Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T06:51:33.019Z Has data issue: false hasContentIssue false

11 - Desiccation

from Part II - Physiology of Photosynthetic Autotrophs in Present-Day Environments

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access

Summary

Water is essential for life on Earth, but many organisms are subject to water loss under certain environmental conditions and this can cause biological stress. However, some cyanobacteria and algae are capable of coping with periodic exposure to potentially desiccating conditions. Thus, phototrophs in biological soil crusts can survive in desert environments, even when the only source of water is dew. Other aquatic plants and algae can be exposed to emersion following seasonal changes in water level in rivers or lakes and, importantly, during the daily emersion of intertidal species. Seaweeds living in the intertidal are poikilohydric, and each time they are emersed, they risk water loss. Dehydration can lead to inhibition of photosynthesis and respiration as well as disruption to nutrient availability and assimilation. However, intertidal seaweeds have evolved a range of adaptations/acclimations that allow them to cope with exposure to air. These include morphologies that minimise surface area:volume ratio and biochemical changes that involve, for example, enhanced capacity for detoxification of reactive oxygen species. The extent to which seaweeds can recover function following re-immersion and differences in their capacity for nutrient uptake during restricted periods of immersion appear to be correlated with the zonation of species in the intertidal.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, A., Dwivedi, A. & Emmanuel, I. (2019). Resurrection plants: Imperative resources in developing strategies to drought and desiccation pressure. Plant Science Today 6: 333341.CrossRefGoogle Scholar
Andreev, V. P., Maslov, Y. I. & Sorokoletova, E. F. (2012). Functional properties of photosynthetic apparatus in three Fucus species inhabiting the White Sea: Effect of dehydration. Russian Journal of Plant Physiology 59: 217223.CrossRefGoogle Scholar
Baker, S. M. (1901). On the causes of the zoning of brown seaweeds on the seashore. New Phytologist 8: 196202.CrossRefGoogle Scholar
Bell, E. C. (1993). Photosynthetic response to temperature and desiccation of the intertidal alga Mastocarpus papillatus. Marine Biology 117: 337346.CrossRefGoogle Scholar
Bell, E. C. (1995). Environmental and morphological influences on thallus temperature and desiccation of the intertidal alga Mastocarpus papillatus Kützing. Journal of Experimental Marine Biology and Ecology 191: 2955.CrossRefGoogle Scholar
Biebl, R. (1970). Comparative studies on temperature hardiness of marine algae along the Pacific Coast of North America. Protoplasma 69: 6183.CrossRefGoogle Scholar
Blouin, N. A., Brodie, J. A., Grossman, A. C. et al. (2011). Porphyra: A marine crop shaped by stress. Trends in Plant Science 16: 2937.CrossRefGoogle ScholarPubMed
Borowitzka, M. A. (2018). The ‘stress’ concept in microalgal biology – Homeostasis, acclimation and adaptation. Journal of Applied Phycolog 30: 28152825.CrossRefGoogle Scholar
Brown, M. T. (1987). Effects of desiccation on photosynthesis of intertidal algae from a southern New Zealand shore. Botanica Marina 30: 121127.CrossRefGoogle Scholar
Burnaford, J. L., Henderson, S. Y. & Van Alstyne, K. L. (2021). Linking physiology to ecological function: Environmental conditions affect performance and size of the intertidal kelp Hedophyllum sessile (Laminariales, Phaeophyceae). Journal of Phycology 57: 128142.CrossRefGoogle ScholarPubMed
Burnaford, J. L., Nielsen, K. J. & Williams, S. L. (2014). Celestial mechanics affects emersion time and cover patterns of an ecosystem engineer, the intertidal kelp Saccharina sessilis. Marine Ecology Progress Series 509: 127136.CrossRefGoogle Scholar
