Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T17:43:03.748Z Has data issue: false hasContentIssue false

4 - The Milky Way satellite galaxies as critical tests of contemporary cosmological theory

Published online by Cambridge University Press:  05 November 2013

P. Kroupa
Affiliation:
Angelander-Institut für Astronomie
David Martínez-Delgado
Affiliation:
Max-Planck-Institut für Astronomie, Heidelberg
Get access

Summary

4.1 Introduction

Our understanding of the cosmological world relies on two fundamental assumptions: (1) The validity of General Relativity, and (2) conservation of matter since the Big Bang. Both assumptions yield the standard cosmological model according to which dark matter structures form first and then accrete baryonic matter that fuels star formation in the emerging galaxies. One important way to test assumption one is to compare the phasespace properties of the nearest galaxies with the expectations of the standard cosmological model.

Although the possibility of the existence of dark matter (DM) was first evoked more than 85 years ago (Einstein, 1921; Oort, 1932; Zwicky, 1933) and has been under heavy theoretical and experimental scrutiny (Bertone et al., 2005) since the discovery of flat galactic rotation curves by Rubin and Ford (1970) and their verification and full establishment by Bosma (1981), the DM particle candidates still elude both direct and indirect detection (Lingenfelter et al., 2009; Latronico and for the Fermi LAT Collaboration, 2009). Indeed, it appears that also the cryogenic dark matter search (CDMS) experiment fails to find significant evidence for the existence of cold dark matter (CDMS II Collaboration et al., 2010). Favored today is dark matter made of non-relativistic (“cold”) particles (cold DM, CDM) as it allows the correct degree of large-scale structure formation. Less-massive particles can perhaps account for the observed structures as long as the particles are not too light, leading to Warm DM (WDM) models, while light, relativistic (“hot”) particles (Hot DM, HDM) are excluded because structures on galactic scales cannot form sufficiently rapidly.

Type
Chapter
Information
Local Group Cosmology , pp. 123 - 161
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adén, D., and 10 colleagues. 2009a. A photometric and spectroscopic study of the new dwarf spheroidal galaxy in Hercules. Metallicity, velocities, and a clean list of RGB members. A&A, 506(Nov.), 1147–1168.Google Scholar
Adén, D., Wilkinson, M. I., Read, J. I., Feltzing, S., Koch, A., Gilmore, G. F., Grebel, E. K., and Lundström, I. 2009b. A new low mass for the Hercules dSph: the end of a common mass scale for the dwarfs?ApJ, 706(Nov.), L150–L154.Google Scholar
Angus, G. W. 2008. Dwarf spheroidals in MOND. MNRAS, 387(July), 1481–1488.Google Scholar
Angus, G. W., Famaey, B., and Diaferio, A. 2010. Equilibrium configurations of 11 eV sterile neutrinos in MONDian galaxy clusters. MNRAS, 402(Feb.), 395–408.Google Scholar
Aubert, D., Pichon, C., and Colombi, S. 2004. The origin and implications of dark matter anisotropic cosmic infall on L* haloes. MNRAS, 352(Aug.), 376–398.Google Scholar
Barazza, F. D., Binggeli, B., and Jerjen, H. 2002. More evidence for hidden spiral and bar features in bright early-type dwarf galaxies. A&A, 391(Sept.), 823–831.Google Scholar
Barnes, J. E. and Hernquist, L. 1992. Formation of dwarf galaxies in tidal tails. Nature, 360(Dec.), 715–717.Google Scholar
Bean, R. 2009. A weak lensing detection of a deviation from General Relativity on cosmic scales. (Sept.), arXiv:0909.3853.
