Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T23:23:06.319Z Has data issue: false hasContentIssue false

7 - Light as a Major Driver of Algal Physiology and Evolution

from Part II - Physiology of Photosynthetic Autotrophs in Present-Day Environments

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access

Summary

Solar radiation is the major factor shaping the environment where algae, cyanobacteria and aquatic macrophytes can thrive. Light is the energy source for photosynthesis and growth and can control algal net primary production. Changes in light intensity occur on orders of magnitude within timescales from milliseconds to hours, seasons and even eons. In water, light is exponentially attenuated with depth, with attenuation being wavelength dependent. As a result, the intensity and spectrum of available light can be very dynamic and unpredictable. To cope with such a challenging environment, an array of sensing and feedback-loop mechanisms has evolved in aquatic phototrophs. The structural and functional plasticity of light harvesting and photoprotection mechanisms is also extremely high. This has allowed algae to occur, thrive and evolve in all niches where light is available.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostoni, M., Lucker, B. F., Smith, M. A. Y. et al. (2016). Competition-based phenotyping reveals a fitness cost for maintaining phycobilisomes under fluctuating light in the cyanobacterium Fremyella diplosiphon. Algal Research 15: 110119.CrossRefGoogle Scholar
Allorent, G., Tokutsu, R., Roach, T. et al. (2013). A dual strategy to cope with high light in Chlamydomonas reinhardtii. Plant Cell 25: 545557.CrossRefGoogle ScholarPubMed
Asada, K. (2000). The water-water cycle as alternative photon and electron sinks. Philosophical Transactions of the Royal Society B 355: 14191431.CrossRefGoogle ScholarPubMed
Bailleul, B., Rogato, A., de Martino, A. et al. (2010). An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proceedings of the National Academy of Sciences USA 107: 1821418219.CrossRefGoogle ScholarPubMed
Bao, H., Melnicki, M. R. & Kerfeld, C. A. (2017). Structure and functions of Orange Carotenoid protein homologs in cyanobacteria. Current Opinion Plant Biology 37: 19.CrossRefGoogle ScholarPubMed
Berner, T., Dubinsky, Z., Wyman, K. et al. (1989). Photoadaptation and the ‘package’ effect in Dunaliella tertiolecta (Chlorophyceae). Journal of Phycology 25: 7078.CrossRefGoogle Scholar
Bibby, T. S., Nield, J. & Barber, J. (2001). Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412: 743745.CrossRefGoogle ScholarPubMed
Bienfang, J. P. K., Szyper, J. R, Okamoto, M. Y. et al. (1984). Temporal and spatial variability of phytoplankton in a subtropical ecosystem. Limnology and Oceanography 29: 527539.CrossRefGoogle Scholar
Bína, D., Gardian, Z., Herbstová, M. et al. (2014). Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy. Biochimica et Biophysica Acta 1837: 802810.CrossRefGoogle ScholarPubMed
Bonente, G., Ballottari, M., Truong, T. B. et al. (2011). Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLOS Biology 9: e1000577.CrossRefGoogle ScholarPubMed
Brawley, S. H., Blouin, N. A., Ficko-Blean, E. et al. (2017). Insights into the red algae and eukaryotes evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences USA 114: E6361E6370.CrossRefGoogle ScholarPubMed
Büchel, C. (2020). Light harvesting complexes in chlorophyll c-containing algae. Biochimica Biophysica Acta – Bioenergetics 1861: 148027.CrossRefGoogle ScholarPubMed
