Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T08:43:52.019Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 February 2024

Mikis D. Stasinopoulos
Affiliation:
University of Greenwich
Thomas Kneib
Affiliation:
Georg-August-Universität, Göttingen, Germany
Nadja Klein
Affiliation:
Technische Universität Dortmund
Andreas Mayr
Affiliation:
Rheinische Friedrich-Wilhelms-Universität Bonn
Gillian Z. Heller
Affiliation:
University of Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Generalized Additive Models for Location, Scale and Shape
A Distributional Regression Approach, with Applications
, pp. 271 - 282
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aeberhard, W. H., Cantoni, E., Marra, G., and Radice, R. 2021. Robust fitting for generalized additive models for location, scale and shape. Statistics and Computing, 31(1), 116.CrossRefGoogle Scholar
Aitkin, M. 1987. Modelling variance heterogeneity in normal regression using GLIM. Applied Statistics, 36, 332339.Google Scholar
Aitkin, M. 2010. Statistical Inference: an Integrated Bayesian/Likelihood Approach. CRC Press.Google Scholar
Aitkin, M. 2018. A History of the GLIM Statistical Package. International Statistical Review, 86(2), 275299.Google Scholar
Aitkin, M. 2019. The Universal model and prior: multinomial GLMs. arXiv:1901.02614.Google Scholar
Akaike, H. 1973. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60, 255265.Google Scholar
Akaike, H. 1983. Information measures and model selection. Bulletin of the International Statistical Institute, 50(1), 277290.Google Scholar
Anderson, N. G., Jolley, I. J., and Wells, J. E. 2007. Sonographic estimation of fetal weight: comparison of bias, precision and consistency using 12 different formulae. Ultrasound in Obstetrics and Gynecology, 30(2), 173179.Google Scholar
Barndorff-Nielsen, O. 2014. Information and Exponential Families: in Statistical Theory. John Wiley & Sons.Google Scholar
Belitz, C., Brezger, A., Klein, N., Kneib, T., Lang, S., and Umlauf, N. 2015. BayesX - Software for Bayesian inference in structured additive regression models. www.bayesx.org. Version 3.0.2.Google Scholar
Belkin, M., Hsu, D., Ma, S., and Mandal, S. 2019. Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 1584915854.CrossRefGoogle ScholarPubMed
Bien, J., Taylor, J., and Tibshirani, R. 2013. A lasso for hierarchical interactions. The Annals of Statistics, 41(3), 1111.Google Scholar
Bondell, H., Reich, B., and Wang, H. 2010. Noncrossing quantile regression curve estimation. Biometrika, 97, 825838.Google Scholar
Box, G. E. P. 1979. Robustness in the strategy of scientific model building. Robustness in Statistics, 1, 201236.Google Scholar
Breiman, L. 2001. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical Science, 16(3), 199231.Google Scholar
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. 2017. Classification and Regression Trees. Milton Park, Oxfordshire: Routledge.CrossRefGoogle Scholar
Bühlmann, P. 2020. Invariance, causality and robustness. Statistical Science, 35(3), 404426.Google Scholar
Bühlmann, P., and Hothorn, T. 2007. Boosting algorithms: Regularization, prediction and model fitting (with discussion). Statistical Science, 22, 477522.Google Scholar
Bühlmann, P., Kalisch, M., and Meier, L. 2014. High-dimensional statistics with a view toward applications in biology. Annual Review of Statistics and Its Application, 1(1), 255278.Google Scholar
Carlan, M., Kneib, T., and Klein, N. 2023. Bayesian conditional transformation models. Journal of the American Statistical Association. 10.1080/01621459.2023.2191820.CrossRefGoogle Scholar
Chambers, J. M., and Hastie, T. J. 1992. Statistical Models in S. London: Chapman & Hall.Google Scholar
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., Li, Y., and Yuan, J. 2023. xgboost: Extreme Gradient Boosting. R package version 1.7.3.1.Google Scholar
Chernozhukov, V., Fernandez-Val, I., and Galichon, A. 2009. Improving point and interval estimators of monotone functions by rearrangement. Biometrika, 96(3), 559575.Google Scholar
Cho, S.-J., Wu, H., and Naveiras, M. 2022. The effective sample size in Bayesian information criterion for level-specific fixed and random effects selection in a two-level nested model. arXiv. 10.48550/ARXIV.2206.11880.Google Scholar
Claeskens, G., and Hjort, N. L. 2008. Model Selection and Model Averaging. Cambridge University Press.Google Scholar
Cleveland, W. S., Grosse, E., and Shyu, W. M. 2017. Local regression models. Pages 309376 of: Chambers, J. M., and Hastie, T. J. (eds), Statistical Models in S. Routledge.Google Scholar
Cole, T. J., and Green, P. J. 1992. Smoothing reference centile curves: The LMS method and penalized likelihood. Statistics in Medicine., 11, 13051319.Google Scholar
