Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T13:49:19.599Z Has data issue: false hasContentIssue false

12 - Miscellaneous topics

Published online by Cambridge University Press:  05 February 2016

Y. R. Shen
Affiliation:
University of California, Berkeley
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, C. K.; Heinz, T. F.; Ricard, D.; Shen, Y. R.: Detection of Molecular Monolayers by Optical 2nd-Harmonic Generation. Phys Rev Lett 1981, 46, 10101012.CrossRefGoogle Scholar
Fleischmann, M.; Hendra, P.J.; J., M. A.: Raman-Spectra of Pyridine Adsorbed at a Silver Electrode. Chem Phys Lett 1974, 26, 163166.CrossRefGoogle Scholar
Chen, C. K.; de Castro, A. R. B.; Shen, Y. R.: Surface-Enchanced Second-Harmonic Generation. Phys Rev Lett 1981, 46, 145148.CrossRefGoogle Scholar
Richmond, G. L.; Rojhantalab, H. M.; Robinson, J. M.; Shannon, V. L.: Experiments on Optical Second-Harmonic Generation as a Surface Probe of Electrodes. J Opt Soc Am B 1987, 4, 228236.CrossRefGoogle Scholar
Corn, R. M.; Romagnoli, M.; Levenson, M. D.; Philpott, M. R.: The Potential Dependence of Surface Plasmon-Enhanced Second-Harmonic Generation at Thin-Film Silver Electrodes. Chem Phys Lett 1984, 106, 3035.CrossRefGoogle Scholar
Furtak, T. E.; Miragliotta, J.; Korenowski, G. M.: Optical 2nd-Harmonic Generation from Thallium on Silver. Phys Rev B 1987, 35, 25692572.CrossRefGoogle Scholar
Koos, D. A.: An Optical 2nd Harmonic-Generation Study of ThalliumIUnderpotential Deposition on Au(111). J Electrochem Soc 1989, 136, C218C220.CrossRefGoogle Scholar
Richmond, G. L.: Surface Second Harmonic Generation Studies of Single Crystal Metal Surfaces. In Laser Spectrosc Photochem Metal Surface, Dai, H.-L. and Ho, W., Eds., World Scientific Publishing Co: Singapore 1995, I, 132183.CrossRefGoogle Scholar
Koos, D. A.; Shannon, V. L.; Richmond, G. L.: Anisotropic Nonlinear Optical-Response from Silver Electrodes during Thin-Film Deposition. J Phys Chem 1990, 94, 20912098.CrossRefGoogle Scholar
Georgiadis, R.; Neff, G. A.; Richmond, G. L.: Effect of Optical Resonances on the Second Harmonic Response from Ag(111) and Ag(110) in Solution. J Chem Phys 1990, 92, 46234625.CrossRefGoogle Scholar
Guyot-Sionnest, P.; Tadjeddine, A.: Spectroscopic Investigations of Adsorbates at the Metal Electrolyte Interface Using Sum Frequency Generation. Chem Phys Lett 1990, 172, 341345.CrossRefGoogle Scholar
Vidal, F.; Tadjeddine, A.: Sum-Frequency Generation Spectroscopy of Interfaces. Rep Prog Phys 2005, 68, 10951127.CrossRefGoogle Scholar
Humbert, C.; Busson, B.; Six, C.; Gayral, A.; Gruselle, M.; Villain, F.; Tadjeddine, A.: Sum-Frequency Generation as a Vibrational and Electronic Probe of the Electrochemical Interface and Thin Films. J Electroanal Chem 2008, 621, 314321.CrossRefGoogle Scholar
Lu, G. Q.; Lagutchev, A.; Dlott, D. D.; Wieckowski, A.: Quantitative Vibrational Sum-Frequency Generation Spectroscopy of Thin Layer Electrochemistry: CO on a Pt Electrode. Surf Sci 2005, 585, 316.CrossRefGoogle Scholar
