Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T00:57:49.347Z Has data issue: false hasContentIssue false

Chapter 8 - Brain Alterations Potentially Associated with Aggression and Terrorism

Published online by Cambridge University Press:  07 February 2019

Donatella Marazziti
Affiliation:
Università degli Studi, Pisa
Stephen M. Stahl
Affiliation:
University of California, San Diego
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bogerts, B. Gehirn und Verbrechen: Neurobiologie von Gewalttaten. In: Schneider, F, ed. Entwicklungen der Psychiatrie. Berlin, Heidelberg: Springer; 2006: 335347.Google Scholar
Report to the Governor, Medical Aspects, Charles J. Whitman Catastrophe. Austin: The Whitman Archives; 1966. http://alt.cimedia.com/statesman/specialreports/whitman/findings.pdf. Accessed July 6, 2017.Google Scholar
Eagleman, D. The brain on trial. Atl Mon. July/August 2011. www.theatlantic.com/magazine/archive/2011/07/the-brain-on-trial/308520/. Accessed July 6, 2017.Google Scholar
MacLean, PD. Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol. 1952; 4(4): 407418.Google Scholar
Hess, WR. Das Zwischenhirn: Syndrome, Lokalisationen, Funktionen. Basel: Schwabe; 1949.Google Scholar
Wasman, M, Flynn, JP. Directed attack elicited from the hypothalamus. Arch Neurol. 1962; 6: 220227.CrossRefGoogle Scholar
Ploog, D. Biologische Grundlagen aggressiven Verhaltens: Psychiatrische und ethologische Aspekte abnormen Verhaltens [in German]. In: Kranz, H, Heinrich, K, eds. Erste Düsseldorfer Symposium. Stuttgart: Thieme; 1974: 4977.Google Scholar
Bogerts, B, Möller-Leimkühler, AM. Neurobiologische Ursachen und psychosoziale Bedingungen individueller Gewalt [Neurobiological and psychosocial causes of individual male violence] [in German]. Nervenarzt. 2013; 84(11): 13291344.CrossRefGoogle Scholar
Mark, VH, Erwin, FR. Violence and the Brain. New York, NY: Harper & Row; 1970.Google Scholar
Klüver, H, Bucy, PC. “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkeys. Am J Physiol. 1937; 119: 352353.Google Scholar
Bogerts, B. The temporolimbic system theory of positive schizophrenic symptoms. Schizophr Bull. 1997; 23(3): 423436.Google Scholar
Bogerts, B. The neuropathology of schizophrenic diseases: historical aspects and present knowledge. Eur Arch Psychiatry Clin Neurosci. 1999; 249(Suppl 4): 213.CrossRefGoogle ScholarPubMed
Fazel, S, Gulati, G, Linsell, L, Geddes, JR, Grann, M. Schizophrenia and violence: systematic review and meta-analysis. PLoS Med. 2009; 6(8): e1000120. www.ncbi.nlm.nih.gov/pmc/articles/PMC2718581/. Accessed July 6, 2017.Google Scholar
Gómez, JM, Verdú, M, González-Megías, A, Méndez, M. The phylogenetic roots of human lethal violence. Nature. 2016; 538(7624): 233237.Google Scholar
Choi, JK, Bowles, S. The coevolution of parochial altruism and war. Science. 2007; 318(5850): 636640.CrossRefGoogle ScholarPubMed
Jung, H, Herrenkohl, TI, Lee, JO, Klika, JB, Skinner, ML. Effects of physical and emotional child abuse and its chronicity on crime into adulthood. Violence Vict. 2015; 30(6): 10041018.Google Scholar
DiLalla, DL, Carey, G, Gottesman, II, Bouchard, TJ. Heritability of MMPI personality indicators of psychopathology in twins reared apart. J Abnorm Psychol. 1996; 105(4): 491499.CrossRefGoogle ScholarPubMed
Joyal, CC, Putkonen, A, Mancini-Marïe, A, et al. Violent persons with schizophrenia and comorbid disorders: a functional magnetic resonance imaging study. Schizophr Res. 2007; 91(1–3): 97102.Google Scholar
Rhee, SH, Waldman, ID. Genetic and environmental influences on antisocial behavior: a meta-analysis of twin and adoption studies. Psychol Bull. 2002; 128(3): 490529.CrossRefGoogle ScholarPubMed
Alia-Klein, N, Goldstein, RZ, Kriplani, A, et al. Brain monoamine oxidase A activity predicts trait aggression. J Neurosci. 2008; 28(19): 50995104.Google Scholar