Buck, J. M., Sherman, J., Bártulos, C. R. et al. (2019). Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum. Nature Communications 10: 4167. https://doi.org/10.1038/s41467-019-12043-6.CrossRefGoogle ScholarPubMed
Calzadilla, P. I. & Kirilovsky, D. (2020). Revisiting cyanobacterial state transitions. Photochemical and Photobiological Science 19: 585603.CrossRefGoogle ScholarPubMed
Chen, M., Telfer, A., Lin, S. et al. (2005). The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote Acaryochloris marina. Photochemical and Photobiological Science 4: 10601064.CrossRefGoogle ScholarPubMed
Chen, M., Li, Y. Q., Birch, D. et al. (2012). A cyanobacterium that contains chlorophyll f – a red-absorbing photopigment. FEBS Letters 586: 32493254.CrossRefGoogle ScholarPubMed
Christie, K. M., Salomon, M., Nozaki, K. et al. (1999). LOV (light, oxygen or voltage) domain of the blue light photoreceptor phototropin (nph1): Binding sites for the chromophore flavin mononucleotide. Proceedings of the National Academy of Sciences USA 96: 87799783.CrossRefGoogle ScholarPubMed
Clegg, M. R., Maberly, S. C. & Jones, R. I. (2004). Dominance and compromise in freshwater phytoplanktonic flagellates: The interaction of behavioural preferences for conflicting environmental gradients. Functional Ecology 18: 371380.CrossRefGoogle Scholar
Clegg, M. R., Maberly, S. C. & Jones, R. I. (2007). Behavioural response as a predictor of seasonal depth distribution and vertical niche separation in freshwater phytoplanktonic flagellates. Limnology and Oceanography 52: 441455.CrossRefGoogle Scholar
Coesel, S. N., Durham, B. P., Groussman, R. B. et al. (2021). Diel transcriptional oscillations of light-sensitive regulating elements in open-ocean eukaryotic plankton communities. Proceedings of the National Academy of Sciences USA 118: e8201038118.CrossRefGoogle Scholar
Costa, B., Sachse, M., Jugandras, A. et al. (2013). Aureochome 1a is involved in photoacclimation in the diatom Phaeodactylum tricornutom. PLOS ONE 8: e74451.Google Scholar
Depauw, F. A., Rogato, A., D’Alcalà, M. R. et al. (2012). Exploring the molecular basis of responses to light in marine diatoms. Journal of Experimental Botany 63: 15751591.CrossRefGoogle ScholarPubMed
Depège, N., Bellafiore, S. & Rochaix, J.-D. (2003). Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299: 15721575.CrossRefGoogle ScholarPubMed
Dominguez-Martin, M. A., Sauer, P. V., Kirst, H. et al. (2022). Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 609: 835845.CrossRefGoogle ScholarPubMed
Dring, M. J. (1967). Phytochrome in red alga, Porphyra tenera. Nature 215: 14111412.CrossRefGoogle Scholar
Dring, M. J. (1988). Photocontrol of development in algae. Annual Review of Plant Biology and Plant Molecular Biology 39: 57174.Google Scholar
Emido Fortunato, A., Jaubert, M., Enomoto, G. et al. (2016). Diatom phytochromes reveal the existence of far-red light-based sensing in the ocean. The Plant Cell 28: 616628.CrossRefGoogle ScholarPubMed
Engelken, J., Brinkmann, H. & Adamska, I. (2010). Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evolutionary Biology 10: 233.CrossRefGoogle ScholarPubMed
Erickson, E., Wakao, S. & Niyogi, K. K. (2015). Light stress and photoprotection in Chlamydomonas reinhardtii. Plant Journal 82: 449465.CrossRefGoogle ScholarPubMed
Falkowski, P. G. & Owens, T. G. (1980). Light-shade adaptation. Two strategies in marine phytoplankton. Plant Physiology 66: 592595.CrossRefGoogle ScholarPubMed