Burritt, D. J., Larkindale, J. & Hurd, C. L. (2002). Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta 215: 829838.CrossRefGoogle ScholarPubMed
Buschmann, A. H. (1990). The role of herbivory and desiccation on early successional patterns of intertidal macroalgae in southern Chile. Journal of Experimental Marine Biology and Ecology 139: 221230.CrossRefGoogle Scholar
Carmignani, J. R. & Roy, A. H. (2017). Ecological impacts of winter water level drawdowns on lake littoral zones: A review. Aquatic Science 79: 803824.CrossRefGoogle Scholar
Clark, J. S., Poore, A. G. B. & Doblin, M. A. (2018). Shaping up for stress: Physiological flexibility is key to survivorship in a habitat-forming macroalga. Journal of Plant Physiology 231: 346355.CrossRefGoogle Scholar
Collén, J. & Davison, I. R. (1999a). Reactive oxygen production and damage in intertidal Fucus spp. (Phaeophyceae). Journal of Phycology 35: 5461.CrossRefGoogle Scholar
Collén, J. & Davison, I. R. (1999b). Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus. Plant, Cell and Environment 22: 11431151.CrossRefGoogle Scholar
Contreras-Porcia, L., Callejas, S., Thomas, D. et al. (2012). Seaweeds early development: Detrimental effects of desiccation and attenuation by algal extracts. Planta 235: 337348.CrossRefGoogle ScholarPubMed
Contreras-Porcia, L., López-Cristoffanini, C., Lovazzano, C. et al. (2013). Differential gene expression in Pyropia columbina (Bangiales, Rhodophyta) under natural hydration and desiccation conditions. Latin American Journal of Aquatic Research 41: 933958.CrossRefGoogle Scholar
Contreras-Porcia, L., Thomas, D., Flores, V. et al. (2011). Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta). Journal of Experimental Botany 62: 18151829.CrossRefGoogle ScholarPubMed
Cronin, G. & Hay, M. E. (1996). Susceptibility to herbivores depends on recent history of both the plant and animal. Ecology 77: 15311543.CrossRefGoogle Scholar
Datta, R. & Datta, B. (1999). Desiccation induced nitrate and ammonium uptake in the red alga Catenella repens (Rhodophyta, Gigartinales). Indian Journal of Geo-Marine Sciences 28: 458460.Google Scholar
Davison, I. R. & Pearson, G. A. (1996). Stress tolerance in intertidal seaweeds. Journal of Phycology 32: 197211.CrossRefGoogle Scholar
Denny, M. W. (1993). Air and Water: The Biology and Physics of Life’s Media. Princeton University Press, Princeton, NJ, p. 360.CrossRefGoogle Scholar
Dethier, M. N., Williams, S. L. & Freeman, A. (2005). Seaweeds under stress: Manipulated stress and herbivory affect critical life-history functions. Ecological Monographs 75: 403418.CrossRefGoogle Scholar
Dring, M. & Brown, F. (1982). Photosynthesis of intertidal brown algae during and after periods of emersion: A renewed search for physiological causes of zonation. Marine Ecology Progress Series 8: 301308.CrossRefGoogle Scholar
Dring, M. J. (2005). Stress resistance and disease resistance in seaweeds: The role of reactive oxygen metabolism. Advances in Botanical Research 43: 175207.CrossRefGoogle Scholar
Dromgoole, F. I. (1980). Desiccation resistance of intertidal and subtidal algae. Botanica Marina 23: 149159.CrossRefGoogle Scholar
Ferreira, J. G., Arenas, F., Martinez, B. et al. (2014). Physiological response of fucoid algae to environmental stress: comparing range centre and southern populations. New Phytologist 202: 11571172.CrossRefGoogle ScholarPubMed
Fierro, C., López-Cristoffanini, C., Latorre, N. et al. (2016). Methylglyoxal metabolism in seaweeds during desiccation. Revista de biología marina y oceanografía 51: 187191.CrossRefGoogle Scholar
Fierro, C., Lopez-Cristoffanini, C., Meynard, A. et al. (2017). Expression profile of desiccation tolerance factors in intertidal seaweed species during the tidal cycle. Planta 245: 11491164.CrossRefGoogle ScholarPubMed
Flores-Molina, M. R., Thomas, D., Lovazzano, C. et al. (2014). Desiccation stress in intertidal seaweeds: Effects on morphology, antioxidant responses and photosynthetic performance. Aquatic Botany 113: 9099.CrossRefGoogle Scholar