Buckholtz, JW, Meyer-Lindenberg, A. MAOA and the neurogenetic architecture of human aggression. Trends Neurosci. 2008; 31(3): 120129.Google Scholar
Caspi, A, Moffitt, TE. Gene–environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci. 2006; 7(7): 583590.CrossRefGoogle ScholarPubMed
Rosell, DR, Siever, LJ. The neurobiology of aggression and violence. CNS Spectr. 2015; 20(3): 254279.CrossRefGoogle ScholarPubMed
Browning, CR. Ordinary Men: Reserve Police Battalion 101 and the Final Solution in Poland. New York, NY: HarperCollins and Aaron Asher Books; 1992.Google Scholar
Haney, C, Banks, C, Zimbardo, P. Interpersonal dynamics in a simulated prison. Int J Criminology Penol. 1973; 1: 6997; http://pdf.prisonexp.org/ijcp1973.pdf. Accessed July 6, 2017.Google Scholar
Milgram, S. Behavioral study of obedience. J Abnorm Psychol. 1963; 67(4): 371378.Google ScholarPubMed
Milgram, S. Obedience to Authority: An Experimental View. New York, NY: Harper; 1974.Google Scholar
Zimbardo, P. The Lucifer Effect: Understanding How Good People Turn Evil. Random House Reprints; 2008.Google Scholar
Möller-Leimkühler, AM, Bogerts, B. Kollektive Gewalt [Collective violence: neurobiological, psychosocial and sociological condition] [in German]. Nervenarzt. 2013; 84(11): 13451358.Google Scholar
Bundesamt für Verfassungsschutz. Analyse der den deutschen Sicherheitsbehörden vorliegenden Informationen über die Radikalisierungshintergründe und -verläufe der Personen, die aus islamistischer Motivation aus Deutschland in Richtung Syrien ausgereist sind—so lautet der Titel [in German]; Ständige Konferenz der Innenminister und senatoren der Linder; 2016. www.innenministerkonferenz.de/IMK/DE/termine/to-beschluesse/14–12-11_12/anlage-analyse.pdf?__blob=publicationFile&v=2. Accessed July 6, 2017.Google Scholar
Pantucci, R, Ellis, C, Chaplais, L. Lone-Actor Terrorism: Literature Review. London: Royal United Service Institute; 2015.Google Scholar
Bufkin, JL, Luttrell, VR. Neuroimaging studies of aggressive and violent behavior: current findings and implications for criminology and criminal justice. Trauma, Violence Abuse. 2005; 6(2): 176191.Google Scholar
Raine, A, Yang, Y. Neural foundations to moral reasoning and antisocial behavior. Soc Cogn Affect Neurosci. 2006; 1(3): 203213.Google Scholar
Weber, S, Habel, U, Amunts, K, Schneider, F. Structural brain abnormalities in psychopaths: a review. Behav Sci Law. 2008; 26(1): 728.CrossRefGoogle ScholarPubMed
Schiltz, K, Witzel, JG, Bausch-Hölterhoff, J, Bogerts, B. High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study. Eur Arch Psychiatry Clin Neurosci. 2013; 263(7): 607616.Google Scholar
Floden, D. Frontal lobe function. In: Parsons, MW, Hammeke, TA, Snyder, PJ, eds. Clinical Neuropsychology: A Pocket Handbook for Assessment.Washington, DC: American Psychological Association; 2014: 498524.Google Scholar
Olson, IR, Plotzker, A, Ezzyat, Y. The enigmatic temporal pole: a review of findings on social and emotional processing. Brain. 2007; 130(7): 17181731.Google Scholar
Rudebeck, PH, Bannerman, DM, Rushworth, MF. The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making. Cogn Affect Behav Neurosci. 2008; 8(4): 485497.Google Scholar
Stuss, DT. Functions of the frontal lobes: relation to executive functions. J Int Neuropsychol Soc. 2011; 17(5): 759765.Google Scholar
Brower, MC, Price, BH. Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: a critical review. J Neurol Neurosurg Psychiatry. 2001; 71(6): 720726.Google Scholar
Müller, JL, Gänßbauer, S, Sommer, M, et al. Gray matter changes in right superior temporal gyrus in criminal psychopaths: evidence from voxel-based morphometry. Psychiatry Res. 2008; 163(3): 213222.CrossRefGoogle ScholarPubMed
Gregory, S. The antisocial brain: psychopathy matters. Arch Gen Psychiatry. 2012; 69(9): 962972.Google Scholar