Cover, T. M., and Thomas, J. A. 2007. Elements of Information Theory Second Edition: Solutions to Problems. https://cpb-us-w2.wpmucdn.com/sites.gatech.edu/dist/c/565/files/2017/01/solutions2.pdf.Google Scholar
Cox, D. R., and Reid, N. 1987. Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 49(1), 118.Google Scholar
Crainiceanu, C., Ruppert, D., Claeskens, G., and Wand, M. P. 2005. Exact likelihood ratio tests for penalised splines. Biometrika, 92, 91103.Google Scholar
Currie, I. D., and Durban, M. 2002. Flexible smoothing with P-splines: a unified approach. Statistical Modelling, 4, 333349.Google Scholar
De Bastiani, F., Stasinopoulos, D. M., Rigby, R. A., Heller, G. Z., and Silva, L. A. 2022. Bucket plot: A visual tool for skewness and kurtosis comparisons. Brazilian Journal of Probability and Statistics, 36(3), 421440.Google Scholar
Dean, C., Lawless, J. F., and Willmot, G. E. 1989. A mixed Poisson-inverse Gaussian regression model. Canadian Journal of Statistics, 17(2), 171181.CrossRefGoogle Scholar
Diggle, P. J., Tawn, J. A., and Moyeed, R. A. 1998. Model-based geostatistics. Applied Statistics, 47(3), 229350.Google Scholar
Dobson, A. J., and Barnett, A. G. 2018. An Introduction to Generalized Linear Models. 4th edn. Chapman and Hall/CRC.Google Scholar
Efron, B., and Tibshirani, R. J. 1994. An Introduction to the Bootstrap. CRC Press.Google Scholar
Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. 2004. Least angle regression. The Annals of Statistics, 32, 407451.Google Scholar
Eilers, P. H. C., and Marx, B. D. 1996. Flexible smoothing with B-splines and penalties. Statistical Science, 89102.Google Scholar
Eilers, P. H. C., and Marx, B. D. 2021. Practical Smoothing: The Joys of P-splines. Cambridge University Press.CrossRefGoogle Scholar
Ellenbach, N., Boulesteix, A.-L., Bischl, B., Unger, K., and Hornung, R. 2021. Improved outcome prediction across data sources through robust parameter tuning. Journal of Classification, 38(2), 212231.Google Scholar
Engle, R. 2001. GARCH 101: The use of ARCH/GARCH models in applied econometrics. Journal of Economic Perspectives, 15(4), 157168.CrossRefGoogle Scholar
Engle, R. F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 9871007.Google Scholar
Fahrmeir, L., and Kaufmann, H. 1985. Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. The Annals of Statistics, 13, 342368.Google Scholar
Fahrmeir, L., and Kneib, T. 2009. Propriety of posteriors in structured additive regression models: Theory and empirical evidence. Journal of Statistical Planning and Inference, 139, 843859.Google Scholar
Fahrmeir, L., and Kneib, T. 2011. Bayesian Smoothing and Regression for Longitudinal, Spatial and Event History Data. Oxford University Press.CrossRefGoogle Scholar
Fahrmeir, L., and Lang, S. 2001. Bayesian inference for generalized additive mixed models based on Markov random field priors. Applied Statistics, 50, 201220.Google Scholar
Fahrmeir, L., Kneib, T., and Lang, S. 2004. Penalized structured additive regression for space-time data: a Bayesian perspective. Statistica Sinica, 14(3), 731762.Google Scholar
Fahrmeir, L., Kneib, T., Lang, S., and Marx, B. 2021. Regression - Models, Methods and Applications. Berlin: Springer.Google Scholar
Faschingbauer, F., Dammer, U., Raabe, E., Schneider, M., Faschingbauer, C., Schmid, M., Mayr, A., Schild, R. L., Beckmann, M. W., and Kehl, S. 2015. Sonographic weight estimation in fetal macrosomia: influence of the time interval between estimation and delivery. Archives of Gynecology and Obstetrics, 292, 5967.Google Scholar
Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R., and Goude, Y. 2021. Fast calibrated additive quantile regression. Journal of the American Statistical Association, 116(535), 14021412.Google Scholar
Fenske, N., Kneib, T., and Hothorn, T. 2011. Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. Journal of the American Statistical Association, 106(494), 494510.Google Scholar
Fox, J. 2003. Effect displays in R for generalised linear models. Journal of Statistical Software, 8(15), 127.Google Scholar
Francis, B. J., Green, M., and Payne, C. 1993. GLIM 4: The Statistical System for Generalized Linear Interactive Modelling. Oxford: Clarendon Press.Google Scholar
Fredriks, A. M., van Buuren, S., Wit, J. M., and Verloove-Vanhorick, S. P. 2000a. Body index measurements in 1996-7 compared with 1980. Archives of Childhood Diseases, 82, 107112.Google Scholar
Fredriks, A. M., van Buuren, S., Burgmeijer, R. J. F., Meulmeester, J. F., Beuker, R. J., Brugman, E., Roede, M. J., Verloove-Vanhorick, S. P., and Wit, J. M. 2000b. Continuing positive secular change in The Netherlands, 1955-1997. Pediatric Research, 47, 316323.Google Scholar