Baldelli, S.; Gewirth, A. A.: Sum Frequency Generation Studies of the Electrified Solid/Liquid Interface. Adv Electrochem Sci Eng 2006, 9, 163198.CrossRefGoogle Scholar
Pluchery, O.; Tadjeddine, M.; Flament, J. P.; Tadjeddine, A.: Adsorption of 4-Cyanopyridine on Au(111): Ab initio Calculations and SFG Measurements. Phys Chem Chem Phys 2001, 3, 33433350.CrossRefGoogle Scholar
Shaw, S. K.; Lagutchev, A.; Dlott, D. D.; Gewirth, A. A.: Electrochemically Driven Reorientation of Three Ionic States of p-Aminobenzoic Acid on Ag(111). J Phys Chem C 2009, 113, 24172424.CrossRefGoogle Scholar
Tadjeddine, A.: Spectroscopic Investigation of Surfaces and Interfaces by Using Infrared-Visible Sum and Difference Frequency Generation. Surface Rev Lett 2000, 7, 423436.CrossRefGoogle Scholar
Lagutchev, A.; Hambir, S. A.; Dlott, D. D.: Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy. J Phys Chem C 2007, 111, 1364513647.CrossRefGoogle Scholar
Braunschweig, B.; Mukherjee, P.; Kutz, R. B.; Wieckowski, A.; Dlott, D. D.: Sum-Frequency Generation of Acetate Adsorption on Au and Pt Surfaces: Molecular Structure Effects. J Chem Phys 2010, 133.CrossRefGoogle ScholarPubMed
Peremans, A.; Tadjeddine, A.: Electrochemical Deposition of Hydrogen on Platinum Single-Crystals Studied by Infrared-Visible Sum-Frequency Generation. J Chem Phys 1995, 103, 71977203.CrossRefGoogle Scholar
Tadjeddine, A.; Peremans, A.: Vibrational Spectroscopy of the Electrochemical Interface by Visible Infrared Sum Frequency Generation. J Electroanal Chem 1996, 409, 115121.CrossRefGoogle Scholar
Bozzini, B.; Busson, B.; De Gaudenzi, G. P.; D’Urzo, L.; Mele, C.; Tadjeddine, A.: An SFG and ERS Investigation of the Corrosion of CoW0.013C0.001 Alloys and WC–Co Cermets in CN−Containing Aqueous Solutions. Corrosion Sci 2007, 49, 23922405.CrossRefGoogle Scholar
Bozzini, B.; Busson, B.; De Gaudenzi, G. P.; D'Urzo, L.; Mele, C.; Tadjeddine, A.: An In Situ SFG and SERS Investigation into the Electrodeposition of Au from Au(CN)2– and Au(CN)4– solutions. J Electroanal Chem 2007, 602, 6169.CrossRefGoogle Scholar
Vidal, F.; Busson, B.; Six, C.; Pluchery, O.; Tadjeddine, A.: SFG Study of Methanol Dissociative Adsorption at Pt(100), Pt(100) and Pt(111) Electrodes Surfaces. Surf Sci 2002, 502, 485489.CrossRefGoogle Scholar
Kutz, R. B.; Braunschweig, B.; Mukherjee, P.; Dlott, D. D.; Wieckowski, A.: Study of Ethanol Electrooxidation in Alkaline Electrolytes with Isotope Labels and Sum-Frequency Generation. J Physi Chem Lett 2011, 2, 22362240.CrossRefGoogle Scholar
Gomes, F. J.; Busson, B.; Tadjeddine, A.; Tremiliosi-Filho, G.: Ethanol Electro-Oxidation over Pt(hkl): Comparative Study on the Reaction Intermediates Probed by FTIR and SFG Spectroscopies. Electrochimica Acta 2008, 53, 68996905.CrossRefGoogle Scholar
