Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T18:30:23.677Z Has data issue: false hasContentIssue false

10 - Quantifying Electrochemical Processes Using Liquid Cell TEM

from Part II - Applications

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hölzle, M. H., Zwing, V. and Kolb, D. M., The influence of steps on the deposition of Cu onto Au(111). Electrochim. Acta, 40 (1995), 12371247.Google Scholar
Hölzle, M. H., Apsel, C. W., Will, T. and Kolb, D. M., Copper deposition onto Au(111) in the presence of thiourea. J. Electrochem. Soc., 142 (1995), 37413749.CrossRefGoogle Scholar
Magnussen, O. M., Zitzler, L., Gleich, B., Vogt, M. R. and Behm, R. J., In-situ atomic-scale studies of the mechanisms and dynamics of metal dissolution by high-speed STM. Electrochim. Acta, 46 (2001), 37253733.Google Scholar
Magnussen, O. M., Polewska, W., Zitzler, L. and Behm, R. J., In situ video-STM studies of dynamic processes at electrochemical interfaces. Faraday Discuss., 121 (2002), 4352.CrossRefGoogle Scholar
Azhagurajan, M., Wen, R., Lahiri, A. et al., Direct evidence of homoepitaxial growth in the electrodeposition of Au observed by ultra-high resolution differential optical microscopy. J. Electrochem. Soc., 160 (2013), D361D365.Google Scholar
Gallaway, J. W., Desai, D., Gaikwad, A. et al., A lateral microfluidic cell for imaging electrodeposited zinc near the shorting condition. J. Electrochem. Soci., 157 (2010), A1279A1286.Google Scholar
Ross, F. M., Growth processes and phase transformations studied by in situ transmission electron microscopy. IBM J. Res., 44 (2000), 489501.Google Scholar
Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic electron microscopy in liquid environments. Nat. Mater., 2 (2003), 532536.Google Scholar
Ross, F. M. and Searson, P. C., In situ microscopy of the anodic etching of silicon. In Bailey, G. W., Ellisman, M. H., Hennigar, R. A. and Zaluzec, N. J., eds., Proceedings of the 53rd Annual MSA Meeting, Kansas City, August 1995, 232–233 (New York: Jones and Begell Publishing, 1995).Google Scholar
Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Hoboken, NJ: Wiley, 2001).Google Scholar
Holtz, M. E., Tu, Y., Gunceler, D. et al., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.CrossRefGoogle ScholarPubMed
Sacci, R. L., Black, J. M., Balke, N. et al., Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett., 15 (2015), 20112018.CrossRefGoogle ScholarPubMed
Williamson, M. J., Investigations of materials issues in advanced interconnect structures. Ph.D. Thesis, University of Virginia (2002).Google Scholar
Radisic, A., Electrochemical nucleation and growth of copper, Ph.D. Thesis, The Johns Hopkins University (2005).Google Scholar
Grogan, J. M., Ph.D. Thesis, University of Pennsylvania (2012).Google Scholar
Radisic, A., Vereecken, P. M., Hannon, J. B., Searson, P. C. and Ross, F. M., Quantifying electrochemical nucleation and growth mechanisms from real-time kinetic data. Nano Lett., 6 (2006), 238242.CrossRefGoogle Scholar
Radisic, A., Ross, F. M. and Searson, P. C., In situ study of the growth kinetics of individual islands during electrodeposition of copper. J. Phys. Chem. B, 110 (2006), 78627868.CrossRefGoogle ScholarPubMed
Radisic, A., Vereecken, P. M., Searson, P. C. and Ross, F. M., The morphology and nucleation kinetics of copper islands during electrodeposition. Surf. Sci., 600 (2006), 18171826.Google Scholar
Ross, F. M., Electrochemical nucleation, growth and dendrite formation in liquid cell TEM. Microsc. Microanal., 16 (2010), 326327.Google Scholar
White, E. R., Singer, S. B., Augustyn, V. et al., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6 (2012), 63086317.Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., The Nanoaquarium: a new paradigm in electron microscopy. J. Indian Inst. Sci., 92 (2012), 295308.Google Scholar
den Heijer, M., Shao, X., Radisic, A., Reuter, M. C. and Ross, F. M., Patterned electrochemical deposition of copper using an electron beam. APL Mater., 2 (2014), 022101.Google Scholar
Mehdi, B. L., Qian, J., Nasybulin, E. et al., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett., 15 (2015), 21682173.Google Scholar
Leenheer, A. J., Sullivan, J. P., Shaw, M. J. and Harris, C. T., A sealed liquid cell for in situ transmission electron microscopy of controlled electrochemical processes. J. Microelectromech. Syst., 24 (2015), 10611068.Google Scholar