Freund, Y. 1995. Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256285.Google Scholar
Frühwirth-Schnatter, S., Frühwirth, R., Held, L., and Rue, H. 2009. Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data. Statistics and Computing, 19, 479492.Google Scholar
Gamerman, D. 1997. Efficient sampling from the posterior distribution in generalized linear mixed models. Statistics and Computing, 7, 5768.Google Scholar
Gelman, A. 2006. Prior distributions for variance parameters in hierarchichal models. Bayesian Analysis, 1, 515533.Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. 2013. Bayesian Data Analysis. Boca Raton: Chapman & Hall/CRC.Google Scholar
Gholami, A. M., Hahne, H., Wu, Z., Auer, F. J., Meng, C., Wilhelm, M., and Kuster, B. 2013. Global proteome analysis of the NCI-60 cell line panel. Cell Reports, 4(3), 609620.Google Scholar
Gilks, W. R., and Wild, P. 1992. Adaptive rejection sampling for Gibbs sampling. Journal of the Royal Statistical Society, Series C (Applied Statistics), 41 (2), 337348.Google Scholar
Gneiting, T., and Raftery, A. E. 2007. Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102, 359378.Google Scholar
Good, I. J. 1976. Contribution to the discussion of Savage, L.J. (1976). On rereading R. A. Fisher. The Annals of Statistics, 4(3), 441500.Google Scholar
Gosset, W. S. 1908. The probable error of a mean. Biometrika, 6(1), 125.Google Scholar
Green, P. J. 1987. Penalized likelihood for general semi-parametric regression models. International Statistical Review, 55, 245259.Google Scholar
Greven, S., and Kneib, T. 2010. On the behaviour of marginal and conditional Akaike information criteria in linear mixed models. Biometrika, 97, 773789.Google Scholar
Gu, C. 2002. Smoothing Spline ANOVA Models. Springer Verlag.Google Scholar
Gupta, R. D., and Richards, D. St. P. 2001. The history of the Dirichlet and Liouville distributions. International Statistical Review, 69(3), 433446.Google Scholar
Hardin, J. W., and Hilbe, J. M. 2002. Generalized Estimating Equations. Chapman and Hall/CRC.CrossRefGoogle Scholar
Harrell, F. E. Jr. 2015. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. 2nd edn. Springer.Google Scholar
Hastie, T., and Tibshirani, R. 1986. Generalized additive models. Statistical Science, 297310.Google Scholar
Hastie, T., Tibshirani, R., and Tibshirani, R. 2020. Best subset, forward stepwise or lasso? Analysis and recommendations based on extensive comparisons. Statistical Science, 35(4), 579592.Google Scholar
Hastie, T. J., and Tibshirani, R. J. 1990. Generalized Additive Models. London: Chapman & Hall.Google Scholar
Hastie, T. J., Tibshirani, R. J., and Friedman, J. 2009. The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd edn. New York: Springer.Google Scholar
Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97109.Google Scholar
Held, L., and Sabanes Bove, D. 2012. Applied Statistical Inference. Springer Verlag.Google Scholar
Heller, G. Z., Couturier, D.-L., and Heritier, S. R. 2019. Beyond mean modelling: Bias due to misspecification of dispersion in Poisson-inverse Gaussian regression. Biometrical Journal, 61(2), 333342.Google Scholar
Hepp, T., Schmid, M., Gefeller, O., Waldmann, E., and Mayr, A. 2016. Approaches to regularized regression - A comparison between gradient boosting and the lasso. Methods of Information in Medicine, 55(5), 422430.Google ScholarPubMed
Hepp, T., Schmid, M., and Mayr, A. 2019. Significance Tests for Boosted Location and Scale Models with Linear Base-Learners. The International Journal of Biostatistics, 15(1).Google Scholar
Hoerl, A., and Kennard, R. 1988. Ridge regression. Pages 129136 of: Encyclopedia of Statistical Sciences, vol. 8. New York: Wiley.Google Scholar
Hofner, B., Hothorn, T., Kneib, T., and Schmid, M. 2011. A framework for unbiased model selection based on boosting. Journal of Computational and Graphical Statistics, 20, 956971.Google Scholar
Hofner, B., Mayr, A., Robinzonov, N., and Schmid, M. 2014. Model-based boosting in R: a hands-on tutorial using the R package mboost. Computational Statistics, 29(1), 335.Google Scholar
Hofner, B., Boccuto, L., and Göker, M. 2015. Controlling false discoveries in high-dimensional situations: boosting with stability selection. BMC Bioinformatics, 16(1), 117.Google Scholar
Hofner, B., Mayr, A., and Schmid, M. 2016a. gamboostLSS: An R package for model building and variable selection in the GAMLSS framework. Journal of Statistical Software, 74(1), 131.Google Scholar
Hofner, B., Kneib, T., and Hothorn, T. 2016b. A unified framework of constrained regression. Statistics and Computing, 26, 114.CrossRefGoogle Scholar
