Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 High-frequency and high-data-rate communication systems
- 3 High-frequency linear noisy network analysis
- 4 High-frequency devices
- 5 Circuit analysis techniques for high-frequency integrated circuits
- 6 Tuned power amplifier design
- 7 Low-noise tuned amplifier design
- 8 Broadband low-noise and transimpedance amplifiers
- 9 Mixers, switches, modulators, and other control circuits
- 10 Design of voltage-controlled oscillators
- 11 High-speed digital logic
- 12 High-speed digital output drivers with waveshape control
- 13 SoC examples
- Appendix 1 Trigonometric identities
- Appendix 2 Baseband binary data formats and analysis
- Appendix 3 Linear matrix transformations
- Appendix 4 Fourier series
- Appendix 5 Exact noise analysis for a cascode amplifier with inductive degeneration
- Appendix 6 Noise analysis of the common-emitter amplifier with transformer feedback
- Appendix 7 Common-source amplifier with shunt–series transformer feedback
- Appendix 8 HiCUM level 0 model for a SiGe HBT
- Appendix 9 Technology parameters
- Appendix 10 Analytical study of oscillator phase noise
- Appendix 11 Physical constants
- Appendix 12 Letter frequency bands
- Index
Appendix 10 - Analytical study of oscillator phase noise
Published online by Cambridge University Press: 05 March 2013
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 High-frequency and high-data-rate communication systems
- 3 High-frequency linear noisy network analysis
- 4 High-frequency devices
- 5 Circuit analysis techniques for high-frequency integrated circuits
- 6 Tuned power amplifier design
- 7 Low-noise tuned amplifier design
- 8 Broadband low-noise and transimpedance amplifiers
- 9 Mixers, switches, modulators, and other control circuits
- 10 Design of voltage-controlled oscillators
- 11 High-speed digital logic
- 12 High-speed digital output drivers with waveshape control
- 13 SoC examples
- Appendix 1 Trigonometric identities
- Appendix 2 Baseband binary data formats and analysis
- Appendix 3 Linear matrix transformations
- Appendix 4 Fourier series
- Appendix 5 Exact noise analysis for a cascode amplifier with inductive degeneration
- Appendix 6 Noise analysis of the common-emitter amplifier with transformer feedback
- Appendix 7 Common-source amplifier with shunt–series transformer feedback
- Appendix 8 HiCUM level 0 model for a SiGe HBT
- Appendix 9 Technology parameters
- Appendix 10 Analytical study of oscillator phase noise
- Appendix 11 Physical constants
- Appendix 12 Letter frequency bands
- Index
Summary
A study of phase noise
In this section we look into how phase noise arises from noise currents in an oscillator, using an analytic power series model. An analysis is conducted based on this power series model, and this is used to predict the phase noise of an oscillator. This circuit is then made to oscillate with transient simulation and is studied for its phase noise performance with the harmonic balance method using a proprietary simulator (ADS). The results are then compared. The basis of this study will be a half circuit test bench of a Colpitts oscillator as in Figure 10.14(a) and Figure 10.41 of Chapter 10, but with a HBT instead of a MOSFET.
The topic of phase noise was introduced in Section 10.1.4 of Chapter 10. Equation (10.15) simply assumed a phase noise existing at a frequency offset from the fundamental oscillation frequency, but does not explain how this phase noise arises from real physical noise current sources (e.g. resistors, lossy inductors, transistor shot noise, etc.) present inside the oscillator circuit. The latter is studied in more detail in this Appendix using a one-port equivalent circuit for the oscillator, as shown in Figure A10.1.
The inductor, Lpt, is assumed in parallel with a resistor Rpt, at the base input of the transistor. (An equivalent series L-R representation is also possible.) One end of this inductor is placed at the desired DC base bias voltage of the transistor. The value of Rpt is calculated based on the assumed Q of an actual linear inductor, at the oscillation frequency. The resistor Rpt is shown inside the “one-port” as illustrated in Figure A10.1. When this assembly is in steady-state oscillation, the input to the one-port must by definition be purely capacitive because the net negative resistance created inside the oscillator must balance any sources of positive resistance. Note that in the Colpitts oscillator the transistor inside the one-port does not have its emitter connected to ground, so the subsequent analysis of the one-port is of the prototype structure of this oscillator, not just of the proprietary device models included in it.
- Type
- Chapter
- Information
- High-Frequency Integrated Circuits , pp. 876 - 889Publisher: Cambridge University PressPrint publication year: 2013