Lagutchev, A.; Lu, G. Q.; Takeshita, T.; Dlott, D. D.; Wieckowski, A.: Vibrational Sum Frequency Generation Studies of the (2×2)->(root 19× root 19) Phase Transition of CO on Pt(111) Electrodes. J Chem Phys 2006, 125, 154705.CrossRefGoogle Scholar
Liu, W. T.; Shen, Y. R.: In Situ Sum-Frequency Vibrational Spectroscopy of Electrochemical Interfaces with Surface Plasmon Resonance. Proceedings of the Nat Acad Sci USA 2014, 111, 12931297.CrossRefGoogle ScholarPubMed
Shank, C. V.; Yen, R.; Hirlimann, C.: Femtosecond-Time-Resolved Surface Structural Dynamics of Optically-Excited Silicon. Phys Rev Lett 1983, 51, 900902.CrossRefGoogle Scholar
Sitzmann, E. V.; Eisenthal, K. B.: Picosecond Dynamics of a Chemical-Reaction at the Air-Water-Interface Studied by Surface 2nd Harmonic-Generation. J Physi Chem 1988, 92, 45794580.CrossRefGoogle Scholar
Castro, A.; Sitzmann, E. V.; Zhang, D.; Eisenthal, K. B.: Rotational Relaxation at the Air-Water-Interface by Time-Resolved Second Harmonic-Generation. J Physi Chem 1991, 95, 67526753.CrossRefGoogle Scholar
Zimdars, D.; Dadap, J. I.; Eisenthal, K. B.; Heinz, T. F.: Anisotropic Orientational Motion of Molecular Adsorbates at the Air-Water Interface. J Phys Chem B 1999, 103, 34253433.CrossRefGoogle Scholar
Jailaubekov, A. E.; Willard, A. P.; Tritsch, J. R.; Chan, W. L.; Sai, N.; Gearba, R.; Kaake, L. G.; Williams, K. J.; Leung, K.; Rossky, P. J.; Zhu, X. Y.: Hot Charge-Transfer Excitons set the Time Limit for Charge Separation at Donor/Acceptor Interfaces in Organic Photovoltaics. Nature Mater 2013, 12, 6673.CrossRefGoogle ScholarPubMed
Harris, A. L.; Levinos, N. J.: Vibrational-Energy Relaxation in a Molecular Monolayer at a Metal-Surface. J Chem Phys 1989, 90, 38783879.CrossRefGoogle Scholar
Harris, A. L.; Rothberg, L.; Dhar, L.; Levinos, N. J.; Dubois, L. H.: Vibrational-Energy Relaxation of a Polyatomic Adsorbate on a Metal-Surface-Methyl Thiolate (Ch3s) on Ag(111). J Chem Phys 1991, 94, 24382448.CrossRefGoogle Scholar
Morin, M.; Levinos, N. J.; Harris, A. L.: Vibrational-Energy Transfer of Co/Cu(100)-Nonadiabatic Vibration Electron Coupling. J Chem Phys 1992, 96, 39503956.CrossRefGoogle Scholar
Schmidt, M. E.; Guyot-Sionnest, P.: Electrochemical Tuning of the Lifetime of the CO Stretching Vibration for CO/Pt(111). J Chem Phys 1996, 104, 24382445.CrossRefGoogle Scholar
Guyot-Sionnest, P.; Dumas, P.; Chabal, Y. J.; Higashi, G. S.: Lifetime of an Adsorbate-Substrate Vibration-H on Si(111). Phys Rev Lett 1990, 64, 21562159.CrossRefGoogle Scholar
Morin, M.; Jakob, P.; Levinos, N. J.; Chabal, Y. J.; Harris, A. L.: Vibrational-Energy Transfer on Hydrogen-Terminated Vicinal Si(111) Surfaces-Interadsorbate Energy-Flow. J Chem Phys 1992, 96, 62036212.CrossRefGoogle Scholar
Yamamoto, S.; Ghosh, A.; Nienhuys, H. K.; Bonn, M.: Ultrafast Inter- and Intramolecular Vibrational Energy Transfer between Molecules at Interfaces Studied by Time- and Polarization-Resolved SFG Spectroscopy. Phys Chem Chem Phys 2010, 12, 1290912918.CrossRefGoogle ScholarPubMed