Fritsch, F. E. (1945). The Structure and Reproduction of the Algae, Vol. 2. Cambridge University Press, Cambridge, UK, p. 939.Google Scholar
Gao, S., Gu, W., Xiong, Q. et al. (2015). Desiccation enhances phosphorylation of PSII and affects the distribution of protein complexes in the thylakoid membrane. Physiologia Plantarum 153: 492502.CrossRefGoogle ScholarPubMed
Gao, S., Shen, S., Wang, G. et al. (2011). PSI-driven cyclic electron flow allows intertidal macro-algae Ulva sp. (Chlorophyta) to survive in desiccated conditions. Plant and Cell Physiology 52: 885893.CrossRefGoogle ScholarPubMed
Gao, S. & Wang, G. (2012). The enhancement of cyclic electron flow around photosystem I improves the recovery of severely desiccated Porphyra yezoensis (Bangiales, Rhodophyta). Journal of Experimental Botany 63: 43494358.CrossRefGoogle ScholarPubMed
Gasulla, F., vom Dorp, K., Dombrink, I. et al. (2013). The role of lipid metabolism in the acquisition of desiccation tolerance in Craterostigma plantagineum: A comparative approach. The Plant Journal 75: 726741.CrossRefGoogle ScholarPubMed
Green, T. G. A., Pintado, A., Raggio, J. et al. (2018). The lifestyle of lichens in soil crusts. The Lichenologist 50: 397410.CrossRefGoogle Scholar
Grime, J. P. (1974). Vegetation analysis by reference to strategies. Nature 50: 2631.CrossRefGoogle Scholar
Guajardo, E., Correa, J. A. & Contreras-Porcia, L. (2016). Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta 243: 767781.CrossRefGoogle ScholarPubMed
Guenther, R. J. & Martone, P. T. (2014). Physiological performance of intertidal coralline algae during a simulated tidal cycle. Journal of Phycology 50: 310321.CrossRefGoogle ScholarPubMed
Hodgson, L. M. (1981). Photosynthesis of the red alga Gastroclonium coulteri (Rhodophyta) in response to changes in temperature, light intensity, and desiccation. Journal of Phycology 17: 3742.CrossRefGoogle Scholar
Holzinger, A., Herburger, K., Kaplan, F. et al. (2015). Desiccation tolerance in the chlorophyte green alga Ulva compressa: Does cell wall architecture contribute to ecological success? Planta 242: 477492.CrossRefGoogle ScholarPubMed
Huan, L., Gao, S., Xie, X. J. et al. (2014). Specific photosynthetic and morphological characteristics allow macroalgae Gloiopeltis furcata (Rhodophyta) to survive in unfavorable conditions. Photosynthetica 52: 281287.CrossRefGoogle Scholar
Hunt, L. J. & Denny, M. W. (2008). Desiccation protection and disruption: A trade-off for an intertidal marine alga. Journal of Phycology 44: 11641170.CrossRefGoogle ScholarPubMed
Hurd, C. L. & Dring, M. J. (1991). Desiccation and phosphate uptake by intertidal fucoid algae in relation to zonation. British Phycological Journal 26: 327333.CrossRefGoogle Scholar
Hurd, C. L., , P. J. Harrison, , , K. Bischof, & , C. S. Lobban, (2014). Seaweed Ecology and Physiology. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Im, S., Lee, H. N., Jung, H. S. et al. (2017). Transcriptome-based identification of the desiccation response genes in marine red algae Pyropia tenera (Rhodophyta) and enhancement of abiotic stress tolerance by PtDRG2 in Chlamydomonas. Marine Biotechnology (NY) 19: 232245.CrossRefGoogle ScholarPubMed
Ito, T., Borlongan, I. A., Nishihara, G. N. et al. (2021). The effects of irradiance, temperature, and desiccation on the photosynthesis of a brown alga, Sargassum muticum (Fucales), from a native distributional range in Japan. Journal of Applied Phycology 33: 17771791.CrossRefGoogle Scholar
Johnston, A. M. & Raven, J. A. (1986). The analysis of photosynthesis in air and water of Ascophyllum nodosum (L.) Le Jol. Oecologia 69: 288295.CrossRefGoogle ScholarPubMed
Kidron, G. J. & Starinsky, A. (2019). Measurements and ecological implications of non‐rainfall water in desert ecosystems – A review. Ecohydrology 12: e2121.CrossRefGoogle Scholar