Hohberg, M., Donat, F., Marra, G., and Kneib, T. 2021. Beyond unidimensional poverty analysis using distributional copula models for mixed ordered-continuous outcomes. Journal of the Royal Statistical Society, Series C (Applied Statistics), 70, 13651390.Google Scholar
Holmes, C. C., and Held, L. 2006. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1, 145168.Google Scholar
Homan, M. D., and Gelman, A. 2014. The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 15931623.Google Scholar
Hothorn, T. 2020. Transformation boosting machines. Statistics and Computing, 30, 141152.Google Scholar
Hothorn, T., Kneib, T., and Buhlmann, P. 2014. Conditional transformation models. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 76(1), 327.Google Scholar
Hothorn, T., Möst, L., and Bühlmann, P. 2018. Most likely transformations. Scandinavian Journal of Statistics, 45(1), 110134.Google Scholar
Hu, W., Swanson, B. A., and Heller, G. Z. 2015. A statistical method for the analysis of speech intelligibility tests. PLoS ONE, 10(7).Google Scholar
Hüllermeier, E., and Waegeman, W. 2021. Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Machine Learning, 110, 457506.Google Scholar
Huzurbazar, V. S. 1950. Probability distributions and orthogonal parameters. Pages 281284 of: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 46. Cambridge University Press.Google Scholar
Ichimura, H. 1993. Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. Journal of Econometrics, 58(1), 71120.Google Scholar
James, G., Witten, D., Hastie, T., and Tibshirani, R. 2013. An Introduction to Statistical Learning: with Applications in R. Springer.Google Scholar
Jarque, C. M., and Bera, A. K. 1987. A test for normality of observations and regression residuals. International Statistical Review, 55(2), 163172.Google Scholar
Joe, H. 1997. Multivariate Models and Dependence Concepts. London: Chapman and Hall.Google Scholar
Kammann, E. E., and Wand, M. P. 2003. Geoadditive models. Journal of the Royal Statistical Society, Series C (Applied Statistics), 52, 118.Google Scholar
Kauermann, G., Krivobokova, T., and Fahrmeir, L. 2009. Some asymptotic results on generalized penalized spline smoothing. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 71, 487503.Google Scholar
Klein, N., and Kneib, T. 2016a. Scale-dependent priors for variance parameters in structured additive distributional regression. Bayesian Analysis, 11, 11071106. 10.1214/15-BA983.Google Scholar
Klein, N., and Kneib, T. 2016b. Simultaneous inference in structured additive conditional copula regression models: A unifying Bayesian approach. Statistics and Computing, 26, 841860.Google Scholar
Klein, N., Kneib, T., and Lang, S. 2015a. Bayesian generalized additive models for location, scale and shape for zero-inflated and overdispersed count data. Journal of the American Statistical Association, 110, 405419. 10.1080/01621459.2014.912955Google Scholar
Klein, N., Kneib, T., Klasen, S., and Lang, S. 2015b. Bayesian structured additive distributional regression for multivariate responses. Journal of the Royal Statistical Society, Series C (Applied Statistics), 64, 569591. 10.1111/rssc.12090.Google Scholar
Klein, N., Kneib, T., Lang, S., and Sohn, A. 2015c. Bayesian structured additive distributional regression with an application to regional income inequality in Germany. The Annals of Applied Statistics, 9(2), 10241052.Google Scholar
Klein, N., Carlan, M., Kneib, T., Lang, S., and Wagner, H. 2021. Bayesian effect selection in structured additive distributional regression models. Bayesian Analysis, 16(2), 545573. 10.1214/20-BA1214.Google Scholar
Klein, N., Hothorn, T., Barbanti, L., and Kneib, T. 2022. Multivariate conditional transformation models. Scandinavian Journal of Statistics, 49(1), 116142.Google Scholar
Kneib, T. 2013. Beyond mean regression. Statistical Modelling, 13(4), 275303.Google Scholar
Kneib, T., and Fahrmeir, L. 2007. A mixed model approach for geoadditive hazard regression. Scandinavian Journal of Statistics, 34, 207228.Google Scholar
Kneib, T., Hothorn, T., and Tutz, G. 2009. Variable selection and model choice in geoadditive regression models. Biometrics, 65(2), 626634.Google Scholar
Kneib, T., Klein, N., Lang, S., and Umlauf, N. 2019. Modular regression - a Lego system for building structured additive distributional regression models with tensor product interactions. TEST, 28(1), 139.Google Scholar
Kneib, T., Silbersdorff, A., and Söfken, B. 2023. Rage against the mean - A review of distributional regression approaches. Econometrics and Statistics, 26, 99123. 10.1016/j.ecosta.2021.07.006.Google Scholar