Rao, Y.; Xu, M.; Jockusch, S.; Turro, N. J.; Eisenthal, K. B.: Dynamics of Excited State Electron Transfer at a Liquid Interface using Time-Resolved Sum Frequency Generation. Chem Phys Lett 2012, 544, 16.CrossRefGoogle Scholar
Wang, Z. H.; Carter, J. A.; Lagutchev, A.; Koh, Y. K.; Seong, N. H.; Cahill, D. G.; Dlott, D. D.: Ultrafast Flash Thermal Conductance of Molecular Chains. Science 2007, 317, 787-790.CrossRefGoogle ScholarPubMed
Carter, J. A.; Wang, Z. H.; Dlott, D. D.: Spatially Resolved Vibrational Energy Transfer in Molecular Monolayers. J Phys Chem 2008, 112, 35233529.CrossRefGoogle ScholarPubMed
Smits, M.; Ghosh, A.; Bredenbeck, J.; Yamamoto, S.; Muller, M.; Bonn, M.: Ultrafast Energy Flow in Model Biological Membranes. New J Phys 2007, 9.CrossRefGoogle Scholar
Bonn, M.; Hess, C.; Funk, S.; Miners, J. H.; Persson, B. N. J.; Wolf, M.; Ertl, G.: Femtosecond Surface Vibrational Spectroscopy of CO Adsorbed on Ru(001) during Desorption. Phys Rev Lett 2000, 84, 46534656.CrossRefGoogle ScholarPubMed
Noguchi, H.; Okada, T.; Uosaki, K.: Photoinduced Surface Dynamics of CO Adsorbed on a Platinum Electrode. J Phys Chem B 2006, 110, 1505515058.CrossRefGoogle ScholarPubMed
McGuire, J. A.; Shen, Y. R.: Ultrafast Vibrational Dynamics at Water Interfaces. Science 2006, 313, 19451948.CrossRefGoogle ScholarPubMed
Lock, A. J.; Bakker, H. J.: Temperature Dependence of Vibrational Relaxation in Liquid H2O. J Chem Phys 2002, 117, 17081713.CrossRefGoogle Scholar
Zhang, Z.; Piatkowski, L.; Bakker, H. J.; Bonn, M.: Ultrafast Vibrational Energy Transfer at the Water/Air Interface Revealed by Two-Dimensional Surface Vibrational Spectroscopy. Nature Chem 2011, 3, 888893.CrossRefGoogle ScholarPubMed
Ghosh, A.; Campen, R. K.; Sovago, M.; Bonn, M.: Structure and Dynamics of Interfacial Water in Model Lung Surfactants. Faraday Discuss 2009, 141, 145159.CrossRefGoogle ScholarPubMed
Eftekhari-Bafrooei, A.; Borguet, E.: Effect of Electric Fields on the Ultrafast Vibrational Relaxation of Water at a Charged Solid-Liquid Interface as Probed by Vibrational Sum Frequency Generation. J Phys Chem Lett 2011, 2, 13531358.CrossRefGoogle Scholar
Nihonyanagi, S.; Singh, P. C.; Yamaguchi, S.; Tahara, T.: Ultrafast Vibrational Dynamics of a Charged Aqueous Interface by Femtosecond Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation. Bullet Chem Soc Japan 2012, 85, 758760.CrossRefGoogle Scholar
Singh, P. C.; Nihonyanagi, S.; Yamaguchi, S.; Tahara, T.: Ultrafast Vibrational Dynamics of Water at a Charged Interface Revealed by Two-Dimensional Heterodyne-Detected Vibrational Sum Frequency Generation. J Chem Phys 2012, 137, 094706.CrossRefGoogle Scholar
Hsieh, C.-S.; Campen, R. K.; Verde, A. C. V.; Bolhuis, P.; Nienhuys, H.-K.; Bonn, M.: Ultrafast Reorientation of Dangling OH Groups at the Air-Water Interface Using Femtosecond Vibrational Spectroscopy. Phys Rev Lett 2011, 107, 116102.CrossRefGoogle ScholarPubMed