Feulner, G. (2012). The faint young Sun problem. Reviews of Geophysics 50: 2011RG000375.CrossRefGoogle Scholar
Finkel, Z. V. & Irwin, A. J. (2000). Modeling size-dependent photosynthesis: Light absorption and the allometric rule. Journal of Theoretical Biology 204: 361369.CrossRefGoogle ScholarPubMed
Finkel, Z. V. (2001). Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnology and Oceanography 46: 8694.CrossRefGoogle Scholar
Fisher, T., Shurtz-Swirski, R., Gepstein, S. et al. (1989). Changes in the levels of ribulose-l,5-bisphosphate carboxylase/oxygenase (Rubisco) in Tetraedron minimum (Chlorophyta) during light and shade adaptation. Plant and Cell Physiology 30: 221228.CrossRefGoogle Scholar
Fu, G., Nagasato, C., Yamagichi, T. et al. (2016). Ubiquitous distribution of helmchrome in phototactic swarmers of the stramenopiles. Protoplasma 253: 929941.CrossRefGoogle ScholarPubMed
Fujita, Y. & Ohki, K. (2004). On the 710 nm fluorescence emitted by the diatom Phaeodactylum tricornutum at room temperature. Plant and Cell Physiology 45: 392397.CrossRefGoogle ScholarPubMed
Galvao, V. C. & Fankhauser, C. (2015). Sensing the light environment in plants: Photoreceptors and early signaling steps. Current Opinion in Neurobiology 34: 4653.CrossRefGoogle ScholarPubMed
Gantt, E. and CunninghamJr, F. X. (2001). Algal pigments. eLS. https://doi.org/10.1038/npg.els.0000323.Google Scholar
Gao, K., Wu, Y., Li, G. et al. (2007). Solar UV radiation drives CO2 fixation in marine phytoplankton: A double-edged sword. Plant Physiology 144: 5459.CrossRefGoogle ScholarPubMed
Geider, R. & Osborne, B. (1987). Light absorption by a marine diatom: Experimental observations and theoretical calculations of the package effect in a small Thalassiosira species. Marine Biology 96: 299308.CrossRefGoogle Scholar
Geider, R. J., Platt, T. & Raven, J. A. (1986) Size dependence of growth and photosynthesis in diatoms – a synthesis. Marine Ecology Progress Series 30: 93104.CrossRefGoogle Scholar
Girolomoni, L., Cazzaniga, S., Pinnola, A. et al. (2019). LHCSR3 is a nonphotochemical quencher of both photosystems in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences USA 116: 42124217.CrossRefGoogle ScholarPubMed
Gómez-Consarnau, L., Raven, J. A., Levine, N. M. et al. (2019). Microbial rhodopsins are major contributors to the solar energy captured in the sea. Science Advances 5: eaaw8855.CrossRefGoogle Scholar
Goss, R. & Lepetit, B. (2015). Biodiversity of NPQ. Journal of Plant Physiology 172: 1332.CrossRefGoogle ScholarPubMed
Grebert, T., Dore, H., Partensky, F. et al. (2018). Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proceedings of the National Academy of Sciences USA 115: E2010E2019.CrossRefGoogle ScholarPubMed
Häder, D.-P. & Iseki, M. (2017). Photomovement in Euglena. In: Schwartzbach, C. & Shigeoka, S. (eds.) Euglena: Biochemistry, Cell and Molecular Biology. Springer, Cham, pp. 207335.CrossRefGoogle Scholar
Herbstová, M., Bína, D., Koník, P. et al. (2015). Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Biochimica et Biophysica Acta – Bioenergetics 1847: 534543.CrossRefGoogle ScholarPubMed
Herbstová, M., Bina, D., Kana, R. et al. (2017). Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology. Scientific Reports 7: 11976.CrossRefGoogle Scholar
Hieronymi, M. & Macke, A. (2010). Spatiotemporal underwater light field fluctuations in the open ocean. Journal of the European Optical Society: Rapid Publications 5: 19902573.CrossRefGoogle Scholar