Leutgeb, V, Leitner, M, Wabnegger, A, et al. Brain abnormalities in high-risk violent offenders and their association with psychopathic traits and criminal recidivism. Neuroscience. 2015; 308: 194201.Google Scholar
Domenech, P, Koechlin, E. Executive control and decision-making in the prefrontal cortex. Curr Opin Behav Sci. 2015; 1: 101106.Google Scholar
Bertsch, K, Grothe, M, Prehn, K, et al. Brain volumes differ between diagnostic groups of violent criminal offenders. Eur Arch Psychiatry Clin Neurosci. 2013; 263(7): 593606.Google Scholar
Davidson, RJ. Dysfunction in the neural circuitry of emotion regulation: a possible prelude to violence. Science. 2000; 289(5479): 591594.Google Scholar
Kringelbach, ML, Rolls, ET. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol. 2004; 72(5): 341372.CrossRefGoogle ScholarPubMed
Rudebeck, PH, Murray, EA. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron. 2014; 84(6): 11431156.Google Scholar
Schoenbaum, G, Roesch, MR, Stalnaker, TA. Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci. 2006; 29(2): 116124.Google Scholar
Birbaumer, N, Veit, R, Lotze, M, et al. Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Arch Gen Psychiatry. 2005; 62(7): 799805.Google Scholar
Yang, Y, Raine, A, Colletti, P, Toga, AW, Narr, KL. Morphological alterations in the prefrontal cortex and the amygdala in unsuccessful psychopaths. J Abnorm Psychol. 2010; 119(3): 546554.Google Scholar
Kumari, V, Barkataki, I, Goswami, S, Flora, S, Das, M, Taylor, P. Dysfunctional, but not functional, impulsivity is associated with a history of seriously violent behaviour and reduced orbitofrontal and hippocampal volumes in schizophrenia. Psychiatry Res. 2009; 173(1): 3944.Google Scholar
Tiihonen, J, Rossi, R, Laakso, MP, et al. Brain anatomy of persistent violent offenders: more rather than less. Psychiatry Res. 2008; 163(3): 201212.Google Scholar
Ermer, E, Cope, LM, Calhoun, VD, Nyalakanti, PK, Kiehl, KA. Aberrant paralimbic gray matter in criminal psychopathy. J Abnorm Psychol. 2012; 121(3): 649658.Google Scholar
Boccardi, M, Frisoni, GB, Hare, RD, et al. Cortex and amygdala morphology in psychopathy. Psychiatry Res. 2011; 193(2): 8592.CrossRefGoogle ScholarPubMed
Cope, LM, Shane, MS, Segall, JM, et al. Examining the effect of psychopathic traits on gray matter volume in a community substance abuse sample. Psychiatry Res. 2012; 204(2–3): 91100.Google Scholar
Ly, M, Motzkin, JC, Philippi, CL, et al. Cortical thinning in psychopathy. Am J Psychiatry. 2012; 169(7): 743749.Google Scholar
Buckner, RL, Andrews-Hanna, JR, Schacter, DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008; 1124: 138.Google Scholar
Hahn, B, Ross, TJ, Stein, EA. Cingulate activation increases dynamically with response speed under stimulus unpredictability. Cereb Cortex. 2007; 17(7): 16641671.Google Scholar
Leech, R, Sharp, DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014; 137(1): 1232.Google Scholar
Yamasaki, S, Yamasue, H, Abe, O, et al. Reduced gray matter volume of pars opercularis is associated with impaired social communication in high-functioning autism spectrum disorders. Biol Psychiatry. 2010; 68(12): 11411147.Google Scholar
Bannon, SM, Salis, KL, O’Leary, DK. Structural brain abnormalities in aggression and violent behavior. Aggress Violent Behav. 2015; 25(Pt B): 323331.CrossRefGoogle Scholar
Kiehl, KA. A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction. Psychiatry Res. 2006; 142(2–3): 107128.Google Scholar
Miller, BL, Darby, A, Benson, DF, Cummings, JL, Miller, MH. Aggressive, socially disruptive and antisocial behaviour associated with fronto-temporal dementia. Br J Psychiatry. 1997; 170(2): 150154.Google Scholar
Woermann, FG, van Elst, LT, Koepp, MJ, et al. Reduction of frontal neocortical grey matter associated with an affective aggression in patients with temporal lobe epilepsy: an objective voxel-by-voxel analysis of automatically segmented MRI. J Neurol Neurosurg Psychiatry. 2000; 68: 162169.CrossRefGoogle ScholarPubMed