Guyot-Sionnest, P.: Coherent Processes at Surfaces-Free-Induction Decay and Photon-Echo of the Si-H Stretching Vibration for H/Si(111). Phys Rev Lett 1991, 66, 14891492.CrossRefGoogle ScholarPubMed
Hellwarth, R.; Christensen, P.: Nonlinear Optical Microscope Using Second-Harmonic Generation. Appl Opt 1975, 14, 247248.CrossRefGoogle ScholarPubMed
Florsheimer, M.: Second-Harmonic Microscopy-A New Tool for the Remote Sensing of Interfaces. Physica Status Solidi a-Applied Research 1999, 173, 1527.3.0.CO;2-8>CrossRefGoogle Scholar
Dombeck, D. A.; Kasischke, K. A.; Vishwasrao, H. D.; Ingelsson, M.; Hyman, B. T.; Webb, W. W.: Uniform Polarity Microtubule Assemblies Imaged in Native Brain Tissue by Second-Harmonic Generation Microscopy. Proc Nat Acad Sci USA 2003, 100, 70817086.CrossRefGoogle ScholarPubMed
Florsheimer, M.; Paschotta, R.; Kubitscheck, U.; Brillert, C.; Hofmann, D.; Heuer, L.; Schreiber, G.; Verbeek, C.; Sohler, W.; Fuchs, H.: Second-Harmonic Imaging of Ferroelectric Domains in LiNbO3 with Micron Resolution in Lateral and Axial Directions. Appl Phys B-Lasers Opt 1998, 67, 593599.Google Scholar
Boyd, G.T., T. W. H., and Shen, Y.R.: Continuous-Wave Second-Harmonic Generation as a Surface Microprobe. Opt Lett 1986, 11, 9799.CrossRefGoogle ScholarPubMed
Li, Y. L.; Rao, Y.; Mak, K. F.; You, Y. M.; Wang, S. Y.; Dean, C. R.; Heinz, T. F.: Probing Symmetry Properties of Few-Layer MoS2 and h-BN by Optical Second-Harmonic Generation. Nano Lett 2013, 13, 33293333.CrossRefGoogle ScholarPubMed
Yin, X. B.; Ye, Z. L.; Chenet, D. A.; Ye, Y.; O'Brien, K.; Hone, J. C.; Zhang, X.: Edge Nonlinear Optics on a MoS2 Atomic Monolayer. Science 2014, 344, 488490.CrossRefGoogle ScholarPubMed
Pavone, F. S.; Campagnola, P. J.: Second Harmonic Generation Imaging; Boca Raton: CRC Press Taylor & Francis, 2014.Google Scholar
Kwan, A. C.; Dombeck, D. A.; Webb, W. W.: Polarized Microtubule Arrays in Apical Dendrites and Axons. Proc Nat Acad Sci USA 2008, 105, 1137011375.CrossRefGoogle ScholarPubMed
Campagnola, P. J.; Millard, A. C.; Terasaki, M.; Hoppe, P. E.; Malone, C. J.; Mohler, W. A.: Three-Dimensional High-Resolution Second-Harmonic Generation Imaging Of Endogenous Structural Proteins in Biological Tissues. Biophys J 2002, 82, 493508.CrossRefGoogle ScholarPubMed
Kluge, S.; Budde, F.; Dohnke, I.; Rechsteiner, P.; Hulliger, J.: Phase-Sensitive Second-Harmonic Microscopy Reveals Polarity of Topologically Centrosymmetric Molecular Crystals. Appl Phys Lett 2002, 81, 247249.CrossRefGoogle Scholar
Bozhevolnyi, S. I.; Vohnsen, B.; Pedersen, K.: Near-Field Optical Microscopy of Nonlinear Susceptibilities. Opt Commun 1998, 150, 4955.CrossRefGoogle Scholar
Schaller, R. D.; Saykally, R. J.; Shen, Y. R.; Lagugne-Labarthet, F.: Poled Polymer Thin-Film Gratings Studied with Far-Field Optical and Second-Harmonic Near-Field Microscopy. Opt Lett 2003, 28, 12961298.CrossRefGoogle ScholarPubMed