Koenker, R. 2005. Quantile Regression. Econometric Society Monographs. Cambridge University Press. 10.1017/CBO9780511754098.Google Scholar
Koenker, R., Chernozhukov, V., He, X., and Peng, L. (eds). 2020. Handbook of Quantile Regression. CRC Press.Google Scholar
Kozumi, H., and Kobayashi, G. 2011. Gibbs sampling methods for Bayesian quantile regression. Journal of Statistical Computation and Simulation, 81, 15651578.Google Scholar
Krivobokova, T., Crainiceanu, C. M., and Kauermann, G. 2008. Fast adaptive penalized splines. Journal of Computational and Graphical Statistics, 17, 120.Google Scholar
Krivobokova, T., Kneib, T., and Claeskens, G. 2010. Simultaneous confidence bands for penalized spline estimators. Journal of the American Statistical Association, 105(490), 852863. 10.1198/jasa.2010.tm09165.Google Scholar
Kullback, S., and Leibler, R. A. 1951. On Information and Sufficiency. The Annals of Mathematical Statistics, 22, 7986.Google Scholar
Laird, N. M., and Ware, J. H. 1982. Random-effect models for longitudinal data. Biometrics, 38, 963974.Google Scholar
Lang, S., Umlauf, N., Wechselberger, P., Harttgen, K., and Kneib, T. 2014. Multilevel structured additive regression. Statistics and Computing, 24, 223238.Google Scholar
Lorah, J., and Womack, A. 2019. Value of sample size for computation of the Bayesian information criterion (BIC) in multilevel modeling. Behavior Research Methods, 51(1), 440450.Google Scholar
Marra, G., and Radice, R. 2020. GJRM: Generalised Joint Regression Modelling. R package version 0.2-2.Google Scholar
Marra, G., and Wood, S. N. 2012. Coverage properties of confidence intervals for generalized additive model components. Scandinavian Journal of Statistics, 39, 5374.Google Scholar
Marra, G., Radice, R., Börnighausen, T., Wood, S. N., and McGovern, M. E. 2017. A simultaneous equation approach to estimating HIV prevalence with nonignorable missing responses. Journal of the American Statistical Association, 112(518), 484496.Google Scholar
Mayr, A., and Hofner, B. 2018. Boosting for statistical modelling - A non-technical introduction. Statistical Modelling, 18(3-4), 365384.Google Scholar
Mayr, A., Fenske, N., Hofner, B., Kneib, T., and Schmid, M. 2012a. Generalized additive models for location, scale and shape for high-dimensional data - A flexible approach based on boosting. Journal of the Royal Statistical Society, Series C (Applied Statistics), 61(3), 403427.CrossRefGoogle Scholar
Mayr, A., Hofner, B., and Schmid, M. 2012b. The importance of knowing when to stop. Methods of Information in Medicine, 51(02), 178186.Google Scholar
Mayr, A., Binder, H., Gefeller, O., and Schmid, M. 2014a. The evolution of boosting algorithms. Methods of Information in Medicine, 53(6), 419427.Google Scholar
Mayr, A, Binder, H, Gefeller, O, and Schmid, M. 2014b. Extending statistical boosting. Methods of Information in Medicine, 53(6), 428435.Google Scholar
Mayr, A., Schmid, M., Pfahlberg, A., Uter, W., and Gefeller, O. 2015. A permutation test to analyse systematic bias and random measurement errors of medical devices via boosting location and scale models. Statistical Methods in Medical Research. 10.1177/0962280215581855.Google Scholar
Mayr, A., Hofner, B., and Schmid, M. 2016. Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection. BMC Bioinformatics, 17(1), 112.Google Scholar
Mayr, A., Hofner, B., Waldmann, E., Hepp, T., Meyer, S., and Gefeller, O. 2017. An update on statistical boosting in biomedicine. Computational and Mathematical Methods in Medicine, 2017. 10.1155/2017/6083072.Google Scholar
McCullagh, P., and Nelder, J. A. 1989. Generalized Linear Models. 2nd edn. London: Chapman & Hall.Google Scholar
Meinshausen, N., and Buhlmann, P. 2010. Stability selection (with discussion). Journal of the Royal Statistical Society, Series B (Statistical Methodology), 72(4), 417473.Google Scholar
Min, Y., and Agresti, A. 2002. Modeling nonnegative data with clumping at zero: a survey. Journal of the Iranian Statistical Society, 1(1), 733.Google Scholar
Moro, S., Rita, P., and Vala, B. 2016. Predicting social media performance metrics and evaluation of the impact on brand building: A data mining approach. Journal of Business Research, 69(9), 33413351.Google Scholar
Muggeo, V. M. R., and Ferrara, G. 2008. Fitting generalized linear models with unspecified link function: A P-spline approach. Computational Statistics & Data Analysis, 52(5), 25292537.Google Scholar
Mullahy, J. 1986. Specification and testing of some modified count data models. Journal of Econometrics, 33(3), 341365.Google Scholar
Muller, S., Scealy, J. L., and Welsh, A. H. 2013. Model selection in linear mixed models. Statistical Science, 28(2), 135167.Google Scholar
Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., and Yu, B. 2019. Definitions, methods, and applications in interpretable machine learning. Proceedings of the National Academy of Sciences, 116(44), 2207122080.Google Scholar
Nagelkerke, N. J. D. 1991. A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691692.Google Scholar
Neal, R. M. 2003. Slice sampling. The Annals of Statistics, 31, 705767. 10.1214/aos/1056562461.Google Scholar
Nelder, J. A., and Pregibon, D. 1987. An extended quasi-likelihood function. Biometrika, 74, 221232.Google Scholar
Nelder, J. A., and Wedderburn, R. W. M. 1972. Generalized linear models. Journal of the Royal Statistical Society, Series A, 135, 370384.Google Scholar
Nelsen, R. B. 2007. An Introduction to Copulas. Springer Science & Business Media.Google Scholar
Newey, W. K., and Powell, J. L. 1987. Asymmetric least squares estimation and testing. Econometrica: Journal of the Econometric Society, 55(4), 819847.Google Scholar
Oelker, M., and Tutz, G. 2017. A uniform framework for the combination of penalties in generalized structured models. Advances in Data Analysis and Classification, 11, 97120.Google Scholar
Ospina, R., and Ferrari, S. L. P. 2010. Inflated beta distributions. Statistical Papers, 51, 111126.Google Scholar
Pinheiro, J. C., and Bates, D. M. 2000. Mixed-Effects Models in S and S-Plus. Springer.Google Scholar
Plummer, M., Best, N., Cowles, K., and Vines, K. 2006. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News, 6(1), 711.Google Scholar
Puka, L. 2011. Kendall’s tau. Pages 713715 of: Lovric, M. (ed), International Encyclopedia of Statistical Science. Berlin, Heidelberg: Springer.Google Scholar
Pya, N., and Wood, S. N. 2015. Shape constrained additive models. Statistics and Computing, 25, 543559.Google Scholar
Ramires, T. G., Nakamura, L. R., Righetto, A. J., Pescim, R. R., Mazuchelli, J., Rigby, R. A., and Stasinopoulos, D. M. 2021. Validation of stepwise-based procedure in GAMLSS. Journal of Data Science, 19(1), 96110.Google Scholar
Ramsay, J. O., and Silverman, B. W. 2005. Functional Data Analysis. 2nd edn. Springer.Google Scholar
Rigby, R. A., and Stasinopoulos, D. M. 1996. A semi-parametric additive model for variance heterogeneity. Statistics and Computing, 6, 5765.Google Scholar
Rigby, R. A., and Stasinopoulos, D. M. 2005. Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society, Series C (Applied Statistics), 54(3), 507554.Google Scholar
Rigby, R. A., and Stasinopoulos, D. M. 2006. Using the Box-Cox t distribution in GAMLSS to model skewness and kurtosis. Statistical Modelling, 6(3), 209.Google Scholar
Rigby, R. A., and Stasinopoulos, D. M. 2013. Automatic smoothing parameter selection in GAMLSS with an application to centile estimation. Statistical Methods in Medical Research, 23(4), 318332.Google Scholar
Rigby, R. A., Stasinopoulos, M. D., Heller, G. Z., and De Bastiani, F. 2019. Distributions for Modeling Location, Scale, and Shape: Using GAMLSS in R. Boca Raton: Chapman & Hall/CRC.Google Scholar
Robert, C. P., and Casella, G. 2010. Introducing Monte Carlo Methods with R. Springer.Google Scholar
Rodrigues, T., and Fan, Y. 2017. Regression adjustment for noncrossing Bayesian quantile regression. Journal of Computational and Graphical Statistics, 26(2), 275284.Google Scholar
Royston, P. 2007. Profile likelihood for estimation and confidence intervals. Stata Journal, 7(3), 376387.Google Scholar
Rubin, D. B. 1981. The Bayesian bootstrap. The Annals of Statistics, 130134.Google Scholar
Rue, H., and Held, L. 2005. Gaussian Markov Random Fields: Theory and Applications. CRC Press.Google Scholar
Rue, H., Martino, S., and Chopin, N. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 71(2), 319392.Google Scholar
Rügamer, D., and Greven, S. 2020. Inference for L2-boosting. Statistics and Computing, 30(2), 279289.Google Scholar
Ruppert, D., Wand, M. P., and Carroll, R. J. 2003. Semiparametric Regression. Cambridge University Press.Google Scholar
Säfken, B., Rügamer, D., Kneib, T., and Greven, S. 2021. Conditional Model Selection in Mixed-Effects Models with cAIC4. Journal of Statistical Software, 99(8), 130.Google Scholar
Schall, R. 1991. Estimation in generalized linear models with random effects. Biometrika, 78, 719727.Google Scholar
Schapire, R. E. 1990. The strength of weak learnability. Machine Learning, 5(2), 197227.Google Scholar
Schapire, R. E., and Freund, Y. 2012. Boosting: Foundations and Algorithms. MIT Press.Google Scholar
Scheipl, F., and Kneib, T. 2009. Locally adaptive Bayesian P-splines with a normal-exponential-gamma prior. Computational Statistics & Data Analysis, 53(10), 35333552.Google Scholar