Beasley, M. A., Cenarro, A. J., Strader, J., and Brodie, J. P. 2009. Evidence for the disky origin of luminous Virgo dwarf ellipticals from the kinematics of their globular cluster systems. AJ, 137(June), 5146–5153.Google Scholar
Bekenstein, J. D. 2004. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D, 70(Oct.), 083509.Google Scholar
Bekenstein, J. D. and Milgrom, M. 1984. Does the missing mass problem signal the breakdown of Newtonian gravity?. ApJ, 286(Nov.), 7–14.Google Scholar
Bell, D. L. 1983. The origin of dwarf spheroidal galaxies. Internal Kinematics and Dynamics of Galaxies, 100, 89.Google Scholar
Belokurov, V., and 33 colleagues 2007. Cats and dogs, hair and a hero: a quintet of new Milky Way companions. ApJ, 654(Jan.), 897–906.Google Scholar
Belokurov, V., and 10 colleagues 2010. Big fish, little fish: two new ultrafaint satellites of the Milky Way. ApJ, 712(Mar.), L103–L106.Google Scholar
Bender, R., Burstein, D., and Faber, S. M. 1992. Dynamically hot galaxies. I – Structural properties. ApJ, 399(Nov.), 462–477.Google Scholar
Bertone, G., Hooper, D., and Silk, J. 2005. Particle dark matter: evidence, candidates and constraints. Phys. Rep., 405(Jan.), 279–390.Google Scholar
Blanchet, L. and Le Tiec, A. 2009. Dipolar dark matter and dark energy. Phys. Rev. D, 80(Sept.), 023524.Google Scholar
Boily, C. M., Nakasato, N., Spurzem, R., and Tsuchiya, T. 2004. Satellite survival in cold dark matter cosmology. ApJ, 614(Oct.), 26–30.Google Scholar
Bosma, A. 1981. 21-cm line studies of spiral galaxies. I – Observations of the galaxies NGC 5033, 3198, 5055, 2841, and 7331. II – The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. AJ, 86(Dec.), 1791–1846.Google Scholar
Bosma, A., Goss, W. M., and Allen, R. J. 1981. The giant spiral galaxy M101. VI – The large scale radial velocity field. A&A, 93(Jan.), 106–112.Google Scholar
Bournaud, F. 2010. Tidal dwarf galaxies and missing baryons. Advances in Astronomy, 2010, 1–7.Google Scholar
Bournaud, F., and 8 colleagues. 2007. Missing mass in collisional debris from galaxies. Science, 316(May), 1166.Google Scholar
Bournaud, F., Duc, P.-A., and Emsellem, E. 2008. High-resolution simulations ofgalaxy mergers: resolving globular cluster formation. MNRAS, 389(Sept.), L8–L12.Google Scholar
Brada, R. and Milgrom, M. 2000. Dwarf satellite galaxies in the modified dynamics. ApJ, 541 (Oct.), 556–564.Google Scholar
Brownstein, J. R. and Moffat, J. W. 2006. Galaxy rotation curves without non-baryonic dark matter. ApJ, 636(Jan.), 721–741.Google Scholar
Bruneton, J.-P., Liberati, S., Sindoni, L., and Famaey, B. 2009. Reconciling MOND and dark matter?J. Cosmology Astropart. Phys., 3(Mar.), 21.Google Scholar
Bruneton, J.-P. and Esposito-Farèse, G. 2007. Field-theoretical formulations of MOND-like gravity. Phys. Rev. D, 76(Dec.), 124012.Google Scholar
Bullock, J. S., Kolatt, T. S., Sigad, Y., Somerville, R. S., Kravtsov, A. V., Klypin, A. A., Primack, J. R., and Dekel, A. 2001. Profiles of dark haloes: evolution, scatter and environment. MNRAS, 321(Mar.), 559–575.Google Scholar
Busha, M. T., Alvarez, M. A., Wechsler, R. H., Abel, T., and Strigari, L. E. 2010. The Impact of Inhomogeneous Reionization on the satellite galaxy population of the Milky Way. ApJ, 710(Feb.), 408–420.Google Scholar
CDMS II Collaboration, and 60 colleagues. 2010. Dark matter search results from the CDMS II experiment. Science, 327(Mar.), 1619.
