schneider, S. (2004), ‘Hypersonic Laminar-Turbulent Transition on Circular Cones and Scramjet Forebodies’, Progress in Aerospace Sciences 40, 150.Google Scholar
Schrödinger, E. (1926 a), ‘Quantisierung als Eigenwertproblem’, Annalen der Physik 79(6), 361376.Google Scholar
Schrödinger, E. (1926 b), ‘Quantisierung als Eigenwertproblem’, Annalen der Physik 79(6), 489527.Google Scholar
Schrödinger, E. (1926 c), ‘Quantisierung als Eigenwertproblem’, Annalen der Physik 81(18), 109139.Google Scholar
Schrödinger, E. (1926 d), ‘Quantisierung als Eigenwertproblem’, Annalen der Physik 80(13), 438490.Google Scholar
Schrödinger, E. (1926 e), ‘Über das Verhältnis der Heisenberg-Born-Jordanschem Quantenmechanik zu der meinen’, Annalen der Physik 79(8), 734756.Google Scholar
Schülein, E., Zheltovodov, A., Pimonov, E. and Loginov, M. (2010), ‘Experimental and Numerical Modeling of the Bow Shock Interaction with Pulse-Heated Air Bubbles’, International Journal of Aerospace Innovations 2(3), 165187.Google Scholar
Seddon, J. and Goldsmith, E. (1985), Intake Aerodynamics, American Institute of Aeronautics and Astronautics, Reston, VA.Google Scholar
Sedov, L. (1959), Similarity and Dimensional Methods in Mechanics, Academic Press, New York.Google Scholar
Semenov, V., Bondarenko, V., Gildenburg, V., Gubchenko, V. and Smirnov, A. (2002), ‘Weakly Ionized Plasmas in Aerospace Applications’, Plasma Physics and Controlled Fusion 44, B293B305.Google Scholar
Shapiro, A. (1953), The Dynamics and Thermodynamics of Compressible Fluid Flow, John Wiley & Sons, New York.Google Scholar
Shimoda, K. (1984), Introduction to Laser Physics, Springer-Verlag, Berlin.Google Scholar
Shkarofsky, I., Johnston, T. and Bachynski, M. (1966), The Particle Kinetics of Plasmas, Addison-Wesley, Reading, MA.Google Scholar
Sīnā, P. (1027), Kitab Al-Shifa’ (The Book of Healing).Google Scholar
Sinai, Y. (1962), ‘Westnik Moskovskogo Gosudarstvennogo Universitata’, Math. Series No. 5.Google Scholar
Sinai, Y. (1970), ‘Dynamical Systems with Elastic Reflections’, Uspekhi Matematicheskikh Nauk 25, 141. Translated in Russian Mathematical Surveys, 25(2), 137–189., doi =.Google Scholar
Snydera, S., Lassahn, G. and Reynolds, L. (1993), ‘Direct Evidence of Departure from Local Thermodynamic Equilibrium in a Free-Burning Arc-Discharge Plasma’, Physical Review E 48(5), 41244127.Google Scholar
Sorokhin, P. and Stevenson, M. (1960), ‘Stimulated Infrared Emission from Trivalent Uranium’, Physical Review Letters 5(12), 557559.Google Scholar
Sorokhin, P. and Stevenson, M. (1961), ‘Solid-State Optical Maser Using Divalent Samarium in Calcium Fluoride’, IBM Journal of Research and Development 5, 5658.Google Scholar
Southworth, G. (1936), ‘Hyper-Frequency Wave Guides: General Considerations and Experimental Results’, Bell System Technical Journal 15, 284309.Google Scholar
Spencer, P. (1946), ‘High Efficiency Magnetron’. US Patent 2408235.Google Scholar
Steiner, H. and Gretler, W. (1994), ‘The Propagation of Spherical and Cylindrical Shock Waves in Real Gases’, Physics of Fluids 6(6), 21542164.Google Scholar
Steiner, H., Gretler, W. and Hirschler, T. (1998), ‘Numerical Solution for Spherical Laser-Driven Shock Waves’, Shock Waves 8, 139147.Google Scholar
Stoletow, M. (1890), ‘Sur Les Courants Actino-Électriques dans l’Air Raréfié’, Journal de Physique 9, 468473.Google Scholar
Suzuki, M., Taniguchi, T., Yoshimura, N. and Tagashira, H. (1992), ‘Momentum Transfer Cross Section of Xenon Deducted from Electron Drift Velocity Data’, Journal of Physics D 25(1), 5056.Google Scholar
Svetsov, V., Papova, M., Rybakov, V., Artemiev, V. and Medveduk, S. (1997), ‘Jet and Vortex Flow Induced by Anisotropic Blast Wave: Experiment and Computational Study’, Shock Waves 7, 325334.Google Scholar
