Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T07:26:26.850Z Has data issue: false hasContentIssue false

9 - Protein secretion and associated stresses in Aspergillus: a genomic perspective

from III - Protein folding and secretion

Published online by Cambridge University Press:  05 October 2013

D. B. Archer
Affiliation:
School of Biology University of Nottingham University Park Nottingham NG7 2RD UK
S. E. Barnes
Affiliation:
School of Biology University of Nottingham University Park Nottingham NG7 2RD UK
T. Guillemette
Affiliation:
Laboratoire de Microbiologie UMR 77 Pathologie Végétale Université d'Angers 2 bd Lavoisier 49045 Angers cedex France
G. D. Robson
Affiliation:
University of Manchester
Pieter van West
Affiliation:
University of Aberdeen
Geoffrey Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

Aspergillus spp. are filamentous fungi of which several have been studied in relation to the secretion of proteins. This chapter will only discuss those species for which there is currently genome sequence information even though the secretion of proteins is probably an important aspect of the lifestyles of the more than 180 known species of Aspergillus. Therefore, the emphasis is with a common saprophyte and human pathogen (Aspergillus fumigatus), a sexual species and one that has been developed as a convenient laboratory species for basic studies (Aspergillus nidulans), and two species that are widely exploited commercially for their secreted enzymes (Aspergillus niger and Aspergillus oryzae). The genome sequence data have been recently acquired and made available to the scientific community so it is particularly timely that the annotated sequences serve as a framework for this chapter on protein secretion. That will also avoid a substantial amount of repetition because there are several excellent reviews on protein secretion by Aspergillus that are primarily pre-genomic in their outlook (Conesa et al., 2001; Punt et al., 2002; MacKenzie et al., 2004) even though extensive use of gene sequences and expression data has been made in the reviewed literature. More recent reviews have been able to take a more genomic view from the outset (Archer & Dyer, 2004; Archer & Turner, 2005) but, even then, the full annotated genome sequences were not available.