Chilingarian, I. V. 2009. Evolution of dwarf early-type galaxies – I. Spatially resolved stellar populations and internal kinematics of Virgo cluster dE/dS0 galaxies. MNRAS, 394(Apr.), 1229–1248.Google Scholar
Ciotti, L., Londrillo, P., and Nipoti, C. 2006. Axisymmetric and triaxial MOND density-potential pairs. ApJ, 640(Apr.), 741–750.Google Scholar
Cole, S., and 30 colleagues. 2005. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications. MNRAS, 362(Sept.), 505–534.Google Scholar
Coleman, M. G., and 18 colleagues. 2007. The elongated structure of the Hercules Dwarf Spheroidal Galaxy from deep Large Binocular Telescope imaging. ApJ, 668(Oct.), L43–L46.Google Scholar
Combes, F. 2004. Galaxy formation and baryonic dark matter. Dark Matter in Galaxies, 220(July), 219.Google Scholar
Combes, F. 2009. From distances to galaxy evolution and the dark matter problem. Commentary on Tully R. B. and Fisher J. R., 1977, A&A, 54, 661. A&A, 500(June), 119–120.Google Scholar
Combes, F. 2010. Theoretical problems and perspectives. Galaxies in isolation: exploring nature versus nurture, 421 (Oct.), 233.Google Scholar
Combes, F. and Tiret, O. 2010. MOND and the galaxies. American Institute of Physics Conference Series, 1241 (June), 154–161.Google Scholar
Cooper, A. P., and 11 colleagues. 2010. Galactic stellar haloes in the CDM model. MNRAS, 406(Aug.), 744–766.Google Scholar
Dabringhausen, J., Hilker, M., and Kroupa, P. 2008. From star clusters to dwarf galaxies: the properties of dynamically hot stellar systems. MNRAS, 386(May), 864–886.Google Scholar
Dabringhausen, J., Kroupa, P., and Baumgardt, H. 2009. A top-heavy stellar initial mass function in starbursts as an explanation for the high mass-to-light ratios of ultra-compact dwarf galaxies. MNRAS, 394(Apr.), 1529–1543.Google Scholar
de Blok, W. J. G. and Bosma, A. 2002. High-resolution rotation curves of low surface brightness galaxies. A&A, 385(Apr.), 816–846.Google Scholar
Dekel, A. and Silk, J. 1986. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. ApJ, 303(Apr.), 39–55.Google Scholar
Dekel, A., and 9 colleagues. 2009. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature, 457(Jan.), 451–454.Google Scholar
Dekel, A. and Woo, J. 2003. Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies. MNRAS, 344(Oct.), 1131–1144.Google Scholar
Del Popolo, A. and Kroupa, P. 2009. Density profiles of dark matter haloes on galactic and cluster scales. A&A, 502(Aug.), 733–747.Google Scholar
Del Popolo, A. and Yesilyurt, I. S. 2007. The cosmological mass function. Astronomy Reports, 51 (Sept.), 709–734.Google Scholar
Demleitner, M., Accomazzi, A., Eichhorn, G., Grant, C. S., Kurtz, M. J., and Murray, S. S. 2001. ADS's Dexter Data Extraction Applet. Astronomical Data Analysis Software and Systems X, 238, 321.Google Scholar
Diemand, J., Kuhlen, M., Madau, P., Zemp, M., Moore, B., Potter, D., and Stadel, J. 2008. Clumps and streams in the local dark matter distribution. Nature, 454(Aug.), 735–738.Google Scholar
Disney, M. J., Romano, J. D., Garcia-Appadoo, D. A., West, A. A., Dalcanton, J. J., and Cortese, L. 2008. Galaxies appear simpler than expected. Nature, 455(Oct.), 1082–1084.Google Scholar
D'Onghia, E. and Lake, G. 2008. Small dwarf galaxies within larger dwarfs: why some are luminous while most go dark. ApJ, 686(Oct.), L61–L65.Google Scholar
Einstein, A. 1921. Festschrift der Kaiser-Wilhelm Gesellschaft zur Föderung der Wissenschaften zu ihrem zehnjöhrigen Jubiläum dargebracht von ihren Instituten. Berlin: Springer, 90.
Esposito-Farèse, G. 2011. Motion in alternative theories of gravity. Mass and Motion in General Relativity, 461–489.