Hu, Q., Mayashita., H., Iwakai, I. et al. (1998). A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proceedings of the National Academy of Sciences USA 95: 1331913323.CrossRefGoogle ScholarPubMed
Huysman, M. J. J., Fortunato, A. E., Matthijs, M. et al. (2013). Aurochrome 1s-mediated induction in the diatom-specific cyclin dscyc2 controls the onset of cell division in diatom Phaeodactylum tricornutum. The Plant Cell 25: 215228.CrossRefGoogle Scholar
Ito, H. & Tanaka, A. (2011). Evolution of a divinyl chlorophyll-based photosystem in Prochlorococcus. Proceedings of the National Academy of Sciences USA 108: 1801418019.CrossRefGoogle ScholarPubMed
Jékely, G. (2009). Evolution of phototaxis. Philosophical Transactions of the Royal Society B 364: 27952808.CrossRefGoogle ScholarPubMed
Johnsen, G., Nelson, N. B., Jovine, R. V. M. et al. (1994). Chromoprotein and pigment-dependent modelling of spectral light absorption in two dinoflagellates, Prorocentrum minimum and Hetercapsa pygmaea. Marine Ecology Progress Series 114: 245258.CrossRefGoogle Scholar
Kain, J. A. (1989). The seasons in the subtidal. British Phycological Journal 24: 203215.CrossRefGoogle Scholar
Kanazawa, A., Neofotis, P., Davis, G. A. et al. (2020). Diversity in photoprotection and energy balancing in terrestrial and aquatic phototrophs. In: Larkum, A. W. D., Grossman, A. & Raven, J. A. (eds.) Photosynthesis in Algae: Biochemical and Physiological Mechanisms. Advances in Photosynthesis and Respiration 45. Springer, Cham, pp. 299327.CrossRefGoogle Scholar
Kehoe, D. M. & Gatu, A. (2006). Responding to color: The regulation of complementary chromatic adaptation. Annual Review of Plant Biology 57: 127150.CrossRefGoogle ScholarPubMed
Kianiannoment, A. & Hallman, A. (2014). Algal photoreceptors: In vivo functions and potential applications. Planta 239: 126.CrossRefGoogle Scholar
Kirk, J. T. (1994). Light and Photosynthesis in Aquatic Ecosystems. Cambridge: Cambridge University PressCrossRefGoogle Scholar
Koehne, B., Elli, G., Jennings, R. C. et al. (1999). Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochimica et Biophysica Acta-Bioenergetics 1412: 94107.CrossRefGoogle ScholarPubMed
Kottke, T., Oldemeyer, S., Wenzel, S. et al. (2017). Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions. Journal of Plant Physiology 217: 412.CrossRefGoogle ScholarPubMed
Koziol, A. G., Borza, T., Ishida, K.-I. et al. (2007). Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. Plant Physiology 143: 18021816.CrossRefGoogle ScholarPubMed
Larkum, A. W. D. (2020). Light-harvesting in cyanobacteria and eukaryotic algae: An Overview. In: Larkum, A. W. D., Grossman, A. and Raven, J. A. (eds.) Photosynthesis in Algae: Biochemical and Physiological Mechanisms, Advances in Photosynthesis and Respiration 45. Springer, Cham, pp. 207260. https://doi.org/10.1007/978–3-030–33397–3_10.CrossRefGoogle Scholar
Lepetit, B., Gelin, G., Lepetit, M. et al. (2017). The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. New Phytologist 214: 205218.CrossRefGoogle ScholarPubMed
Lepetit, B., Sturm, S., Rogato, A. et al. (2013). High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Plant Physiology 161: 853865.CrossRefGoogle ScholarPubMed
Li, F. W., Rothfels, C. J., Melkonian, M. et al. (2015). The origin and evolution of phototropins. Frontiers in Plant Science 56: article 697.Google Scholar
Litchman, E. (2000). Growth rates of phytoplankton under fluctuating light. Freshwater Biology 44: 223235.CrossRefGoogle Scholar