Type
Chapter
Information
Exploitation of Fungi , pp. 140 - 158
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Sheikh, H. M., Watson, A. J., Lacey, G. A., Punt, P., MacKenzie, D. A., Jeenes, D. J., Pakula, T., Penttilä, M., Alcocer, M. J. C. & Archer, D. B. (2004). Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger. Molecular Microbiology, 53, 1731–42.CrossRefGoogle ScholarPubMed
Archer, D. B. (2000). Filamentous fungi as microbial cell factories for food use. Current Opinion in Biotechnology, 11, 478–83.CrossRefGoogle ScholarPubMed
Archer, D. B. & Dyer, P. S. (2004). From genomics to post-genomics in Aspergillus niger. Current Opinion in Microbiology, 7, 499–504.CrossRefGoogle Scholar
Archer, D. B. & Turner, G. (2005). Genomics of protein secretion and hyphal growth in Aspergillus. In The Mycota XIII, Fungal Genomics, ed. Brown, A. J.. Berlin: Springer-Verlag.Google Scholar
Beffa, T., Staib, F., Fischer, J. L., Lyon, P. F., Gumowski, P., Marfenina, O. E., Dunoyer-Geindre, S., Georgen, F., Roch-Susuki, R., Gallaz, L. & Latge, J.-P. (1998). Mycological control and surveillance of biological waste and compost. Medical Mycology, 36 (suppl. I), 137–45.Google ScholarPubMed
Biesebeke, R. T., Levin, A., Sagt, C., Bartels, J., Goosen, T., Ram, A., Hondel, C. A. M. J. J. & Punt, P. (2005). Identification of growth phenotype-related genes in Aspergillus oryzae by heterologous macroarray and suppression subtractive hybridization. Molecular Genetics and Genomics, 272, 33–42.CrossRefGoogle Scholar
Conesa, A., Punt, P. J., Luijk, N. & Hondel, C. A. M. J. J. (2001). The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genetics and Biology, 33, 155–71.CrossRefGoogle ScholarPubMed
Vries, R. P., Jansen, J., Aguilar, G., Parenicova, L., Joosten, V., Wulfert, F., Benen, J. A. E. & Visser, J. (2002). Expression profiling of pectinolytic genes from Aspergillus niger. FEBS Letters, 530, 41–7.CrossRefGoogle ScholarPubMed
Vries, R. P., Burgers, K., Vondervoort, P. J. I., Frisvad, J. C., Samson, R. A. & Visser, J. (2004). A new black Aspergillus species, A. vadensis, is a promising host for homologous and heterologous protein production. Applied and Environmental Microbiology, 70, 3954–9.CrossRefGoogle ScholarPubMed
Vries, R. P., Grieken, C., Kuyk, P. A. & Wosten, H. A. B. (2005a). The value of genome sequences in the rapid identification of novel genes encoding specific plant cell wall degrading enzymes. Current Genomics, 6, 157–87.CrossRefGoogle Scholar
Vries, R. P., Frisvad, J. C., Vondervoort, P. J. I., Burgers, K., Kuijpers, A. F., Samson, R. A. & Visser, J. (2005b). Aspergillus vadensis, a new species of the group of black Aspergilli. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 87, 195–203.CrossRefGoogle Scholar
Diener, S. E., Dunn-Coleman, N., Foreman, P., Houfek, T. D., Teunissen, P. J., Solingen, P., Dankmeyer, L., Mitchell, T. K., Ward, M. & Dean, R. A. (2004). Characterization of the protein processing and secretion pathways in a comprehensive set of expressed sequence tags from Trichoderma reseei. FEMS Microbiology Letters, 230, 275–82.CrossRefGoogle Scholar
Ellgaard, L. & Helenius, A. (2003). Quality control in the endoplasmic reticulum. Nature Reviews in Molecular Cell Biology, 4, 181–91.CrossRefGoogle ScholarPubMed
Galagan, J. E., Calvo, S. E., Cuomo, C.et al. (2005). Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 438, 1105–15.CrossRefGoogle ScholarPubMed
Heerikhuisen, M., van den Hondel, C. & Punt, P. (2004). Aspergillus sojae. In Production of Recombinant Proteins: Novel Microbial and Eukaryotic Expression Systems, ed. Gellissen, G.. The Netherlands: Wiley, pp. 191–214.CrossRefGoogle Scholar
Kaufman, R. J. (2004). Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends in Biochemical Sciences, 29, 152–8.CrossRefGoogle ScholarPubMed
Kaufman, R. J., Scheuner, D., Schröder, M., Shen, X., Lee, K., Liu, C. Y. & Arnold, S. M. (2002). The unfolded protein response in nutrient sensing and differentiation. Nature Reviews in Molecular Cell Biology, 3, 411–21.CrossRefGoogle Scholar
Kitamoto, K. (2002). Molecular biology of the Koji moulds. Advances in Applied Microbiology, 51, 129–53.CrossRefGoogle Scholar
Latge, J.-P., (1999). Aspergillus fumigatus and aspergillosis. Clinical Microbiology Reviews, 12, 310–50.Google ScholarPubMed
Lombraña, M., Moralejo, F. J., Pinto, R. & Martin, J. F. (2004). Modulation of thaumatin secretion by Aspergillus awamori by modification of bipA gene expression. Applied and Environmental Microbiology, 70, 5145–52.CrossRefGoogle ScholarPubMed
Machida, M. (2002). Progress of Aspergillus oryzae genomics. Advances in Applied Microbiology, 51, 81–106.CrossRefGoogle ScholarPubMed
Machida, M., Asai, K., Sano, M., et al. (2005). Genome sequencing and analysis of Aspergillus oryzae. Nature, 438, 1157–61.CrossRefGoogle ScholarPubMed
MacKenzie, D. A., Jeenes, D. J. & Archer, D. B. (2004). Filamentous fungi as expression systems for heterologous proteins. In The Mycota II, Ch.15, ed. Kück, U.. Springer, pp. 289–315.Google Scholar
Martinez, I. M. & Chrispeels, M. J. (2003). Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell, 15, 561–76.CrossRefGoogle ScholarPubMed
Montiel, D., Dickinson, M. J., Lee, H. A., Dyer, P. S., Jeenes, D. J., Roberts, I. N., James, S., Fuller, S. J., Matsushima, K. & Archer, D. B. (2003). Genetic differentiation of the Aspergillus Section Flavi complex using AFLP fingerprints. Mycological Research 107, 1427–34.CrossRefGoogle ScholarPubMed
Moralejo, F. J., Watson, A. J., Jeenes, D. J., Archer, D. B. & Martín, J. F. (2001). A defined level of protein disulfide isomerase expression is required for optimal secretion of thaumatin by Aspergillus awamori. Molecular Genetics and Genomics, 266, 246–53.Google Scholar
