Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T22:52:40.933Z Has data issue: false hasContentIssue false

19 - Correlations of theories with measurements

Published online by Cambridge University Press:  07 May 2010

John P. Breslin
Affiliation:
Stevens Institute of Technology, New Jersey
Poul Andersen
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

The number of comparisons that have been made of calculated and measured blade-frequency thrust, torque and other force and moment components are very few because of the paucity of data. In this chapter comparisons of theoretical predictions with experimental data will be given. Results obtained by various theories will also be compared. The chapter concludes with presentation of a simple procedure, based upon the KT-J curve of the steady case, for a quick estimate of the varying thrust at blade frequency.

The measurement of blade-frequency forces on model propellers requires great care in the design of the dynamometer which must have both high sensitivity and high natural frequencies well above the model blade frequency. After a number of failures a successful blade-frequency propeller dynamometer capable of measuring six components (three forces, three moments) was evolved at David Taylor Research Center (DTRC) about 1960.

Measurements were made with a triplet of three-bladed propellers of different blade-area ratio designed to produce the same mean thrust. This set was tested in the DTRC 24-inch water tunnel alternately abaft threeand four-cycle wake screens which produced large harmonic amplitudes of the order of 0.25-U in order to obtain strong output-to-“noise” levels! The three-cycle screens give rise to blade-frequency thrust and torque whereas the four-cycle wake produces transverse and vertical forces and moments about the y- and z-axes which in general come from the fourth and second harmonic orders of blade loading on a three-bladed propeller, as was demonstrated on p. 367.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×