Famaey, B. and Binney, J. 2005. Modified Newtonian dynamics in the Milky Way. MNRAS, 363(Oct.), 603–608.Google Scholar
Famaey, B., Gentile, G., Bruneton, J.-P., and Zhao, H. 2007. Insight into the baryon-gravity relation in galaxies. Phys. Rev. D, 75(Mar.), 063002.Google Scholar
Ferrarese, L., and 10 colleagues. 2006. The ACS Virgo Cluster Survey. VI. Isophotal analysis and the structure of early-type galaxies. ApJS, 164(June), 334–434.Google Scholar
Forbes, D. A., Lasky, P., Graham, A. W., and Spitler, L. 2008. Uniting old stellar systems: from globular clusters to giant ellipticals. MNRAS, 389(Oct.), 1924–1936.Google Scholar
Füzfa, A. and Alimi, J.-M. 2007. Toward a unified description of dark energy and dark matter from the abnormally weighting energy hypothesis. Phys. Rev. D, 75(June), 123007.Google Scholar
Gao, L., White, S. D. M., Jenkins, A., Stoehr, F., and Springel, V. 2004. The subhalo populations of ACDM dark haloes. MNRAS, 355(Dec.), 819–834.Google Scholar
Gavazzi, G. 2009. Downsizing among disk galaxies and the role of the environment. Revista Mexicana de Astronomia y Astrofisica Conference Series, 37(Nov.), 72–78.Google Scholar
Gebhardt, K., and 11 colleagues. 2001. M33: a Galaxy with no supermassive black hole. AJ, 122(Nov.), 2469–2476.Google Scholar
Geha, M., Guhathakurta, P., and van der Marel, R. P. 2003. Internal dynamics, structure, and formation of dwarf elliptical galaxies. II. Rotating versus nonrotating dwarfs. AJ, 126(Oct.), 1794–1810.Google Scholar
Gentile, G., Famaey, B., Combes, F., Kroupa, P., Zhao, H. S., and Tiret, O. 2007. Tidal dwarf galaxies as a test of fundamental physics. A&A, 472(Sept.), L25–L28.Google Scholar
Gentile, G., Famaey, B., Zhao, H., and Salucci, P. 2009. Universality of galactic surface densities within one dark halo scale-length. Nature, 461 (Oct.), 627–628.Google Scholar
Gentile, G., Salucci, P., Klein, U., Vergani, D., and Kalberla, P. 2004. The cored distribution of dark matter in spiral galaxies. MNRAS, 351 (July), 903–922.Google Scholar
Gibbons, G. W. and Hawking, S. W. 1977. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D, 15(May), 2738–2751.Google Scholar
Gilmore, G., Wilkinson, M. I., Wyse, R. F. G., Kleyna, J. T., Koch, A., Evans, N. W., and Grebel, E. K. 2007. The observed properties of dark matter on small spatial scales. ApJ, 663(July), 948–959.Google Scholar
Graham, A. W. and Worley, C. C. 2008. Inclination- and dust-corrected galaxy parameters: bulge-to-disk ratios and size-luminosity relations. MNRAS, 388(Aug.), 1708–1728.Google Scholar
Grebel, E. K. 1999. Evolutionary histories of dwarf galaxies in the Local Group. The Stellar Content of Local Group Galaxies, 192(Jan.), 17.Google Scholar
Grebel, E. K. 2008. Baryonic properties of the darkest galaxies. IAU Symposium, 244(May), 300–310.Google Scholar
Hartwick, F. D. A. 2000. The structure of the outer halo of the Galaxy and its relationship to nearby large-scale structure. AJ, 119(May), 2248–2253.Google Scholar
Hunter, D. A., Hunsberger, S. D., and Roye, E. W. 2000. Identifying old tidal dwarf irregulars. ApJ, 542(Oct.), 137–142.Google Scholar
Jerjen, H., et al.
Jerjen, H., Kalnajs, A., and Binggeli, B. 2000. IC3328: A “dwarf elliptical galaxy” with spiral structure. A&A, 358(June), 845–849.Google Scholar
Kallivayalil, N., van der Marel, R. P., and Alcock, C. 2006. Is the SMC bound to the LMC? The Hubble Space Telescope proper motion of the SMC. ApJ, 652(Dec.), 1213–1229.Google Scholar
Karachentsev, I. D., Karachentseva, V. E., and Sharina, M. E. 2005. Dwarf spheroidal galaxies in nearby groups imaged with HST. IA U Colloq. 198: Near-fields cosmology with dwarf elliptical galaxies, 295–302.
Kazantzidis, S., Mayer, L., Mastropietro, C., Diemand, J., Stadel, J., and Moore, B. 2004. Density Profiles of Cold Dark Matter Substructure: Implications for the Missing-Satellites Problem. ApJ, 608(June), 663–679.Google Scholar
Kent, S. M. 1989. An improved bulge model for M31. AJ, 97(June), 1614–1621.Google Scholar
Kirby, E. N., and 11 colleagues 2009. The role of dwarf galaxies in building large stellar halos. astro2010: The Astronomy and Astrophysics Decadal Survey, 2010, 156.