Howner, K, Eskildsen, SF, Fischer, H, et al. Thinner cortex in the frontal lobes in mentally disordered offenders. Psychiatry Res. 2012; 203(2–3): 126131.Google Scholar
Cope, LM, Ermer, E, Gaudet, LM, et al. Abnormal brain structure in youth who commit homicide. Neuroimage Clin. 2014; 4: 800807.CrossRefGoogle ScholarPubMed
Yang, Y, Raine, A, Han, CB, Schug, RA, Toga, AW, Narr, KL. Reduced hippocampal and parahippocampal volumes in murderers with schizophrenia. Psychiatry Res. 2010; 182(1): 913.Google Scholar
Puri, BK, Counsell, SJ, Saeed, N, Bustos, MG, Treasaden, IH, Bydder, GM. Regional grey matter volumetric changes in forensic schizophrenia patients: an MRI study comparing the brain structure of patients who have seriously and violently offended with that of patients who have not. BMC Psychiatry. 2008; 8(Suppl 1): S6.Google Scholar
Hare, RD. The Hare Psychopathy Checklist–Revised (PCL–R). Toronto: Multi-Health Systems; 1991.Google Scholar
Boccardi, M, Ganzola, R, Rossi, R, et al. Abnormal hippocampal shape in offenders with psychopathy. Hum Brain Mapp. 2010; 31(3): 438447.CrossRefGoogle ScholarPubMed
Eres, R, Decety, J, Louis, WR, Molenberghs, P. Individual differences in local gray matter density are associated with differences in affective and cognitive empathy. Neuroimage. 2015; 117: 305310.CrossRefGoogle ScholarPubMed
Schiffer, B, Mueller, BW, Scherbaum, N, et al. Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders. Arch Gen Psychiatry. 2011; 68(10): 10391049.Google Scholar
Siever, LJ. Neurobiology of aggression and violence. Am J Psychiatry. 2008; 165(4): 429442.Google Scholar
Price, JL. Amygdala. In: Squire, LR, ed. New Encyclopedia of Neuroscience. New York, NY: Academic Press; 2008: 14.Google Scholar
Sah, P, Faber, ES, Lopez, De Armentia, M, Power, J. The amygdaloid complex: anatomy and physiology. Physiol Rev. 2003; 83(3): 803834.Google Scholar
Blair, RJ. The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends Cogn Sci. 2007; 11(9): 387392.Google Scholar
Phelps, EA. Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol. 2004; 14(2): 198202.Google Scholar
Phillips, RG, LeDoux, JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992; 106(2): 274285.CrossRefGoogle ScholarPubMed
Pardini, DA, Raine, A, Erickson, K, Loeber, R. Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biol Psychiatry. 2014; 75(1): 7380.Google Scholar
Del Bene, VA, Foxe, JJ, Ross, LA, Krakowski, MI, Czobor, P, De Sanctis, P. Neuroanatomical abnormalities in violent individuals with and without a diagnosis of schizophrenia. PLOS ONE. 2016; 11(12):e0168100. www.ncbi.nlm.nih.gov/pmc/articles/PMC5193361/. Accessed July 6, 2017.CrossRefGoogle ScholarPubMed
Motzkin, JC, Newman, JP, Kiehl, KA, Koenigs, M. Reduced prefrontal connectivity in psychopathy. J Neurosci. 2011; 31(48): 1734817357.Google Scholar
Craig, MC, Catani, M, Deeley, Q, et al. Altered connections on the road to psychopathy. Mol Psychiatry. 2009; 14(10): 946953; 907.Google Scholar
Leutgeb, V, Wabnegger, A, Leitner, M, et al. Altered cerebellar-amygdala connectivity in violent offenders: a resting-state fMRI study. Neurosci Lett. 2016; 610: 160164.Google Scholar
Harada, T, Itakura, S, Xu, F, et al. Neural correlates of the judgment of lying: a functional magnetic resonance imaging study. Neurosci Res. 2009; 63(1): 2434.Google Scholar
Lang, S, Yu, T, Markl, A, Müller, F, Kotchoubey, B. Hearing others’ pain: neural activity related to empathy. Cogn Affect Behav Neurosci. 2011; 11(3): 386395.Google Scholar
Schmahmann, JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004; 16(3): 367378.Google Scholar
Demirtas-Tatlidede, A, Schmahmann, JD. Morality: incomplete without the cerebellum? Brain. 2013; 136(8): 20072009.CrossRefGoogle ScholarPubMed
