Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T10:01:28.078Z Has data issue: false hasContentIssue false

5 - Experimental aspects of ionization studies by positron and positronium impact

Published online by Cambridge University Press:  05 January 2013

G. Laricchia
Affiliation:
University College London
D. A. Cooke
Affiliation:
University College London
Á. Kövér
Affiliation:
Institute of Nuclear Research of the Hungarian Academy of Science
S. J. Brawley
Affiliation:
University College London
Colm T. Whelan
Affiliation:
Old Dominion University, Virginia
Get access

Summary

Introduction

As well as probing matter–antimatter interactions, positrons (as positive electrons) have been employed to highlight charge and mass effects in the dynamics of collisions, including those resulting in the ionization of atoms and molecules (see, e.g., [1]). Positronium (Ps), the hydrogenic atom formed from the binding of a positron and an electron, is readily produced in the scattering of positrons from matter. Ps is quasi-stable with a lifetime against annihilation dependent upon its spin: ground-state para-Ps (1 1S0) has a lifetime τ ≃ 125 ps, whilst ortho-Ps (1 3S1) is considerably longer lived (τ ≃ 142 ns). The beam employed for the scattering work discussed in this chapter consists solely of ortho-Ps atoms. In a dense medium, Ps may undergo several cycles of formation and break-up prior to the annihilation of the positron (see, e.g., [2–6]). A quantitative understanding of this cycle is important also for practical applications such as nanodosimetry relating to positron emission tomography (PET) [e.g., 4].

In this chapter, we consider experimental methods employed to investigate positron and positronium impact ionization and fragmentation in collision with atoms and molecules, and associated results. In the case of positrons, an extensive database now exists of integral cross sections for the inert atoms (see, e.g., [5]), less so for molecules (see, e.g., [6]); differential data remain sparse (e.g., [5]). Our focus will be on the latter two topics as well as studies with positronium projectiles.