Mulder, H. J., Saloheimo, M., Penttilä, M. & Madrid, S. (2004). The transcription factor HACA mediates the unfolded protein response in Aspergillus niger, and up-regulates its own transcription. Molecular Genetics and Genomics, 271, 130–40.CrossRefGoogle ScholarPubMed
Ngiam, C., Jeenes, D. J., Punt, P. J., Hondel, C. A. & Archer, D. B. (2000). Characterization of a foldase, protein disulfide isomerase A, in the protein secretory pathway of Aspergillus niger. Applied and Environmental Microbiology, 66, 775–82.CrossRefGoogle ScholarPubMed
Nierman, W., Pain, A., Anderson, M. J., et al. (2005). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 438, 1151–6.CrossRefGoogle ScholarPubMed
Pakula, T. M., Laxell, M., Huuskonen, A., Uusitalo, J., Saloheimo, M. & Penttilä, M. (2003). The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei: evidence for down-regulation of genes that encode secreted proteins in the stressed cells. Journal of Biological Chemistry, 278, 45011–20.CrossRefGoogle ScholarPubMed
Pakula, T. M., Salonen, K., Uusitalo, J. & Penttilä, M. (2005). The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei. Microbiology, 151, 135–43.CrossRefGoogle ScholarPubMed
Patil, C. & Walter, P. (2001). Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Current Opinion in Cell Biology, 13, 349–56.CrossRefGoogle ScholarPubMed
Patil, C., Li, H. & Walter, P. (2004). Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response. Plos Biology, 2, 1208–23.CrossRefGoogle ScholarPubMed
Pritchard, B. L., Yu, J., Nierman, W., Dean, R. A., Bhatnagar, D., Cleveland, T. E. & Payne, G. A. (2005). Aspergillus flavus genome sequence: status and release of sequence data. Proceedings of Plant and Animal Genomes XIII Conference, San Diego, USA, P037.
Punt, P. J., Seiboth, B., Weenink, X. O., Zeijl, C., Lenders, M., Konetschny, C., Ram, A. F. J., Montijn, R., Kubicek, C. P. & Hondel, C. A. M. J. J. (2001). Identification and characterization of a family of secretion-related small GTPase-encoding genes from the filamentous fungus Aspergillus niger: a putative SEC4 homologue is not essential for growth. Molecular Microbiology, 41, 513–25.CrossRefGoogle Scholar
Punt, P. J., Biezen, N., Conesa, A., Albers, A., Mangnus, J. & Hondel, C. A. M. J. J. (2002). Filamentous fungi as cell factories for heterologous protein production. Trends in Biotechnology, 20, 200–6.CrossRefGoogle ScholarPubMed
Robson, G. E., Huang., J., Wortman, J. & Archer, D. B. (2005). A preliminary analysis of the process of protein secretion, and the diversity of putative secreted hydrolases encoded in Aspergillus fumigatus: insights from the genome. Medical Mycology Supplement 1, 43, S41–S47.CrossRefGoogle ScholarPubMed
Rüegsegger, U., Leber, J. H. & Walter, P. (2001). Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell, 107, 103–14.CrossRefGoogle ScholarPubMed
Rutkowski, D. T. & Kaufman, R. J. (2004). A trip to the ER: coping with stress. Trends in Cell Biology, 14, 20–8.CrossRefGoogle ScholarPubMed
Sakaguchi, K., Takagi, M., Horiuchi, H. & Gomi, K. (1992). Fungal enzymes used in oriental food and beverage industries. In Applied Molecular Genetics of Filamentous Fungi, eds. Kinghorn, J. R. & Turner, G.. London: Blackie, pp. 54–99.CrossRef
Saloheimo, M., Valkonen, M. & Penttilä, M. (2003). Activation mechanisms of the HACI-mediated unfolded protein response in filamentous fungi. Molecular Microbiology, 47, 1149–61.CrossRefGoogle ScholarPubMed
Schröder, M., Clark, R. & Kaufman, R. J. (2003). IRE1- and HAC1-independent transcriptional regulation in the unfolded protein response of yeast. Molecular Microbiology, 49, 591–606.CrossRefGoogle ScholarPubMed
Schröder, M. & Kaufman, R. J. (2005). ER stress and the unfolded protein response. Mutation Research, 569, 29–63.CrossRefGoogle ScholarPubMed
Sims, A. H., Gent, M. E., Robson, G. D., Dunn-Coleman, N. S. & Oliver, S. G. (2004). Combining transcriptome data with genomic and cDNA sequence alignments to make confident functional assignments for Aspergillus nidulans genes. Mycological Research, 108, 853–7.CrossRefGoogle ScholarPubMed
Sims, A. H., Gent, M. E., Lanthaler, K., Dunn-Coleman, N. S., Oliver, S. G. & Robson, G. D. (2005). Transcriptome analysis of recombinant protein secretion by Aspergillus nidulans and the unfolded protein response in vivo. Applied and Environmental Microbiology, 71, 2737–47.CrossRefGoogle ScholarPubMed
Travers, K. J., Patil, C. K., Wodicka, L., Lockhart, D. J., Weissman, J. S. & Walter, P. (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell, 101, 249–58.CrossRefGoogle ScholarPubMed
Valkonen, M., Ward, M., Wang, H., Penttilä, M. & Saloheimo, M. (2003). Improvement of foreign protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded protein response. Applied and Environmental Microbiology, 69, 6979–86.CrossRefGoogle ScholarPubMed
Wymelenberg, A., Sabat, G., Martinez, D., Rajangam, A. S., Teeri, T. T., Gaskell, J., Kersten, P. J. & Cullen, D. (2005). The Phanerochaete chrysosporium secretome: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. Journal of Biotechnology, 118, 17–34.CrossRefGoogle ScholarPubMed
Vashist, S. & Ng, D. T. W. (2004). Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. Journal of Cell Biology, 165, 41–52.CrossRefGoogle ScholarPubMed
Wiebe, M. G., Karandikar, A., Robson, G. D., Trinci, A. P. J., Candia, J. L. F., Trappe, S., Wallis, G., Rinas, U., Derkx, P. M. F., Madrid, S., Sisniega, H., Faus, I., Montijn, R., Hondel, C. A. M. J. J. & Punt, P. J. (2001). Production of tissue plasminogen activator (t-PA) in Aspergillus niger. Biotechnology and Bioengineering, 76, 164–74.CrossRefGoogle Scholar
Zhang, K. & Kaufman, R. J. (2004). Signaling the unfolded protein response from the endoplasmic reticulum. Journal of Biological Chemistry, 279, 25935–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×