Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T09:00:04.115Z Has data issue: false hasContentIssue false

Chapter 7 - Hormones and Cardiovascular Systems in Pregnancy

from Section I - Hormones in the Physiology and Pharmacology of Pregnancy

Published online by Cambridge University Press:  09 November 2022

Felice Petraglia
Affiliation:
Università degli Studi, Florence
Mariarosaria Di Tommaso
Affiliation:
Università degli Studi, Florence
Federico Mecacci
Affiliation:
Università degli Studi, Florence
Get access

Summary

Maternal cardiovascular modifications occur during pregnancy in order to create optimal conditions for the growth and the development of the fetus. As a matter of fact, it can be observed in deep structural and functional changes involving the entire cardiovascular and volume regulatory systems. The systemic vasodilation during the earliest stages of pregnancy will lead to the subsequent cardiovascular modifications: increase of plasma volume, stroke volume, and heart rate with a consequent augmentation of cardiac output. The failure of cardiovascular adaptation to pregnancy demands causes hypertensive disorders and fetal growth restriction.

Maternal hormones – first of all estrogens, progesterone, prolactin, relaxin and renin-angiotensin-aldosterone system – play a key role in the induction and the maintenance of the unique maternal hemodynamic profile during pregnancy. A lack or a reduction in the action of these hormones has significant consequences on the course of pregnancy.