Syage, J., Fourner, E., Rianda, R. and Cohen, R. (1988), ‘Dynamics of Flame Propagation Using Laser-Induced Spark Initiation: Ignition Energy Measurements’, Journal of Applied Physics 64(3), 14991507.Google Scholar
Symons, R. (1989), ‘Broadband Klystron Cavity Arrangement’. US Patent 4800322.Google Scholar
Tanberg, R. (1930), ‘On the Cathode of an Arc Drawn in Vacuum’, Physical Review 35(9), 10801089.Google Scholar
Taylor, G. (1950), ‘The Dynamics of the Combustion Products Behind Plane and Spherical Detonation Fronts in Explosives’, Proceedings of the Royal Society of London A200, 235247.Google Scholar
Taylor, W., Scharfman, W. and Morita, T. (1971), Advances in Microwaves, Academic Press, New York.Google Scholar
Tchen, C. (1959), ‘Kinetic Equations for a Plasma with Unsteady Correlations’, Physical Review 114(1), 394411.Google Scholar
Theodosiou, C., Armstrong, L., Crance, M. and Feneuille, S. (1979), ‘Short-Time Behavior in Multiphoton Ionization’, Physical Review A 19(2), 766775.Google Scholar
Thomas, P. (1977), ‘Jet Flowfield behind a Laser-Supported Detonation Wave’, AIAA Journal 15(10), 14051409.Google Scholar
Thompson, M. (1992), The Edge of Space: The X-15 Flight Program, Smithsonian Institution Press, Washington DC.Google Scholar
Thompson, P. (1971), Compressible-Fluid Dynamics, McGraw-Hill, New York.Google Scholar
Thompson, W. (1851), ‘On the Dynamical Theory of Heat, with Numerical Results Deduced from Mr. Joule’s Equivalent of a Thermal Unit, and M. Regnault’s Observations on Steam’, Transactions of the Royal Society of Edinburgh 20(2), 261268; 289–298. Also published in Philosophical Magazine, 4, IV(22), 1852, 8–21.Google Scholar
Thompson, W. (1871), ‘Hydrokinetic Solutions and Observations’, Philosophical Magazine 42, 362377.Google Scholar
Townsend, J. (1900), ‘The Conductivity Produced in Gases by the Motion of Negatively-Charged Ions’, Nature 62(1606), 340341.Google Scholar
Townsend, J. (1901), ‘The Conductivity Produced in Gases by the Motion of Negatively Charged Ions’, Philosophical Magazine 1, 199227.Google Scholar
Townsend, J. (1915), Electricity in Gases, Oxford University Press, Oxford.Google Scholar
Townsend, J. (1948), Electrons in Gases, Hutchingson, London.Google Scholar
Tretyakov, P., Garanin, A., Kraynev, V., Tupikin, A. and Yakovlev, V. (1996), Investigation of Local Laser Energy Release Influence on Supersonic Flow by Methods of Aerophysical Experiments, in Fomin, V., Kharitonov, A. and Lebiga, V., eds, ‘International Conference on Methods of Aerophysical Research’, Institute of Theoretical and Applied Mechanics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation, pp. 200204.Google Scholar
Trichel, G. (1938), ‘The Mechanism of the Negative Point to Plane Corona Near Onset’, Physical Review 54(12), 10781084.Google Scholar
Utkin, Y., Keshav, S., Kim, J.-H., Kastner, J., Adamovich, I. and Samimy, M. (2007), ‘Development and Use of Localized Arc Filament Plasma Actuators for High-Speed Flow Controls’, Journal of Physics D: Applied Physics 40, 685694.Google Scholar
VanDriest, E. (1956), ‘The Problem of Aerodynamic Heating’, Aeronautical Engineering Review 15(10), 2641.Google Scholar
VanLeer, B. (1982), Flux-vector Splitting for the Euler Equations, inLecture Notes in Physics 170’, Springer-Verlag, pp. 507512.Google Scholar
VanWie, D., White, M. and Corpening, G. (1990), ‘NASP Inlet Design and Testing Issues’, Johns Hopkins APL Technical Digest 11(3), 100109.Google Scholar
Varian, R. and Varian, S. (1939), ‘A High Frequency Oscillator and Amplifier’, Journal of Applied Physics 10, 321327.Google Scholar
Vikharev, A., Gil’denburg, V., Golubev, S., Eremin, B., Ivanov, O., Litvak, A., Stepanov, A. and Yunakovskii, A. (1988), ‘Nonlinear Dynamics of a Freely Localized Microwave Discharge in an Electromagnetic Wave Beam’, Soviet Physics JETP 67(4), 724728.Google Scholar