Leenheer, A. J., Jungjohann, K. L., Zavadil, K. R., Sullivan, J. P. and Harris, C. T., Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano, 9 (2015), 43794389.CrossRefGoogle ScholarPubMed
Chen, X., Noh, K. W., Wen, J. G. and Dillon, S. J., In situ electrochemical wet cell transmission electron microscopy characterization of solid–liquid interactions between Ni and aqueous NiCl2. Acta Mater., 60 (2012), 192198.Google Scholar
Sun, M., Liao, H.-G., Niu, K. and Zheng, H., Structural and morphological evolution of lead dendrites during electrochemical migration. Sci. Rep., 3 (2013), 2227.Google Scholar
Liu, Y. and Dillon, S. J., In situ observation of electrolytic H2 evolution adjacent to gold cathodes. Chem. Commun., 50 (2014), 17611763.CrossRefGoogle ScholarPubMed
Zeng, Z., Liang, W.-I., Liao, H.-G. et al., Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in-situ TEM. Nano Lett., 14 (2014), 17451750.Google Scholar
Sacci, R. L., Dudney, N. J., More, K. L. et al., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun., 50 (2014), 21042107.Google Scholar
Gu, M., Parent, L. R., Mehdi, L. et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 13 (2013), 61066112.Google Scholar
Mehdi, B. L., Gu, M., Parent, L. R. et al., In situ electrochemical transmission electron microscopy for battery research. Microsc. Microanal., 20 (2014), 484492.Google Scholar
Unocic, R. R., Sun, X. G., Sacci, R. L. et al., Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal., 20 (2014), 10291037.Google Scholar
den Heijer, M., In-situ transmission electron microscopy of electrodeposition: technical development, beam effects and lithography. M.Sc. Thesis, University of Leiden (2008).Google Scholar
de Jonge, N. and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
Unocic, R. R., Sacci, R. L., Brown, G. M. et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.Google Scholar
Andricacos, P. C., Uzoh, C., Dukovic, J. O., Horkans, J. and Deligianni, H., Damascene copper electroplating for chip interconnections. IBM J. Res. Devel., 42 (1998), 567574.Google Scholar
Scharifker, B. and Hills, G., Theoretical and experimental studies of multiple nucleation. Electrochimica Acta., 28 (1983), 879889.Google Scholar
Milchev, A., Electrocrystallization, Fundamentals of Nucleation and Growth (New York: Springer US, 2002).Google Scholar
Vereecken, P. M., Binstead, R. A., Deligianni, H. and Andricacos, P. C., The chemistry of additives in damascene copper plating. IBM J. Res. Devel., 49 (2005), 318.Google Scholar
Yang, L., Radisic, A., Nagara, M. et al., Multi-scale modeling of direct copper plating on resistive non-copper substrates. Electrochimica Acta, 78 (2012), 524531.Google Scholar
Schneider, N. M., Park, J. H., Grogan, J. M. et al., Visualization of active and passive control of morphology during electrodeposition. Microsc. Microanal., 20 (S3) (2014), 15301531.Google Scholar
Ross, F. M., den Heijer, M., Williamson, M. J. and Steingart, D., Correlating light microscopy and electron microscopy for measuring microstructural evolution during electrochemical deposition. Adv. Imag. Electron Phys., 179 (2013), 180182.Google Scholar
Schneider, N. M., Liquid cell electron microscopy with the nanoAquarium: radiation and electrochemistry (January 1, 2015). Dissertations available from ProQuest, Paper AAI3721631.Google Scholar
Abellan Baeza, P., Mehdi, B. L., Parent, L. R. et al., Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in-situ transmission electron microscopy. Nano Lett., 14 (2014), 12931299.Google Scholar
Zeng, Z., Liang, W.-I., Chub, Y.-H. and Zheng, H. M., In situ TEM study of the Li–Au reaction in an electrochemical liquid cell. Faraday Discuss., 176 (2014), 95107.Google Scholar
Sutter, E., Jungjohann, K., Bliznakov, S. et al., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun., 5 (2014), 4946.Google Scholar
Unocic, R. R., Baggetto, L., Veith, G. M. et al., Probing battery chemistry with liquid cell electron energy loss spectroscopy. Chem. Commun., 51 (2015), 1637716380.Google Scholar
Nagai, Y., Carbajal, J. D., White, J. H. et al., An electrochemically controlled microcantilever biosensor. Langmuir, 29 (2013), 99519957.Google Scholar
Schneider, N. M., Park, J. H., Grogan, J. M. et al., In situ electrochemical measurements in the Nanoaquarium. Microsc. Microanal., 19 (S2) (2013), 433434.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×