Type
Chapter
Information
Fragmentation Processes
Topics in Atomic and Molecular Physics
, pp. 116 - 136
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] K., Paludan et al., J. Phys.B, 30, L581 (1997).
[2] D. J., Murtagh, M., Szłuińska, J., Moxom, P., Van Reeth and G., Laricchia, J. Phys.B, 38, 3857 (2005).
[3] D. A., Cooke, D. J., Murtagh and G., Laricchia, Phys. Rev. Lett., 104, 073201 (2010).
[4] C., Champion and C., Le Loirec, Phys. Med. Biol., 51, 1707 (2006).
[5] G., Laricchia, S., Armitage, Á., Kövér and D. J., Murtagh, in Advances in Atomic, Molecular, and Optical Physics, Advances in Atomic Molecular and Optical Physics series, Vol. 56 (The Netherlands: Elsevier 2008), pp. 1–47.Google Scholar
[6] G., Laricchia, D. A., Cooke and S. J., Brawley, Radiation Damage in Biomolecular Systems Biological and Medical Physics, Biomedical Engineering, ed. G., Garcia and M. C., Fuss (Dordrecht: Springer, 2012), pp. 143–153.Google Scholar
[7] D., Fromme, G., Kruse, W., Raith and G., Sinapius, Phys. Rev. Lett., 57, 3031 (1986).
[8] D., Fromme, G., Kruse, W., Raith and G., Sinapius, J. Phys.B, 21, L261 (1988).
[9] H., Knudsen, L., Brun-Nielsen, M., Charlton and M. R., Poulsen, J. Phys.B, 23, 3955 (1990).
[10] J. P., Marler, J. P., Sullivan and C. M., Surko, Phys. Rev.A, 71, 022701 (2005).
[11] J. P., Sullivan, A., Jones, P., Caradonna, C., Makochekanwa and S., Buckman, Rev. Sci. Instrum., 79, 113105 (2008).
[12] P., Coleman, J. T., Hutton, D. R., Cook and C. A., Chandler, Can. J. Phys., 60, 584 (1982).
[13] O., Sueoka and S., Mori, J. Phys. Soc. Jpn., 53, 2491 (1984).
[14] L. M., Diana et al., in Positron (Electron)–Gas Scattering, ed. W. E., Kauppila, T. S., Stein and J. M., Wadehra (Singapore: World Scientific, 1986).Google Scholar
[15] O., Sueoka and S., Mori, J. Phys.B, 22, 963 (1989).
[16] S., Mori and O., Sueoka, J. Phys.B, 27, 4349 (1994).
[17] G., Kruse, A., Quermann, W., Raith, G., Sinapius and M., Weber, J. Phys.B, 24, L33 (1991).
[18] S., Helms, U., Brinkmann, J., Deiwiks, H., Schneider and R., Hippler, Hyperfine Interactions, 89, 395 (1994).
[19] L. S., Fornari, L. M., Diana and P. G., Coleman, Phys. Rev. Lett., 51, 2276 (1983).
[20] H., Knudsen and J. P., Reading, Phys. Rep., 212, 107 (1992).
[21] F. M., Jacobsen, N. P., Frandsen, H., Knudsen, U., Mikkelsen and D. M., Schrader, J. Phys.B, 28, 4691 (1995).
[22] D. A., Cooke, D. J., Murtagh and G., Laricchia, J. Phys. Conf. Ser., 199, 012006 (2010).
[23] H., Bluhme et al., J. Phys.B, 31, 4631 (1998).
[24] V., Kara, K., Paludan, J., Moxom, P., Ashley and G., Laricchia, J. Phys.B, 30, 3933 (1997).
[25] J., Moxom, P., Ashley and G., Laricchia, Can. J. Phys., 74, 367 (1996).
[26] N., Overton, R. J., Mills and P. G., Coleman, J. Phys.B, 26, 3951 (1993).
[27] M., Charlton, G., Clark, T. C., Griffith and G. R., Heyland, J. Phys.B, 16, L465 (1983).
[28] P., Caradonna et al., Phys. Rev.A, 80, 032710 (2009).
[29] R., Rejoub, B. G., Lindsay and R. F., Stebbings, Phys. Rev.A, 65, 042713 (2002).
[30] G., Laricchia, P., Van Reeth, M., Szłuińska and J., Moxom, J. Phys.B, 35, 2525 (2002).
[31] H., Bluhme et al., J. Phys.B, 32, 5825 (1999).