Klessen, R. S. and Kroupa, P. 1998. Dwarf spheroidal satellite galaxies without dark matter: results from two different numerical techniques. ApJ, 498(May), 143.Google Scholar
Klimentowski, J., Łokas, E. L., Knebe, A., Gottlöber, S., Martinez-Vaquero, L. A., Yepes, G., and Hoffman, Y. 2010. The grouping, merging and survival of subhaloes in the simulated Local Group. MNRAS, 402(Mar.), 1899–1910.Google Scholar
Klypin, A., Kravtsov, A. V., Valenzuela, O., and Prada, F. 1999. Where are the missing galactic satellites?ApJ, 522(Sept.), 82–92.Google Scholar
Koch, A. and Grebel, E. K. 2006. The anisotropic distribution of M31 satellite galaxies: a polar great plane of early-type companions. AJ, 131(Mar.), 1405–1415.Google Scholar
Komatsu, E., and 18 colleagues. 2009. Five-year Wilkinson Microwave Anisotropy Probe observations: cosmological interpretation. ApJS, 180(Feb.), 330–376.Google Scholar
Koposov, S. E., Yoo, J., Rix, H.-W., Weinberg, D. H., Maccio, A. V., and Escude, J. M. 2009. A quantitative explanation of the observed population of Milky Way satellite galaxies. ApJ, 696(May), 2179–2194.Google Scholar
Kroupa, P. 1997. Dwarf spheroidal satellite galaxies without dark matter. New A, 2(July), 139–164.Google Scholar
Kroupa, P., and 9 colleagues. 2010. Local-Group tests of dark matter concordance cosmology. Toward a new paradigm for structure formation. ABA, 523(Nov.), A32.Google Scholar
Kroupa, P., Theis, C., and Boily, C. M. 2005. The great disk of Milky-Way satellites and cosmological sub-structures. ABA, 431 (Feb.), 517–521.Google Scholar
Kruijssen, J. M. D. and Lamers, H. J. G. L. M. 2008. The photometric evolution of star clusters and the preferential loss of low-mass bodies – with an application to globular clusters. ABA, 490(Oct.), 151–171.Google Scholar
Kruijssen, J. M. D. and Mieske, S. 2009. Dissolution is the solution: on the reduced mass-to-light ratios of Galactic globular clusters. ABA, 500(June), 785–799.Google Scholar
Kunkel, W. E. 1979. On the origin and dynamics of the Magellanic Stream. ApJ, 228(Mar.), 718–733.Google Scholar
Latronico, L. and for the Fermi LAT Collaboration 2009. Measurement of the Cosmic Ray electron plus positron spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope. (Sept.), arXiv:0907.0452.
Law, D. R., Majewski, S. R., and Johnston, K. V. 2009. Evidence for a triaxial Milky Way dark matter halo from the Sagittarius stellar tidal stream. ApJ, 703(Sept.), L67–L71.Google Scholar
Li, Y.-S. and Helmi, A. 2008. Infall of substructures on to a Milky Way-like dark halo. MNRAS, 385(Apr.), 1365–1373.Google Scholar
Li, Y.-S., De Lucia, G., and Helmi, A. 2010. On the nature of the Milky Way satellites. MNRAS, 401(Jan.), 2036–2052.Google Scholar
Libeskind, N. I., Frenk, C. S., Cole, S., Jenkins, A., and Helly, J. C. 2009. How common is the Milky Way-satellite system alignment?MNRAS, 399(Oct.), 550–558.Google Scholar
Lingenfelter, R. E., Higdon, J. C., and Rothschild, R. E. 2009. Is there a dark matter signal in the Galactic positron annihilation radiation?Physical Review Letters, 103(July), 031301.Google Scholar
Lisker, T. 2009. Early-type dwarf galaxies in clusters: a mixed bag with various origins?Astronomische Nachrichten, 330(Dec.), 1043.Google Scholar
Llinares, C., Knebe, A., and Zhao, H. 2008. Cosmological structure formation under MOND: a new numerical solver for Poisson's equation. MNRAS, 391(Dec.), 1778–1790.Google Scholar