Litvín, R., Bína, D., Herbstová, M. et al. (2019). Red-shifted light-harvesting system of freshwater eukaryotic alga Trachydiscus minutus (Eustigmatophyta, Stramenopila). Photosynthesis Research 142: 137151.CrossRefGoogle ScholarPubMed
Malerba, M. E., Palacios, M. M., Palacios Delgado, Y. M. et al. (2018). Cell size, photosynthesis and the package effect: An artificial selection approach. New Phytologist 219: 449461.CrossRefGoogle ScholarPubMed
Mann, M., Serif, M., Wrobel, T. et al. (2020). The aureochrome photoreceptor PtAUREO1a is a highly effective blue light switch in diatoms. iScience 23: 101730.CrossRefGoogle ScholarPubMed
Mao, Z., Stuart, V., Pan, D. et al. (2010). Effects of phytoplankton species competition on absorption spectra and modelled hyperspectral reflectance. Ecological Informatics 5: 359366.CrossRefGoogle Scholar
Mengelt, C. & Brezelin, B. B. (2005). UVA enhancement of carbon fixation and resilience to UV inhibition in the genus Pseudo-nitzschia may provide a competitive advantage in high UV surface waters. Marine Ecology Progress Series 301: 8193.CrossRefGoogle Scholar
Miyashita, H., Ikemoto, H., Kurano, N. et al. (1996). Chlorophyll d as a major pigment. Nature 383: 402402.CrossRefGoogle Scholar
Moejes, F. W., Matuszynska, A., Adhikari, K. et al. (2017). A systems-wide understanding of photosynthetic acclimation in algae and higher plants. Journal of Experimental Botany. 68: 26672681.CrossRefGoogle ScholarPubMed
Moisan, T. A. & Mitchell, B. G. (1999). Photophysical acclimation of Phaeocystis antarctica. Limnology and Oceanography 44: 247258.CrossRefGoogle Scholar
Morel, A. & Bricaud, A. (1981). Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Research Part A, Oceanographic Research Papers 28: 13751393.CrossRefGoogle Scholar
Morel, A., Gentili, B., Claustre, H. et al. (2007). Optical properties of the ‘clearest’ natural waters. Limnology and Oceanography 52: 217229.CrossRefGoogle Scholar
Muzzopappa, F. & Kirilovsky, D. (2020). Changing color for photoprotection: The orange carotenoid protein. Trends in Plant Science 25: 92104.CrossRefGoogle ScholarPubMed
Nagy, G., Ünnep, R., Zsiros, O. et al. (2014). Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proceedings of the National Academy of Sciences USA 111: 50425047.CrossRefGoogle ScholarPubMed
Neilson, J. A. D. & Durnford, D. G. (2010). Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynthesis Research 106: 5771.CrossRefGoogle ScholarPubMed
Nelson, N. B., Prézelin, B. B. & Bidigare, R. R. (1993). Phytoplankton light absorption and the package effect in California coastal waters. Marine Ecology Progress Series 94: 217227.CrossRefGoogle Scholar
Nikkanen, L., Solymosi, D., Jokel, M. et al. (2021). Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and biotechnological prospects. Physiologia Plantarum 173: 514525.CrossRefGoogle ScholarPubMed
Norici, A., Gerotto, C., Beardall, J. & Raven, J. A. (2022). Environmental variability and its control of productivity. In: Maberly, S. C. & Gontero, B. (eds.) Blue Planet, Red and Green Photosynthesis. ISTE-Wiley, London, UK, pp. 225272.CrossRefGoogle Scholar
Peers, G., Truong, T. B., Ostendorf, E. et al. (2009). An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462: 518521.CrossRefGoogle ScholarPubMed
Pfannschmidt, T. (2003). Chloroplast redox signals: How photosynthesis controls its own genes. Trends in Plant Science 8: 3341.CrossRefGoogle ScholarPubMed