[32] M., Szłuińska and G., Laricchia, Nucl. Instr. and Meth.B, 221, 107 (2004).
[33] T. S., Stein et al., Nucl. Instr. Meth.B, 143, 68 (1998).
[34] D. A., Cooke, unpublished. PhD thesis, University College London (2010).
[35] J. P., Marler and C. M., Surko, Phys. Rev.A, 72, 062713 (2005).
[36] T. C., Griffith, Positron Scattering in Gases (New York: Plenum, 1984), p. 53.Google Scholar
[37] H. C., Straub, B. G., Lindsay, K. A., Smith and R. F., Stebbings, J. Chem. Phys., 105, 4015 (1996).
[38] D. A., Cooke, D. J., Murtagh, Á., Kövér and G., Laricchia, Nucl. Instr. Meth.B, 266, 466 (2008).
[39] C. K., Kwan et al., Nucl. Instr. Meth.B, 143, 61 (1998).
[40] D. J., Murtagh, D. A., Cooke and G., Laricchia, Phys. Rev. Lett., 102, 133202 (2009).
[41] C. P., Campbell, M. T., McAlinden, A. A., Kernoghan and H. R., J.|Walters, Nucl. Instr. Meth.B, 143, 41 (1998).
[42] P., Chaudhuri and S. K., Adhikari, J. Phys.B, 31, 3057 (1998).
[43] P., Khan, P. S., Mazumdar and A. S., Ghosh, Phys. Rev.A, 31, 1405 (1985).
[44] R. N., Hewitt, C. J., Noble and B. H., Bransden, J. Phys.B, 25, 557 (1992).
[45] N. K., Sarkar, M., Basu and A. S., Ghosh, Phys. Rev.A, 45, 6887 (1992).
[46] S., Gilmore, J. E., Blackwood and H. R. J., Walters, Nucl. Instr. Meth.B, 221, 129 (2004).
[47] S., Tsurubuchi and T., Iwai, J. Phys. Soc. Jpn., 37, 1077 (1974).
[48] J., Moxom, G., Laricchia, M., Charlton, G. O., Jones and Á., Kövér, J. Phys.B, 25, L613 (1992).
[49] Á., Kövér, G., Laricchia and M., Charlton, J. Phys.B, 26, L575 (1993).
[50] Á., Kövér, G., Laricchia and M., Charlton, J. Phys.B, 27, 2409 (1994).
[51] R. A., Sparrow and R. E., Olson, J. Phys.B, 27, 2647 (1994).
[52] A., Schmitt, U., Cerny, H., Möller, W., Raith and M., Weber, Phys. Rev.A, 49, R5 (1994).
[53] R. M., Finch, Á., Kövér, M., Charlton and G., Laricchia, J. Phys.B, 29, L667 (1996).
[54] R., DuBois, C., Doudna, C., Lloyd, M., Kahveci, Kh., Khayyat, Y., Zhov and D. H., Madison, J. Phys.B, 34, L783 (2001).
[55] D. H., Madison, Phys. Rev.A, 8, 2449 (1973).
[56] C., Arcidiacono, J., Beale, Z. D., Pešsić, Á., Kövér and G., Laricchia, J. Phys.B, 42, 065205 (2009).
[57] O. G., de Lucio, J., Gavin and R. D., DuBois, Phys. Rev. Lett., 97, 243201 (2006).
[58] O. G., de Lucio, S., Otranto, R., Olson and R., DuBois, Phys. Rev. Lett., 104, 163201 (2010).
[59] R., DuBois, O. G., de Lucio and J., Gavin, Nucl. Instr. Meth.B, 266, 397 (2008).
[60] M., Lucas and K. G., Harrison, J. Phys.B, 5, L20 (1972).
[61] M., Rodbro and F. D., Andersen, J. Phys.B, 12, 2883 (1979).
[62] P., Mandal, K., Roy and N. C., Sil, Phys. Rev.A, 33, 756 (1986).
[63] L. D., Faddeev, Zh. Eksp. Teor. Fiz., 39, 1459 (1961).
[64] D. R., Schultz and C., Reinhold, J. Phys.B, 23, L9 (1990).
[65] K., Tőkési and Á., Kövér, J. Phys.B, 33, 3067 (2000).
[66] J., Fiol and R. E., Olson, J. Phys.B, 35, 1173 (2002).
[67] J., Fiol, P., Macri and R. O., Barrachina, Nucl. Instr. Meth.B, 267, 211 (2009).
[68] M., Brauner and J. S., Briggs, J. Phys.B, 19, L325 (1986).
[69] M., Brauner and J. S., Briggs, J. Phys.B, 26, 2451 (1993).
[70] R. O., Barrachina, Nucl. Instr. Meth.B, 124, 198 (1997).