Kim, J. K., Kraemer, G. P. & Yarish, C. (2008). Physiological activity of Porphyra in relation to eulittoral zonation. Journal of Experimental Marine Biology and Ecology 365: 7585.CrossRefGoogle Scholar
Kim, J. K., Kraemer, G. P. & Yarish, C. (2012). Metabolic plasticity of nitrogen assimilation by Porphyra umbilicalis (Linnaeus) Kützing. Journal of Ocean University of China 11: 517526.CrossRefGoogle Scholar
Kim, J. K., Kraemer, G. P. & Yarish, C. (2013). Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra. PLOS ONE 8: e69961.Google ScholarPubMed
Kim, K. Y. & Garbary, D. J. (2007). Photosynthesis in Codium fragile (Chlorophyta) from a Nova Scotia estuary: Responses to desiccation and hyposalinity. Marine Biology 151: 99107.CrossRefGoogle Scholar
Kumar, M., Gupta, V., Trivedi, N. et al. (2011). Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environmental and Experimental Botany 72: 194201.CrossRefGoogle Scholar
Kumar, M., Kumari, P., Reddy, C. R. K. et al. (2014). Salinity and desiccation induced oxidative stress acclimation in seaweeds. In: , N. Bourgougnon, (ed.) Sea Plants. Advances in Botanical Research, Vol. 71. Elsevier, Amsterdam, pp. 91124.Google Scholar
Leedham Elvidge, E. C., Phang, S.-M., Sturges, W. T. et al. (2015). The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae. Biogeosciences 12: 387398.CrossRefGoogle Scholar
Leprince, O. & Buitink, J. (2010). Desiccation tolerance: From genomics to the field. Plant Science 179: 554564.CrossRefGoogle Scholar
Lin, A. P., Wang, G. C., Yang, F et al. (2009). Photosynthetic parameters of sexually different parts of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta) during dehydration and re-hydration. Planta 229: 803810.CrossRefGoogle ScholarPubMed
López-Cristoffanini, C., Zapata, J., Gaillard, F. et al. (2015). Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales). Proteomics 15: 39543968.CrossRefGoogle ScholarPubMed
Maberly, S. C. & Madsen, T. V. (1990). Contribution of air and water to the carbon balance of Fucus spiralis. Marine Ecology Progress Series 62: 175183.CrossRefGoogle Scholar
Madsen, T. V. & Maberly, S. C. (1990). A comparison of air and water as environments for photosynthesis by the intertidal alga Fucus spiralis (Phaeophyta). Journal of Phycology 26: 2430.CrossRefGoogle Scholar
Oates, B. R. (1985). Photosynthesis and amelioration of desiccation in the intertidal saccate alga Colpomenia peregrina. Marine Biology 89: 109119.CrossRefGoogle Scholar
Pearson, G. A., Hoarau, G., Lago-Leston, A. et al. (2010). An expressed sequence tag analysis of the intertidal brown seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in response to abiotic stressors. Marine Biotechnology (NY) 12: 195213.CrossRefGoogle Scholar
Pearson, G. A., Lago-Leston, A. & Mota, C. (2009). Frayed at the edges: Selective pressure and adaptive response to abiotic stressors are mismatched in low diversity edge populations. Journal of Ecology 97: 450462.CrossRefGoogle Scholar
Proctor, M. C. F. & Tuba, Z. (2002). Poikilohydry and homoihydry: Antithesis or spectrum of possibilities? New Phytologist 156: 327349.CrossRefGoogle ScholarPubMed
Qian, F., Luo, Q., Yang, R. et al. (2015). The littoral red alga Pyropia haitanensis uses rapid accumulation of floridoside as the desiccation acclimation strategy. Journal of Applied Phycology 27: 621632.CrossRefGoogle Scholar
Quadir, A., Harrison, P. J. & DeWreede, R. E. (1979). The effects of emergence and submergence on the photosynthesis and respiration of marine macrophytes. Phycologia 18: 8388.CrossRefGoogle Scholar
Raven, J. A. (2008). Transpiration: How many functions? New Phytologist 179: 905907.CrossRefGoogle ScholarPubMed
Renaud, P. E., Hay, M. E. & Schmitt, T. M. (1990). Interactions of plant stress and herbivory: Intraspecific variation in the susceptibility of a palatable versus an unpalatable seaweed to sea urchin grazing. Oecologia 82: 217226.CrossRefGoogle ScholarPubMed