Shen, Y. Z.; Swiatkiewicz, J.; Winiarz, J.; Markowicz, P.; Prasad, P. N.: Second-Harmonic and Sum-Frequency Imaging of Organic Nanocrystals with Photon Scanning Tunneling Microscope. Appl Phys Lett 2000, 77, 29462948.CrossRefGoogle Scholar
Schaller, R. D.; Johnson, J. C.; Saykally, R. J.: Time-Resolved Second Harmonic Generation Near-Field Scanning Optical Microscopy. Chemphyschem 2003, 4, 12431247.CrossRefGoogle ScholarPubMed
Florsheimer, M.; Brillert, C.; Fuchs, H.: Chemical Imaging of Interfaces by Sum Frequency Microscopy. Langmuir 1999, 15, 54375439.CrossRefGoogle Scholar
Hoffmann, D. M. P.; Kuhnke, K.; Kern, K.: Sum-Frequency Generation Microscope for Opaque and Reflecting Samples. Rev Scientif Instrum 2002, 73, 32213226.CrossRefGoogle Scholar
Kuhnke, K.; Hoffmann, D. M. P.; Wu, X. C.; Bittner, A. M.; Kern, K.: Chemical Imaging of Interfaces by Sum-Frequency Generation Microscopy: Application to Patterned Self-Assembled Monolayers. Appl Phys Lett 2003, 83, 38303832.CrossRefGoogle Scholar
Cimatu, K.; Baldelli, S.: Sum Frequency Generation Microscopy of Microcontact-Printed Mixed Self-Assembled Monolayers. J Phys Chem B 2006, 110, 18071813.CrossRefGoogle ScholarPubMed
Cimatu, K. A.; Baldelli, S.: Chemical Microscopy of Surfaces by Sum Frequency Generation Imaging. J Phys Chem 2009, 113, 1657516588.Google Scholar
Han, Y.; Raghunathan, V.; Feng, R. R.; Maekawa, H.; Chung, C. Y.; Feng, Y.; Potma, E. O.; Ge, N. H.: Mapping Molecular Orientation with Phase Sensitive Vibrationally Resonant Sum-Frequency Generation Microscopy. J Phys Chem B 2013, 117, 61496156.CrossRefGoogle ScholarPubMed
Ji, N.; Zhang, K.; Yang, H.; Shen, Y. R.: Three-Dimensional Chiral Imaging by Sum-Frequency Generation. J Am Chem Soc 2006, 128, 34823483.CrossRefGoogle ScholarPubMed
Dadap, J. I.; Shan, J.; Eisenthal, K. B.; Heinz, T. F.: Second-Harmonic Rayleigh Scattering from a Sphere Of Centrosymmetric Material. Phys Rev Lett 1999, 83, 40454048.CrossRefGoogle Scholar
Jackson, J. D.: Classical Electrodynamics; 3rd ed.; New York: Wiley, 1999.Google Scholar
Dadap, J. I.; Shan, J.; Heinz, T. F.: Theory of Optical Second-Harmonic Generation from a Sphere of Centrosymmetric Material: Small-Particle Limit. J Opt Soc Am B 2004, 21, 13281347.CrossRefGoogle Scholar
Pavlyukh, Y.; Hubner, W.: Nonlinear Mie Scattering from Spherical Particles. Phys Rev B 2004, 70, 245434CrossRefGoogle Scholar
de Beer, A. G. F.; Roke, S.; Dadap, J. I.: Theory of Optical Second-Harmonic and Sum-Frequency Scattering from Arbitrarily Shaped Particles. J Opt Soc Am B 2011, 28, 13741384.CrossRefGoogle Scholar
Wunderlich, S.; Schurer, B.; Sauerbeck, C.; Peukert, W.; Peschel, U.: Molecular Mie Model for Second Harmonic Generation and Sum Frequency Generation. Phys Rev B 2011, 84.CrossRefGoogle Scholar
Gonella, G.; Dai, H. L.: Determination of Adsorption Geometry on Spherical Particles from Nonlinear Mie Theory Analysis of Surface Second Harmonic Generation. Physical Review B 2011, 84, 121402(R)CrossRefGoogle Scholar