Scheipl, F., Fahrmeir, L., and Kneib, T. 2012. Spike-and-slab priors for function selection in structured additive regression models. Journal of the American Statistical Association, 107, 15181532.Google Scholar
Schnabel, S. K., and Eilers, P. 2009. Optimal expectile smoothing. Computational Statistics & Data Analysis, 53, 41684177.Google Scholar
Schnabel, S. K., and Eilers, P. H. C. 2013. Simultaneous estimation of quantile curves using quantile sheets. AStA Advances in Statistical Analysis, 97(1), 7787.Google Scholar
Schwarz, G. E. 1978. Estimating the dimension of a model. The Annals of Statistics, 6(2), 461464.Google Scholar
Shah, R. D., and Samworth, R. J. 2013. Variable selection with error control: another look at stability selection. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 75(1), 5580.Google Scholar
Siegfried, S., and Hothorn, T. 2020. Count transformation models. Methods in Ecology and Evolution, 11(7), 818827.Google Scholar
Simpson, D., Rue, H., Martins, T. G., Riebler, A., and Sørbye, S. H. 2017. Penalising model component complexity: A principled, practical approach to constructing priors. Statistical Science, 32(1), 128.Google Scholar
Smith, G. 2018. Step away from stepwise. Journal of Big Data, 5(1), 32.Google Scholar
Smithson, M., and Verkuilen, J. 2006. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychological Methods, 11(1), 54.Google Scholar
Smyth, G. K. 1989. Generalized linear models with varying dispersion. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 51, 4760.Google Scholar
Sobotka, F., and Kneib, T. 2012. Geoadditive expectile regression. Computational Statistics & Data Analysis, 56, 755767.Google Scholar
Sørbye, S. H., and Rue, H. 2014. Scaling intrinsic Gaussian Markov random field priors in spatial modelling. Spatial Statistics, 8, 3951.Google Scholar
Sottile, G., and Frumento, P. 2021. Parametric estimation of non-crossing quantile functions. Statistical Modelling, 1471082X211036517.Google Scholar
Speed, T. 1991. Comment on Robertson (1991): “That BLUP is a good thing: The estimation of random effects”. Statistical Science, 6, 4244.Google Scholar
Speller, J., Staerk, C., and Mayr, A. 2022. Robust statistical boosting with quantile-based adaptive loss functions. The International Journal of Biostatistics.Google Scholar
Spiegel, E., Kneib, T., and Otto-Sobotka, F. 2019. Generalized additive models with flexible response functions. Statistics and Computing, 29(1), 123138.Google Scholar
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 64(4), 583639.Google Scholar
Spinnato, J. A., Allen, R. D., and Mendenhall, H. W. 1988. Birth weight prediction from remote ultrasound examination. Obstetrics & Gynecology, 71(6), 893898.Google Scholar
Stadlmann, S., and Kneib, T. 2021. Interactively visualizing distributional regression models with distreg.vis. Statistical Modelling.Google Scholar
Stadlmann, S., Heller, G. Z., Kneib, T., and Koens, L. 2023. Parameter orthogonality transformations in distributional regression models. PREPRINT (Version 1) available at Research Square. 10.21203/rs.3.rs-3197667/v1.Google Scholar
Stasinopoulos, D. M., Rigby, R. A., Heller, G. Z., Voudouris, V., and De Bastiani, F. 2017. Flexible Regression and Smoothing: Using GAMLSS in R. Boca Raton: Chapman & Hall/CRC.Google Scholar
Stasinopoulos, D. M., Rigby, R. A., Giorgikopoulos, N., and De Bastiani, F. 2022. Principal component regression in GAMLSS applied to Greek-German government bond yield spreads. Statistical Modelling, 22(1-2), 127145.Google Scholar
Strömer, A., Staerk, C., Klein, N., Weinhold, L., Titze, S., and Mayr, A. 2022. Deselection of base-learners for statistical boosting — with an application to distributional regression. Statistical Methods in Medical Research, 31(2), 207224.Google Scholar
Sun, Q., Zhou, W.-X., and Fan, J. 2020. Adaptive Huber regression. Journal of the American Statistical Association, 115(529), 254265.Google Scholar
Thomas, J., Hepp, T., Mayr, A., and Bischl, B. 2017. Probing for sparse and fast variable selection with model-based boosting. Computational and Mathematical Methods in Medicine, Article ID 1421409.Google Scholar
Thomas, J., Mayr, A., Bischl, B., Schmid, M., Smith, A., and Hofner, B. 2018. Gradient boosting for distributional regression: Faster tuning and improved variable selection via noncyclical updates. Statistics and Computing, 28(3), 673687.Google Scholar
Thompson, R., and Baker, R. J. 1981. Composite link functions in generalized linear models. Journal of the Royal Statistical Society, Series C (Applied Statistics), 30(2), 125131.Google Scholar
Tibshirani, R. 1996. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 58(1), 267288.Google Scholar