Vikharev, A., Gorbachev, A., Kim, A. and Kolysko, A. (1992), ‘Formation of the Small-Scale Structure in Microwave Discharge in High-Pressure Gas’, Soviet Journal of Plasma Physics 18(8), 554560.Google Scholar
Vincenti, W. and Kruger, C. (1965), Introduction to Physical Gas Dynamics, Krieger Publishing Company, Malabar, FL.Google Scholar
Vlasov, V., Grudnitskii, B. and Rygalin, V. (1995), ‘Gas Dynamics with Local Energy Release in Subsonic and Supersonic Flow’, Mekhanika Zhidkosti i Gaza 2, 142148. Translated as Fluid Dynamics, 30(2), 1995, 275–280.Google Scholar
Voinovich, P., Evtyukhin, N., Zhmakin, A., Margolin, D., Fursenko, A. and Shmelev, V. (1987), ‘Shock Wave Stratification in Inhomogeneous Media’, Fizika Goreniya i Vzryva 23(1), 7780.Google Scholar
von Engle, A. (1957), ‘John Sealy Edward Townsend’, Biographical Memoirs of Fellows of the Royal Society 3, 256272.Google Scholar
von Engle, A. (1994), Ionized Gases, American Institute of Physics, New York.Google Scholar
von Helmholtz, H. (1847), Über die Erhaltung der Kraft (On the Conservation of Force), in Tyndall, J. and Francis, W., eds, ‘Scientific Memoirs, Selected from the Transactions of Foreign Academies of Science and Foreign Journals’, Taylor and Francis,London.Google Scholar
von Helmholtz, H. (1868), ‘´’Uber Discontinuierliche Flüssigkeits-Bewegungen (On the Discontinuous Movements of Fluids)’, Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin (Monthly Reports of the Royal Prussian Academy of Philosophy in Berlin) 23, 215228.Google Scholar
von Laue, M. (1925), ‘Bemerkung zu K. Zubers Messung der Verzögerungszeiten bei der Funkenentladung’, Annalen der Physik 76(2–3), 261265.Google Scholar
Voskoboĭnikova, O., Ginzburg, S., D’yachenko, V. and Khodataev, K. (2002), ‘Numerical Investigation of Subcritical Microwave Discharges in a High-Pressure Gas’, Technical Physics 47(8), 955960.Google Scholar
Šijačić, D. and Ebert, U. (2002), ‘Transition from Townsend to Glow Discharge: Subcritical, Mixed or Supercritical Characteristics’, Physical Review E 66, 066410–1–066410–12.Google Scholar
Vyskrebentsev, A. and Raizer, Y. (1973), ‘A Simple Theory of Breakdown of Monatomic Nonlight Gases in Fields of any Frequency from Low to Optical’, Journal of Applied Mechanics and Technical Physics 14(1), 3238.Google Scholar
Walker, L. (1948 a), Output Circuits, in Collins, G., ed., ‘Microwave Magnetrons’, McGraw-Hill, New York, pp. 167203.Google Scholar
Walker, L. (1948 b), The Strapped System, in Collins, G., ed., ‘Microwave Magnetrons’, McGraw-Hill, pp. 118–166.Google Scholar
Ward, A. (1958), ‘Effect of Space Charge in Cold-Cathode Gas Discharges’, Physical Review 112(6), 18521857.Google Scholar
Ward, A. (1962), ‘Calculations of Cathode-Fall Characteristics’, Journal of Applied Physics 33(9), 27892794.Google Scholar
Watson, G. (1995), Treatise on the Theory of Bessel Functions, second edn, Cambridge University Press, London.Google Scholar
Watts, J. (1968), Flight Experience with Shock Impingement and Interference Heating on the X-15–2 Research Airplane, NASA TM X-1669, NASA Ames Research Center.Google Scholar
Webb, N. and Samimy, M. (2017), ‘Control of Supersonic Cavity Flow Using Plasma Actuators’, AIAA Journal 55(10), 33463355.Google Scholar
Webster, D. (1939 a), ‘Cathode-Ray Bunching’, Journal of Applied Physics 10, 501508.Google Scholar
Webster, D. (1939 b), ‘The Theory of Klystron Oscillations’, Journal of Applied Physics 10, 864872.Google Scholar
Weidner, R. and Sells, R. (1960), Elementary Modern Physics, Allyn and Bacon, Inc., Boston, MA.Google Scholar
Weissler, G. and Mohr, E. (1947), ‘Negative Corona in Freon–Air Mixtures’, Physical Review 72(4), 289294.Google Scholar