[71] Á., Benedek and R. I., Campeanu, J. Phys.B, 40, 1589 (2007).
[72] J., Fiol and R. O., Barrachina, J. Phys.B, 44, 075205 (2011).
[73] M., Brauner, J. S., Briggs and H., Klar, J. Phys.B, 22, 2265 (1989).
[74] Á., Kövér and G., Laricchia, Phys. Rev. Lett., 80, 5309 (1998).
[75] J., Berakdar, Phys. Rev. Lett., 81, 1393 (1998).
[76] J., Fiol, V. D., Rodriguez and R. O., Barrachina, J. Phys.B, 34, 933 (2001).
[77] Á., Kövér and G., Laricchia, Meas. Sci. Technol., 12, 1875 (2001).
[78] C., Arcidiacono, Á., Kövér and G., Laricchia, Phys. Rev. Lett., 95, 223202 (2005).
[79] Á., Kövér, K., Paludan and G., Laricchia, J. Phys.B, 34, L219 (2001).
[80] L., Sarkadi, Phys. Rev.A, 68, 032706 (2003).
[81] M., Charlton and J. W., Humberston, Positron Physics (Cambridge: Cambridge University Press, 2001).Google Scholar
[82] T., Falke, T., Brandt, O., Kühl, W., Raith and M., Weber, J. Phys.B, 30, 3247 (1997).
[83] M. T., McAlinden and H. R. J., Walters, Hyperfine Interactions, 89, 407 (1994).
[84] R., Dörner et al., Phys. Rep., 330, 95 (2000).
[85] J., Ullrich et al., Rep. Prog. Phys., 66, 1463 (2003).
[86] Á., Kövér, D. J., Murtagh, A. I., Williams and G., Laricchia, J. Phys. Conf. Ser., 199, 012020 (2010).
[87] A. I., Williams, Á., Kövér, D. J., Murtagh and G., Laricchia, J. Phys. Conf. Ser., 199, 012025 (2010).
[88] R. O., Barrachina, J., Fiol and P., Macri, Nucl. Instr. Meth.B, 266, 402 (2008).
[89] K., Tökesi, ICPEAC abstracts, 2011.Google Scholar
[90] R. O., Barrachina, J., Fiol and F. O., Navarrete, ICPEAC abstracts, 2011.Google Scholar
[91] M., Dürr et al., J. Phys.B, 36, 4097 (2006).
[92] C., Hugenschmidt et al., Nucl. Instr. Meth.B, 593, 616 (2008).
[93] T., Pflüger et al., J. Phys. Conf. Ser., 262, 012047 (2011).
[94] J., Ludlow and H. R. J., Walters, Many-Particle Spectroscopy of Atoms, Molecules, Clusters, and Surfaces (New York: Kluwer/Plenum, 2001).Google Scholar
[95] S., Armitage, D. E., Leslie, A. J., Garner and G., Laricchia, Phys. Rev. Lett., 89, 173402 (2002).
[96] S., Armitage, D. E., Leslie, J., Beale and G., Laricchia, Nucl. Instr. Meth.B, 247, 98 (2006).
[97] S. J., Brawley et al., Nucl. Instr. Meth.B, 266, 497 (2008).
[98] J. E., Blackwood, C. P., Campbell, M. T., McAlinden and H. R. J., Walters, Phys. Rev.A, 60, 4454 (1999).
[99] C., Starrett, M. T., McAlinden and H. R., J.|Walters, Phys. Rev.A, 72, 012508 (2005).
[100] H. R. J., Walters, C., Starrett and M. T., McAlinden, Nucl. Instr. Meth.B, 247, 111 (2006).
[101] C., Starrett, Mary T., McAlinden and H. R. J., Walters, Phys. Rev.A, 77, 042505 (2008).
[102] A. J., Garner, G., Laricchia and A., Özen, J. Phys.B, 29, 5961 (1996).
[103] D. E., Leslie, S., Armitage and G., Laricchia, J. Phys.B, 35, 4819 (2002).
[104] G., Laricchia, S., Armitage and D. E., Leslie, Nucl. Instr. Meth.B, 221, 60 (2004).
[105] A. P., Mills Jr., Phys. Rev. Lett., 50, 671 (1983).
[106] H., Ray, J. Phys.B, 35, 3365 (2002).
[107] G. B., Crooks and M. E., Rudd, Phys. Rev. Lett., 25, 1599 (1970).
[108] P. K., Biswas and S. K., Adhikari, Phys. Rev.A, 59, 363 (1999).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×