Roke, S.; Gonella, G.: Nonlinear Light Scattering and Spectroscopy of Particles and Droplets in Liquids. Annu Rev Phys Chem 2012, 63, 353378.CrossRefGoogle ScholarPubMed
Wang, H. F.; Troxler, T.; Yeh, A. G.; Dai, H. L.: In situ, Nonlinear Optical Probe of Surfactant Adsorption on the Surface of Microparticles in Colloids. Langmuir 2000, 16, 24752481.CrossRefGoogle Scholar
Wang, H.; Yan, E. C. Y.; Borguet, E.; Eisenthal, K. B.: Second Harmonic Generation from the Surface of Centrosymmetric Particles in Bulk Solution. Chem Phys Lett 1996, 259, 1520.CrossRefGoogle Scholar
Wang, H. F.; Yan, E. C. Y.; Liu, Y.; Eisenthal, K. B.: Energetics and Population of Molecules at Microscopic Liquid and Solid Surfaces. J Phys Chem B 1998, 102, 44464450.CrossRefGoogle Scholar
Yang, N.; Angerer, W. E.; Yodh, A. G.: Angle-Resolved Second-Harmonic Light Scattering from Colloidal Particles. Phys Rev Lett 2001, 87, 103902.CrossRefGoogle ScholarPubMed
Eisenthal, K. B.: Second Harmonic Spectroscopy of Aqueous Nano- and Microparticle Interfaces. Chem Rev 2006, 106, 14621477.CrossRefGoogle ScholarPubMed
Gonella, G.; Dai, H. L.: Second Harmonic Light Scattering from the Surface of Colloidal Objects: Theory and Applications. Langmuir 2014, 30, 25882599.CrossRefGoogle ScholarPubMed
Srivastava, A.; Eisenthal, K. B.: Kinetics of Molecular Transport across a Liposome Bilayer. Chem Phys Lett 1998, 292, 345351.CrossRefGoogle Scholar
Zeng, J.; Eckenrode, H. M.; Dounce, S. M.; Dai, H. L.: Time-Resolved Molecular Transport across Living Cell Membranes. Biophys J 2013, 104, 139145.CrossRefGoogle ScholarPubMed
Roke, S.; Roeterdink, W. G.; Wijnhoven, J. E. G.J.; Petukhov, A. V.; Kleyn, A. W.; Bonn, M.: Vibrational Sum Frequency Scattering from a Submicron Suspension. Phys Rev Lett 2003, 91, 258302.CrossRefGoogle ScholarPubMed
Vacha, R.; Rick, S. W.; Jungwirth, P.; de Beer, A. G. F.; de Aguiar, H. B.; Samson, J. S.; Roke, S.: The Orientation and Charge of Water at the Hydrophobic Oil Droplet-Water Interface. J Am Chem Soc 2011, 133, 1020410210.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Miscellaneous topics
  • Y. R. Shen, University of California, Berkeley
  • Book: Fundamentals of Sum-Frequency Spectroscopy
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316162613.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Miscellaneous topics
  • Y. R. Shen, University of California, Berkeley
  • Book: Fundamentals of Sum-Frequency Spectroscopy
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316162613.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Miscellaneous topics
  • Y. R. Shen, University of California, Berkeley
  • Book: Fundamentals of Sum-Frequency Spectroscopy
  • Online publication: 05 February 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316162613.013
Available formats
×