Tutz, G., and Petry, S. 2016. Generalized additive models with unknown link function including variable selection. Journal of Applied Statistics, 43(15), 28662885.Google Scholar
Umlauf, N., Klein, N., and Zeileis, A. 2018. BAMLSS: Bayesian additive models for location, scale and shape (and beyond). Journal of Computational and Graphical Statistics, 27, 612627. 10.1080/10618600.2017.1407325.Google Scholar
van Buuren, S. 2018. Flexible Imputation of Missing Data. Chapman and Hall/CRC.Google Scholar
van Buuren, S., and Fredriks, M. 2001. Worm plot: A simple diagnostic device for modelling growth reference curves. Statistics in Medicine, 20, 12591277.Google Scholar
Venzon, D. J., and Moolgavkar, S. H. 1988. A method for computing profile-likelihood-based confidence intervals. Journal of the Royal Statistical Society, Series C (Applied Statistics), 37(1), 8794.Google Scholar
Wahba, G. 1978. Improper priors, spline smoothing and the problem of guarding against model errors in regression. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 40, 364372.Google Scholar
Waldmann, E., Kneib, T., Yue, Y. R., Lang, S., and Flexeder, C. 2013. Bayesian semiparametric additive quantile regression. Statistical Modelling, 13(3), 223252.Google Scholar
Watanabe, S. 2010. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. The Journal of Machine Learning Research, 11, 35713594.Google Scholar
Wood, S. N. 2017. Generalized Additive Models. An Introduction with R. 2nd edn. Boca Raton: Chapman & Hall/CRC.Google Scholar
Wood, S. N., Pya, N., and Säfken, B. 2016. Smoothing parameter and model selection for general smooth models. Journal of the American Statistical Association, 111(516), 15481563.Google Scholar
Yang, Z. 2014. Predicting birth weight from ultrasound examination and maternal characteristics. Unpublished Master of Biostatistics thesis, Macquarie University, Sydney.Google Scholar
Yee, T. W. 2019. VGAM: Vector Generalized Linear and Additive Models. R package version 1.1-2.Google Scholar
Yee, T. W., and Wild, C. J. 1996. Vector generalized additive models. Journal of Royal Statistical Society, Series B (Statistical Methodology), 58, 481493.Google Scholar
Yu, K., and Moyeed, R. A. 2001. Bayesian quantile regression. Statistics & Probability Letters, 54, 437447.Google Scholar
Yu, Y., and Ruppert, D. 2002. Penalized spline estimation for partially linear single-index models. Journal of the American Statistical Association, 97(460), 10421054.Google Scholar
Yu, Y., Wu, C., and Zhang, Y. 2017. Penalised spline estimation for generalised partially linear single-index models. Statistics and Computing, 27(2), 571582.Google Scholar
Yue, Y., and Rue, H. 2011. Bayesian inference for additive mixed quantile regression models. Computational Statistics & Data Analysis, 55, 8496.Google Scholar
Zhu, J., Wen, C., Zhu, J., Zhang, H., and Wang, X. 2020. A polynomial algorithm for best-subset selection problem. Proceedings of the National Academy of Sciences, 117(52), 3311733123.Google Scholar
Ziel, F., Muniain, P., and Stasinopoulos, M. 2021. gamlss.lasso: Extra Lasso-Type Additive Terms for GAMLSS. R package version 1.0-1.Google Scholar
Zou, H., and Hastie, T. 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 67(2), 301320.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Mikis D. Stasinopoulos, University of Greenwich, Thomas Kneib, Georg-August-Universität, Göttingen, Germany, Nadja Klein, Technische Universität Dortmund, Andreas Mayr, Rheinische Friedrich-Wilhelms-Universität Bonn, Gillian Z. Heller, University of Sydney
  • Book: Generalized Additive Models for Location, Scale and Shape
  • Online publication: 22 February 2024
  • Chapter DOI: https://doi.org/10.1017/9781009410076.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Mikis D. Stasinopoulos, University of Greenwich, Thomas Kneib, Georg-August-Universität, Göttingen, Germany, Nadja Klein, Technische Universität Dortmund, Andreas Mayr, Rheinische Friedrich-Wilhelms-Universität Bonn, Gillian Z. Heller, University of Sydney
  • Book: Generalized Additive Models for Location, Scale and Shape
  • Online publication: 22 February 2024
  • Chapter DOI: https://doi.org/10.1017/9781009410076.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Mikis D. Stasinopoulos, University of Greenwich, Thomas Kneib, Georg-August-Universität, Göttingen, Germany, Nadja Klein, Technische Universität Dortmund, Andreas Mayr, Rheinische Friedrich-Wilhelms-Universität Bonn, Gillian Z. Heller, University of Sydney
  • Book: Generalized Additive Models for Location, Scale and Shape
  • Online publication: 22 February 2024
  • Chapter DOI: https://doi.org/10.1017/9781009410076.020
Available formats
×