Turner, BM, Paradiso, S, Marvel, CL, et al. The cerebellum and emotional experience. Neuropsychologia. 2007; 45(6): 13311341.Google Scholar
Picazio, S, Koch, G. Is motor inhibition mediated by cerebello-cortical interactions? Cerebellum. 2015; 14(1): 4749.Google Scholar
Glenn, AL, Raine, A, Yaralian, PS, Yang, Y. Increased volume of the striatum in psychopathic individuals. Biol Psychiatry. 2010; 67(1): 5258.Google Scholar
Decety, J, Skelly, LR, Kiehl, KA. Brain response to empathy-eliciting scenarios involving pain in incarcerated psychopaths. JAMA Psychiatry. 2013; 70(6): 638645.Google Scholar
Mier, D, Haddad, L, Diers, K, Dressing, H, Meyer-Lindenberg, A, Kirsch, P. Reduced embodied simulation in psychopathy. World J Biol Psychiatry. 2014; 15(6): 479487.Google Scholar
Vemuri, K, Surampudi, BR. Evidence of stimulus correlated empathy modes: group ICA of fMRI data. Brain Cogn. 2015; 94: 3243.Google Scholar
Yang, Y, Raine, A. Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res. 2009; 174(2): 8188.Google Scholar
Contreras-Rodriguez, O, Pujol, J, Batalla, I, et al. Functional connectivity bias in the prefrontal cortex of psychopaths. Biol Psychiatry. 2015; 78(9): 647655.CrossRefGoogle ScholarPubMed
Lee, TM, Chan, SC, Raine, A. Strong limbic and weak frontal activation to aggressive stimuli in spouse abusers. Mol Psychiatry. 2008; 13(7): 655656.Google Scholar
Harenski, CL, Harenski, KA, Shane, MS, Kiehl, KA. Aberrant neural processing of moral violations in criminal psychopaths. J Abnorm Psychol. 2010; 119(4): 863874.Google Scholar
Decety, J, Chen, C, Harenski, C, Kiehl, KA. An fMRI study of affective perspective taking in individuals with psychopathy: imagining another in pain does not evoke empathy. Front Hum Neurosci. 2013; 7: 112.Google Scholar
Pujol, J, Batalla, I, Contreras-Rodríguez, O, et al. Breakdown in the brain network subserving moral judgment in criminal psychopathy. Soc Cogn Affect Neurosci. 2012; 7(8): 917923.Google Scholar
Meffert, H, Gazzola, V, den Boer, JA, Bartels, AA, Keysers, C. Reduced spontaneous but relatively normal deliberate vicarious representations in psychopathy. Brain. 2013; 136(8): 25502562.CrossRefGoogle ScholarPubMed
Singer, T, Klimecki, OM. Empathy and compassion. Curr Biol. 2014; 24(18): R875R878.Google Scholar
Lee, TM, Chan, SC, Raine, A. Hyperresponsivity to threat stimuli in domestic violence offenders: a functional magnetic resonance imaging study. J Clin Psychiatry. 2008; 70(1): 3645.CrossRefGoogle Scholar
Decety, J, Skelly, L, Yoder, KJ, Kiehl, KA. Neural processing of dynamic emotional facial expressions in psychopaths. Soc Neurosci. 2014; 9(1): 3649.Google Scholar
Prehn, K, Schulze, L, Rossmann, S, et al. Effects of emotional stimuli on working memory processes in male criminal offenders with borderline and antisocial personality disorder. World J Biol Psychiatry. 2013; 14(1): 7178.CrossRefGoogle ScholarPubMed
Pujara, M, Motzkin, JC, Newman, JP, Kiehl, KA, Koenigs, M. Neural correlates of reward and loss sensitivity in psychopathy. Soc Cogn Affect Neurosci. 2014; 9(6): 794801.Google Scholar
Sommer, M, Sodian, B, Döhnel, K, Schwerdtner, J, Meinhardt, J, Hajak, G. In psychopathic patients emotion attribution modulates activity in outcome-related brain areas. Psychiatry Res. 2010; 182(2): 8895.CrossRefGoogle ScholarPubMed
Dolan, MC, Fullam, RS. Psychopathy and functional magnetic resonance imaging blood oxygenation level-dependent responses to emotional faces in violent patients with schizophrenia. Biol Psychiatry. 2009; 66(6): 570577.Google Scholar
Kumari, V, Das, M, Taylor, PJ, et al. Neural and behavioural responses to threat in men with a history of serious violence and schizophrenia or antisocial personality disorder. Schizophr Res. 2009; 110(1–3): 4758.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×