Schagerl, M. & Möstl, M. (2011). Drought stress, rain and recovery of the intertidal seaweed Fucus spiralis. Marine Biology 158: 24712479.CrossRefGoogle Scholar
Schmid, M, Fernández, P. A., Gaitán-Espitia, J-D. et al. (2020) Stress due to low nitrate availability reduces the biochemical acclimation potential of the giant kelp Macrocystis pyrifera to high temperature. Algal Research 47: 101895.CrossRefGoogle Scholar
Schonbeck, M. & Norton, T. A. (1978). Factors controlling the upper limits of fucoid algae on the shore. Journal of Experimental Marine Biology and Ecology 31: 303313.CrossRefGoogle Scholar
Schonbeck, M. W. & Norton, T. A. (1979a). Drought-hardening in the upper-shore seaweeds Fucus spiralis and Pelvetia canaliculata. The Journal of Ecology 67: 687696.CrossRefGoogle Scholar
Schonbeck, M. W. & Norton, T. A. (1979b). An investigation of drought avoidance in intertidal fucoid algae. Botanica Marina 22: 133144.CrossRefGoogle Scholar
Shalaby, E. A. (2017). Influence of a biotic stress on biosynthesis of alga-chemicals and its relation to biological activities. Indian Journal of Geo-Marine Sciences 46: 2332.Google Scholar
Skene, K. R. (2004). Key differences in photosynthetic characteristics of nine species of intertidal macroalgae are related to their position on the shore. Canadian Journal of Botany 82: 177184.CrossRefGoogle Scholar
Stark, L. R. (2017). Ecology of desiccation tolerance in bryophytes: A conceptual framework and methodology. The Bryologist 120: 130165.CrossRefGoogle Scholar
Stengel, D. & Dring, M. (1997). Morphology and in situ growth rates of plants of Ascophyllum nodosum (Phaeophyta) from different shore levels and responses of plants to vertical transplantation. European Journal of Phycology 32: 193202.CrossRefGoogle Scholar
Stirk, W. A., Novák, O., Hradecká, V. et al. (2009). Endogenous cytokinins, auxins and abscisic acid in Ulva fasciata (Chlorophyta) and Dictyota humifusa (Phaeophyta): Towards understanding their biosynthesis and homoeostasis. European Journal of Phycology 44: 231240.CrossRefGoogle Scholar
Terada, R., Nishihara, G. N., Arimura, K. et al. (2021). Photosynthetic response of a cultivated red alga, Neopyropia yezoensis f. narawaensis (=Pyropia yezoensis f. narawaensis; Bangiales, Rhodophyta) to dehydration stress differs with between two heteromorphic life-history stages. Algal Research 55: 102262.CrossRefGoogle Scholar
Thomas, T. E., Turpin, D. H. & Harrison, P. J. (1987). Desiccation enhanced nitrogen uptake rates in intertidal seaweeds. Marine Biology 94: 293298.CrossRefGoogle Scholar
Wang, W.-J., Sun, X.-T., Liu, F.-L. et al. (2016). Effect of abiotic stress on the gameophyte of Pyropia katadae var. hemiphylla (Bangiales, Rhodophyta). Journal of Applied Phycology 28: 469479.CrossRefGoogle Scholar
Wright, J. T., Williams, S. L. & Dethier, M. N. (2004). No zone is always greener: Variation in the performance of Fucus gardneri embryos, juveniles and adults across tidal zone and season. Marine Biology 145: 10611073.CrossRefGoogle Scholar
Xu, D., Zhang, X., Wang, Y. et al. (2016). Responses of photosynthesis and nitrogen assimilation in the green-tide macroalga Ulva prolifera to desiccation. Marine Biology 163: 18.CrossRefGoogle Scholar
Xu, J. & Gao, K. (2015). Photosynthetic performance of the red alga Pyropia haitanensis during emersion, with special reference to effects of solar UV radiation, dehydration and elevated CO2 concentration. Photochemistry and Photobiology 91: 13761381.CrossRefGoogle ScholarPubMed
Zhang, P., Shao, Z., Jin, W. et al. (2016). Comparative characterization of two GDP-mannose dehydrogenase genes from Saccharina japonica (Laminariales, Phaeophyceae). BMC Plant Biology 16: 110.CrossRefGoogle ScholarPubMed
Zhou, W., He, L., Yang, F. et al. (2014). Pyropia yezoensis can utilize CO2 in the air during moderate dehydration. Chinese Journal of Oceanology and Limnology 32: 358364.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×