Weyl, G. (1989), Physics of Laser-Induced Breakdown: An Update, in Radziemski, L. and Cremers, D., eds, ‘Laser-Induced Plasmas and Applications’, Marcel Dekker, Inc., New York, pp. 168.Google Scholar
White, H. (1935), ‘The Variation of Sparking Potential with Intense Ultraviolet Radiation’, Physical Review 48(2), 113117.Google Scholar
Wilcox, D. (2006), Turbulence Modeling for CFD, third edn, DCW Industries, La Canada, CA.Google Scholar
Wilson, R. (1936), ‘Very Short Time Lag of Sparking’, Physical Review 50(11), 10821088.Google Scholar
Woo, W. and DeGroot, J. (1984), ‘Microwave Absorption and Plasma Heating Due to Microwave Breakdown in the Atmosphere’, Physics of Fluids 27(2), 475487.Google Scholar
Yalcin, S., Crosley, D., Smith, G. and Faris, G. (1999), ‘Influence of Ambient Conditions on the Laser Air Spark’, Applied Physics B: Lasers and Optics 68, 121130.Google Scholar
Yan, H., Adelgren, R., Boguszko, M., Elliott, G. and Knight, D. (2003), ‘Laser Energy Deposition in Quiescent Air’, AIAA Journal 41(10), 19881995.Google Scholar
Yan, H. and Gaitonde, D. (2008), ‘Effect of Energy Pulse on 3-D Edney IV Interaction’, AIAA Journal 46(6), 14241431.Google Scholar
Yee, C. and Ali, A. (1981), Microwave Energy Deposition, Breakdown and Heating of Nitrogen and Air, NRL Memorandum Report 4617, Naval Research Laboratory.Google Scholar
Yee, C., Ali, A. and Bollen, W. (1982), Microwave Energy Coupling in a Nitrogen Breakdown Plasma, NRL Memorandum Report 4869, Naval Research Laboratory.Google Scholar
Young, M. and Hercher, M. (1967), ‘Dynamics of Laser-Induced Breakdown in Gases’, Journal of Applied Physics 38(11), 43934400.Google Scholar
Yvon, J. (1935), La Théorie Statistique des Fluides et l’Équation d’État, Hermann, Paris.Google Scholar
Zheltovodov, A. (2002), Development of the Studies on Energy Deposition for Application to the Problems of Supersonic Aerodynamics, Preprint 10–2002, Khristianovich Institute of Theoretical and Applied Mechanics, Novosibirsk, Russian Federation.Google Scholar
Zheltovodov, A. and Pimonov, E. (2013), ‘Numerical Simulation of an Energy Deposition Zone in Quiescent Air and in a Supersonic Flow Under the Conditions of Interaction with a Normal Shock’, Technical Physics 58(2), 170184.Google Scholar
Zheltovodov, A., Pimonov, E. and Knight, D. (2007), Energy Deposition Influence on Supersonic Flow Over Axisymmetric Bodies, AIAA Paper 2007–1230, American Institute of Aeronautics and Astronautics.Google Scholar
Zhu, G.-Q. (2012), Modeling of Plasma Dynamics and Pattern Formation During High Pressure Microwave Breakdown in Air, PhD thesis, Université Toulouse III Paul Sabatier.Google Scholar
Zhu, G.-Q., Boeuf, J.-P. and Chaudhury, B. (2011), ‘Ionization-Diffusion Plasma Front Propagation in a Microwave Field’, Plasma Sources Science and Technology 20(3), 035007.Google Scholar
Zollweg, R. (1978), ‘Convection in Vertical High-Pressure Mercury Arcs’, Journal of Applied Physics 49(3), 10771091.Google Scholar
Zubkov, A., Garanin, A., Safronov, V., Sukhanovskaya, L. and Tretyakov, P. (2005), ‘Supersonic Flow Past an Axisymmetric Body with Combustion in Separation Zones at the Body Nose and Base’, Thermophysics and Aeromechanics 12(1), 112.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Doyle D. Knight, Rutgers University, New Jersey
  • Book: Energy Deposition for High-Speed Flow Control
  • Online publication: 08 February 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Doyle D. Knight, Rutgers University, New Jersey
  • Book: Energy Deposition for High-Speed Flow Control
  • Online publication: 08 February 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Doyle D. Knight, Rutgers University, New Jersey
  • Book: Energy Deposition for High-Speed Flow Control
  • Online publication: 08 February 2019
Available formats
×