Quigg, A., Kevekordes, K., Raven, J. A. et al. (2006). Limitations on microalgal growth at very low photon fluence rates: The role of energy slippage. Photosynthesis Research 88: 299310.CrossRefGoogle ScholarPubMed
Ragni, M. & Ribera d’Alcalà, M. (2004). Light as an information carrier underwater. Journal of Plankton Research 26: 433443.CrossRefGoogle Scholar
Raven, J. A. & Geider, R. J. (2003). Adaptation, acclimation and regulation in algal photosynthesis. In: Larkum, A. W. D., Douglas, S. E. and Raven, J. A. (eds.) Photosynthesis in Algae. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 385412.CrossRefGoogle ScholarPubMed
Raven, J. A., Beardall, J. & Giordano, M. (2014). Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynthesis Research 121: 111124.CrossRefGoogle ScholarPubMed
Raven, J. A., Beardall, J. & Quigg, A. (2020). Light-driven oxygen consumption in the water-water cycles and photorespiration, and light stimulated mitochondrial respiration. In: Larkum, A. W. D., Grossman, A. R. & Raven, J. A. (eds.) Photosynthesis in Algae: Biochemical and Physiological Mechanisms, Advances in Photosynthesis and Respiration, Vol. 45. Springer, Cham, pp. 161168.CrossRefGoogle Scholar
Raven, J. A., Evans, M. C. W. & Korb, R. E. (1999). The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynthesis Research 60: 11149.CrossRefGoogle Scholar
Raven, J. A. (2013). Iron acquisition and allocation in stramenopile algae. Journal of Experimental Botany 64: 21192127.CrossRefGoogle ScholarPubMed
Raven, J. A. (2020). Chloride involvement in the synthesis, functioning and repair of the photosynthetic apparatus in vivo. New Phytologist 227: 334342.CrossRefGoogle ScholarPubMed
Raven, J. A., Kubler, J. E., & Beardall, J. (2000). Put out the light, and then put out the light. Journal of the Marine Biological Association of the United Kingdom 80: 125.CrossRefGoogle Scholar
Richardson, K., Beardall, J. & Raven, J. (1983). Adaptation of unicellular algae to irradiance: An analysis of strategies. New Phytologist 93: 157191.CrossRefGoogle Scholar
Roberts, E. M., Bowers, D. G. & Davies, A. J. (2017). Tidal modulation of seabed light and its implications for benthic algae. Limnology and Oceanography 63: 91106.CrossRefGoogle Scholar
Rockwell, N. C. & Lagarios, J. C. (2019). Phytochrome evolution in 3D: Deletion, duplication, and diversification. New Phytologist 228: 22832300.Google Scholar
Rockwell, N. C., Lagarios, J. E. & Bhattacharya, D. (2014a). Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes. Frontiers in Ecology and Evolution 2: article 66.CrossRefGoogle ScholarPubMed
Rockwell, N. C., Duanmu, D., Martin, S. S. et al. (2014b). Eukaryotic algal phytochromes span the visible spectrum. Proceedings of the National Academy of Sciences USA 111: 38713876.CrossRefGoogle ScholarPubMed
Ruban, A. V. (2015). Evolution under the sun: Optimizing light harvesting in photosynthesis. Journal of Experimental Botany 66: 723.CrossRefGoogle ScholarPubMed
Schiphorst, C. & Bassi, R. (2020). Chlorophyll-xanthophyll antenna complexes: In between light harvesting and energy dissipation. In: Larkum, A. W. D., Grossman., A. R. & Raven, J. A. (eds.) Photosynthesis in Algae: Biochemical and Physiological Mechanisms. Springer International Publishing, Cham, pp 2755.CrossRefGoogle Scholar
Schubert, H., Sagert, S. & Forster, R. M. (2001). Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgoland Marine Research 55: 1222.CrossRefGoogle Scholar
Simionato, D., Sforza, E., Corteggiani Carpinelli, E. et al. (2011). Acclimation of Nannochloropsis gaditana to different illumination regimes: Effects on lipids accumulation. Bioresource Technology 102: 60266032.CrossRefGoogle ScholarPubMed