Type
Chapter
Information
Hormones and Pregnancy
Basic Science and Clinical Implications
, pp. 61 - 72
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Spaanderman, M, and Staelens, A (2018). Plasma volume changes in pregnancy. In: C. Lees & W. Gyselaers (Eds.), Mater Hemodyn. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316661925.Google Scholar
Scholten, RR, Oyen, WJ, Van der Vlugt, MJ, et al. Impaired fetal growth and low plasma volume in adult life. Obstet Gynecol. 2011, 118(6):13141322. https://doi.org/10.1097/AOG.0b013e3182383781. PMID: 22105261.CrossRefGoogle ScholarPubMed
Sanghavi, M, and Rutherford, JD. Cardiovascular physiology of pregnancy. Circulation. 2014, 130(12):10031008. https://doi.org/10.1161/CIRCULATIONAHA.114.009029. PMID: 25223771.Google Scholar
Ouzounian, JG, and Elkayam, U. Physiologic changes during normal pregnancy and delivery. Cardiol Clin. 2012, 30(3):317329. https://doi.org/10.1016/j.ccl.2012.05.004. Epub 2012. PMID: 22813360.CrossRefGoogle ScholarPubMed
Chung, E, and Leinwand, LA. Pregnancy as a cardiac stress model. Cardiovasc Res. 2014, 101(4):561570. https://doi.org/10.1093/cvr/cvu013. Epub 201. PMID: 24448313; PMCID: PMC3941597.CrossRefGoogle ScholarPubMed
Peeters, L. Cardiovascular and volume regulatory functions in pregnancy: An overview. In C. Lees & W. Gyselaers (Eds.), Maternal Hemodynamics. 2018; 13–23. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316661925.002.Google Scholar
Tal, R, Taylor, HS, Burney, RO, et al. Endocrinology of Pregnancy. In Feingold, KR, Anawalt, B, Boyce, A, Chrousos, G, de Herder, WW, Dungan, K, Grossman, A, Hershman, JM, Hofland, J, Kaltsas, G, Koch, C, Kopp, P, Korbonits, M, McLachlan, R, Morley, JE, New, M, Purnell, J, Singer, F, Stratakis, CA, Trence, DL, Wilson, DP, (Eds). 2000. South Dartmouth, MA: MDText.com, Inc..Google Scholar
Kodogo, V, Azibani, F, and Sliwa, K. Role of pregnancy hormones and hormonal interaction on the maternal cardiovascular system: A literature review. Clin Res Cardiol. 2019, 108(8):831846. https://doi.org/10.1007/s00392-019-01441-x. Epub 2019. PMID: 30806769.Google Scholar
Napso, T, Yong, HEJ, Lopez-Tello, J, et al. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol. 2018, 9:1091. https://doi.org/10.3389/fphys.2018.01091. PMID: 30174608; PMCID: PMC6108594.Google Scholar
Das, A, Mantena, SR, Kannan, A, et al. De novo synthesis of estrogen in pregnant uterus is critical for stromal decidualization and angiogenesis. Proc Natl Acad Sci USA. 2009, 106(30):1254212547. https://doi.org/10.1073/pnas.0901647106.Google Scholar
Takahashi, K, Ohmichi, M, Yoshida, M, et al. Both estrogen and raloxifene cause G1 arrest of vascular smooth muscle cells. J Endocrinol. 2003, 178(2):319329. https://doi.org/10.1677/joe.0.1780319. PMID: 12904179.CrossRefGoogle ScholarPubMed
Castardo-de-Paula, JC, de Campos, BH, Amorim, EDT, et al. Cardiovascular risk and the effect of nitric oxide synthase inhibition in female rats: The role of estrogen. Exp Gerontol. 2017, 97:3848. https://doi.org/10.1016/j.exger.2017.07.016. Epub 2017. PMID: 28757113.CrossRefGoogle ScholarPubMed
Favre, J, Gao, J, Henry, J-P, et al. Endothelial estrogen receptor {alpha} plays an essential role in the coronary and myocardial protective effects of estradiol in ischemia/reperfusion. Arterioscler Thromb Vasc Biol. 2010, 30:25622567.Google Scholar
Fortini, F, Dalla Sega, FV, Caliceti, C, et al. Estrogen receptor β-dependent Notch1 activation protects vascular endothelium against tumor necrosis factor α (TNFα)-induced apoptosis. J Biol Chem. 2017, 292:1817818191.Google Scholar
Jobe, SO, Ramadoss, J, Koch, JM, et al. Estradiol-17beta and its cytochrome P450- and catechol-O-methyltransferase-derived metabolites stimulate proliferation in uterine artery endothelial cells: Role of estrogen receptor-alpha versus estrogen receptor-beta. Hypertension. 2010, 55(4):10051011. https://doi.org/10.1161/HYPERTENSIONAHA.109.146399. Epub 2010. PMID: 20212268; PMCID: PMC2876348.Google Scholar
Storment, JM, Meyer, M, and Osol, G. Estrogen augments the vasodilatory effects of vascular endothelial growth factor in the uterine circulation of the rat. Am J Obstet Gynecol. 2000, 183(2):449453. https://doi.org/10.1067/mob.2000.105910. PMID: 10942485.Google Scholar
van Eickels, M, Grohé, C, Cleutjens, JP, et al. 17beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation. 2001, 104(12):14191423. https://doi.org/10.1161/hc3601.095577. PMID: 11560859.Google Scholar
Bueno, OF, De Windt, LJ, Lim, HW, et al. The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo. Circ Res. 2001, 88(1):8896. https://doi.org/10.1161/01.res.88.1.88. PMID: 11139479.Google Scholar
Fliegner, D, Schubert, C, Penkalla, A, et al. Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload. Am J Physiol Regul Integr Comp Physiol. 2010, 298(6):R1597–606. https://doi.org/10.1152/ajpregu.00825. 2009. Epub 2010.CrossRefGoogle ScholarPubMed
