from Part I - Invited Papers
Published online by Cambridge University Press: 23 March 2017
Summary. From 1931 until late in his life (at least 1970) Gödel called for the pursuit of new axioms for mathematics to settle both undecided number-theoretical propositions (of the form obtained in his incompleteness results) and undecided set-theoretical propositions (in particular CH). As to the nature of these, Gödel made a variety of suggestions, but most frequently he emphasized the route of introducing ever higher axioms of infinity. In particular, he speculated (in his 1946 Princeton remarks) that there might be a uniform (though non-decidable) rationale for the choice of the latter. Despite the intense exploration of the “higher infinite” in the last 30-odd years, no single rationale of that character has emerged. Moreover, CH still remains undecided by such axioms, though they have been demonstrated to have many other interesting set-theoretical consequences.
In this paper, I present a new very general notion of the “unfolding” closure of schematically axiomatized formal systems S which provides a uniform systematic means of expanding in an essential way both the language and axioms (and hence theorems) of such systems S. Reporting joint work with T. Strahm, a characterization is given in more familiar terms in the case that S is a basic system of non-finitist arithmetic. When reflective closure is applied to suitable systems of set theory, one is able to derive cardinal axioms as theorems. It is an open question how these may be characterized in terms of current notions in that subject.
Why new axioms?
Gödel's published statements over the years (from 1931 to 1972) pointing to the need for new axioms to settle both undecided number-theoretic and set-theoretic propositions are rather well known. They are most easily cited by reference to the first two volumes of the edition of his Collected Works. A number of less familiar statements of a similar character from his unpublished essays and lectures are now available in the third volume of that edition.
Given the ready accessibility of these sources, there is no need for extensive quotation, though several representative passages are singled out below for special attention.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.