Slater, B., Kosmützky, D., Nisbet, R. E. R. et al. (2021). The evolution of the cytochrome c6 family of photosynthetic electron transfer proteins. Genome Biology and Evolution 13: evab146. https://doi.org/10.1093/gbe/evab146.CrossRefGoogle ScholarPubMed
Stomp, M., Huisman, J., De Jongh, F. et al. (2004). Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432: 104107.CrossRefGoogle ScholarPubMed
Stomp, M., Huisman, J., Stal, L. J. et al. (2007). Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME Journal 1: 271282.CrossRefGoogle ScholarPubMed
Sukenik, A., Livne, A., Apt, K. E. et al. (2000). Characterization of a gene encoding the light-harvesting violaxanthin-chlorophyll protein of Nannochloropsis sp. (Eustigmatophyceae). Journal of Phycology 36: 563570.CrossRefGoogle ScholarPubMed
Takahashi, F., Yamagata, D., Ishikawa, M. et al. (2007). Aureochrome, a photoreceptor required for photomorphogenesis in stramenopiles. Proceedings of the National Academy of Sciences USA 104: 1962519630.CrossRefGoogle ScholarPubMed
Takahashi, F. (2016). Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles. Journal of Plant Research 129: 189197.CrossRefGoogle ScholarPubMed
Takizawa, K., Cruz, J. A., Kanazawa, A. et al. (2007). The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. Biochimica et Biophysica Acta-Bioenergetics 1767: 12331244.CrossRefGoogle ScholarPubMed
Ünlü, C., Drop, B., Croce, R. et al. (2014). State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proceedings of the National Academy of Sciences USA 111: 34603465.CrossRefGoogle Scholar
Vant, W. N. (1990). Causes of light attenuation in nine New Zealand estuaries. Estuarine, Coastal and Shelf Science. 31: 125137.CrossRefGoogle Scholar
Virtanen, O., Khorobrykh, S. & Tyystjärvi, E. (2021). Acclimation of Chlamydomonas reinhardtii to extremely strong light. Photosynthesis Research 147: 91106.CrossRefGoogle ScholarPubMed
Wagner, H., Jakob, T. & Wilhelm, C. (2006). Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytologist 169: 95108.CrossRefGoogle ScholarPubMed
Wilhelm, C. & Jakob, T. (2006). Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation. Photosynthesis Research 87: 323329.CrossRefGoogle Scholar
Wilhelm, C., Jungandreas, A., Jakob, T. et al. (2014). Light acclimation in diatoms: From phenomenology to mechanisms. Marine Genomics 16: 515.CrossRefGoogle ScholarPubMed
Willows, R. D. (2020). Biosynthesis of chlorophyll and bilins in algae. In: Larkum, A. W. D., Grossman, A. and Raven, J. A. (eds.) Photosynthesis in Algae: Biochemical and Physiological Mechanisms, Advances in Photosynthesis and Respiration 45. Springer, Cham, pp. 83103.CrossRefGoogle Scholar
Wolf, B. M., Niedzwiedzki, D. M., Magdaong, N. C. M. et al. (2018). Characterization of a newly isolated freshwater Eustigmatophyte alga capable of utilizing far-red light as its sole light source. Photosynthesis Research 135: 177189.CrossRefGoogle ScholarPubMed
Yang, Y., Lam, V., Adomako, M. et al. (2018). Phototaxis in a wild isolate of the cyanobacterium Synechococcus elongatus. Proceedings of the National Academy of Sciences USA 115: E12878E12387.CrossRefGoogle Scholar
Zhu, S.-H. & Green, B. R. (2010). Photoprotection in the diatom Thalassiosira pseudonana: Role of LI818-like proteins in response to high light stress. Biochimica et Biophysica Acta- Bioenergetics 1797: 14491457.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×