Liou, C-M, Yang, A-L, Kuo, C-H, et al. E ects of 17 Beta- estradiol on cardiac apoptosis in overiectomized rats. Cell Biochem Funct. 2010, 28:521528. https://doi.org/10.1016/j.numecd.2011.11.002.Google Scholar
Zhu, Y, Bian, Z, Lu, P, et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor beta. Science. 2002, 295(5554):505508. https://doi.org/10.1126/science.1065250. PMID: 11799247.Google Scholar
Eghbali, M, Deva, R, Alioua, A, et al. Molecular and functional signature of heart hypertrophy during pregnancy. Circ Res. 2005, 96(11):12081216. https://doi.org/10.1161/01.RES.0000170652.71414.16. Epub 2005. PMID: 15905459.CrossRefGoogle ScholarPubMed
Karpanou, EA, Vyssoulis, GP, Georgoudi, DG, et al. Ambulatory blood pressure changes in the menstrual cycle of hypertensive women. Significance of plasma renin activity values. Am J Hypertens. 1993, 6(8):654659. https://doi.org/10.1093/ajh/6.8.654. PMID: 8217027.CrossRefGoogle ScholarPubMed
Simoncini, T, Fu, XD, Caruso, A, et al. Drospirenone increases endothelial nitric oxide synthesis via a combined action on progesterone and mineralocorticoid receptors. Hum Reprod. 2007, 22(8):23252334. https://doi.org/10.1093/humrep/dem109. Epub 2007. PMID: 17545686.Google Scholar
Simoncini, T, Mannella, P, Fornari, L, et al. Differential signal transduction of progesterone and medroxyprogesterone acetate in human endothelial cells. Endocrinology. 2004, 145(12):57455756. https://doi.org/10.1210/en.2004-0510. Epub 2004. PMID: 15358673.CrossRefGoogle ScholarPubMed
Zhang, L, Fishman, MC, and Huang, PL. Estrogen mediates the protective effects of pregnancy and chorionic gonadotropin in a mouse model of vascular injury. Arterioscler Thromb Vasc Biol. 1999, 19(9):20592065. https://doi.org/10.1161/01.atv.19.9.2059. PMID: 10479646.Google Scholar
Thomas, P, and Pang, Y. Protective actions of progesterone in the cardiovascular system: potential role of membrane progesterone receptors (mPRs) in mediating rapid effects. Steroids. 2013, 78(6):583588. https://doi.org/10.1016/j.steroids.2013.01.003. Epub 2013. PMID: 23357432.CrossRefGoogle ScholarPubMed
Liu, LX, Rowe, GC, Yang, S, et al. PDK4 Inhibits Cardiac Pyruvate Oxidation in Late Pregnancy. Circ Res. 2017, 121(12):13701378. https://doi.org/10.1161/CIRCRESAHA.117.311456. Epub 2017. PMID: 28928113; PMCID: PMC5722682.Google Scholar
Chung, E, Yeung, F, and Leinwand, LA. Calcineurin activity is required for cardiac remodelling in pregnancy. Cardiovasc Res. 2013, 100(3):402410. https://doi.org/10.1093/cvr/cvt208. Epub 2013. PMID: 23985902; PMCID: PMC3826703.Google Scholar
Morrissy, S, Xu, B, Aguilar, D, et al. Inhibition of apoptosis by progesterone in cardiomyocytes. Aging Cell. 2010, 9(5):799809. https://doi.org/10.1111/j.1474-9726.2010.00619.x. PMID: 20726854; PMCID: PMC4133411.CrossRefGoogle ScholarPubMed
Hsieh, DJ, Huang, CY, Pai, P, et al. Prolactin protects cardiomyocytes against intermittent hypoxia-induced cell damage by the modulation of signaling pathways related to cardiac hypertrophy and proliferation. Int J Cardiol. 2015, 181:255266. https://doi.org/10.1016/j.ijcard.2014.11.154. Epub 2014. PMID: 25531577.CrossRefGoogle ScholarPubMed
Gonzalez, C, Rosas-Hernandez, H, Jurado-Manzano, B, et al. The prolactin family hormones regulate vascular tone through NO and prostacyclin production in isolated rat aortic rings. Acta Pharmacol Sin. 2015, 36(5):572586. https://doi.org/10.1038/aps.2014.159. Epub 2015. PMID: 25891087; PMCID: PMC4422941.Google Scholar
Zamani, P, and Greenberg, BH. Novel vasodilators in heart failure. Curr Heart Fail Rep. 2013, 10(1):111. https://doi.org/10.1007/s11897-012-0126-4. PMID: 23299783.Google Scholar
Kristiansson, P, and Wang, JX. Reproductive hormones and blood pressure during pregnancy. Hum Reprod. 2001, 16(1):1317. https://doi.org/10.1093/humrep/16.1.13. PMID: 11139529.Google Scholar
Smith, MC, Danielson, LA, Conrad, KP, et al. Influence of recombinant human relaxin on renal hemodynamics in healthy volunteers. J Am Soc Nephrol. 2006, 17(11):31923197. https://doi.org/10.1681/ASN.2005090950. Epub 2006. PMID: 17035617.Google Scholar
Leo, CH, Ng, HH, Marshall, SA, et al. Relaxin reduces endothelium-derived vasoconstriction in hypertension: Revealing new therapeutic insights. Br J Pharmacol. 2020, 177(1):217233. https://doi.org/10.1111/bph.14858. Epub 2019. PMID: 31479151; PMCID: PMC6976785.CrossRefGoogle ScholarPubMed
Soma-Pillay, P, Nelson-Piercy, C, Tolppanen, H, et al. Physiological changes in pregnancy. Cardiovasc J Afr. 2016, 27(2):8994. https://doi.org/10.5830/CVJA-2016-021. PMID: 27213856; PMCID: PMC4928162.Google Scholar
Gennari-Moser, C, Khankin, EV, Schüller, S, et al. Regulation of placental growth by aldosterone and cortisol. Endocrinology. 2011, 152(1):263271. https://doi.org/10.1210/en.2010-0525. Epub 2010. PMID: 21068161.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×