Lynden-Bell, D. 1976. Dwarf galaxies and globular clusters in high velocity hydrogen streams. MNRAS, 174(Mar.), 695–710.Google Scholar
Lynden-Bell, D. and Lynden-Bell, R. M. 1995. Ghostly streams from the formation of the Galaxy's halo. MNRAS, 275(July), 429–442.Google Scholar
Macciò, A. V. and Fontanot, F. 2010. How cold is dark matter? Constraints from Milky Way satellites. MNRAS, 404(May), L16–L20.Google Scholar
Macciò, A. V., Dutton, A. A., van den Bosch, F. C., Moore, B., Potter, D., and Stadel, J. 2007. Concentration, spin and shape of dark matter haloes: scatter and the dependence on mass and environment. MNRAS, 378(June), 55–71.Google Scholar
Macciò, A. V., Kang, X., and Moore, B. 2009. Central mass and luminosity of Milky Way satellites in the A cold dark matter model. ApJ, 692(Feb.), L109–L112.Google Scholar
Macciò, A. V., Kang, X., Fontanot, F., Somerville, R. S., Koposov, S., and Monaco, P. 2010. Luminosity function and radial distribution of Milky Way satellites in a ACDM Universe. MNRAS, 402(Mar.), 1995–2008.Google Scholar
Macciò, A. V., Murante, G., and Bonometto, S. P. 2003. Mass of clusters in simulations. ApJ, 588(May), 35–49.Google Scholar
Majewski, S. R. 1994. The Fornax-Leo-Sculptor stream revisited. ApJ, 431(Aug.), L17–L21.Google Scholar
Martínez-Delgado, D. Private communication.
Mateo, M. L. 1998. Dwarf galaxies of the Local Group. ARA&A, 36, 435–506.Google Scholar
Mateo, M., Olszewski, E. W., Pryor, C., Welch, D. L., and Fischer, P. 1993. The Carina dwarf spheroidal galaxy – how dark is it?AJ, 105(Feb.), 510–526.Google Scholar
McGaugh, S. S. 2004. The mass discrepancy-acceleration relation: disk mass and the dark matter distribution. ApJ, 609(July), 652–666.Google Scholar
McGaugh, S. S. 2005a. Balance of dark and luminous mass in rotating galaxies. Physical Review Letters, 95(Oct.), 171302.Google Scholar
McGaugh, S. S. 2005b. The baryonic Tully-Fisher relation of galaxies with extended rotation curves and the stellar mass of rotating galaxies. ApJ, 632(Oct.), 859–871.Google Scholar
McGaugh, S. S. 2008. Milky Way mass models and MOND. ApJ, 683(Aug.), 137–148.Google Scholar
McGaugh, S. S., de Blok, W. J. G., Schombert, J. M., Kuzio de Naray, R., and Kim, J. H. 2007. The rotation velocity attributable to dark matter at intermediate radii in disk galaxies. ApJ, 659(Apr.), 149–161.Google Scholar
Metz, M. 2008. PhD Thesis. University of Bonn.
Metz, M. and Kroupa, P. 2007. Dwarf spheroidal satellites: are they of tidal origin?MNRAS, 376(Mar.), 387–392.Google Scholar
Metz, M., Kroupa, P., and Jerjen, H. 2007. The spatial distribution of the Milky Way and Andromeda satellite galaxies. MNRAS, 374(Jan.), 1125–1145.Google Scholar
Metz, M., Kroupa, P., and Jerjen, H. 2009a. Discs of satellites: the new dwarf spheroidals. MNRAS, 394(Apr.), 2223–2228.Google Scholar
Metz, M., Kroupa, P., and Libeskind, N. I. 2008. The orbital poles of Milky Way satellite galaxies: a rotationally supported disk of satellites. ApJ, 680(June), 287–294.Google Scholar
Metz, M., Kroupa, P., Theis, C., Hensler, G., and Jerjen, H. 2009b. Did the Milky Way dwarf satellites enter the halo as a group?ApJ, 697(May), 269–274.Google Scholar
Mieske, S. and Kroupa, P. 2008. An extreme IMF as an explanation for high M/L ratios in UCDs? The CO index as a tracer of bottom-heavy IMFs. ApJ, 677(Apr.), 276–282.Google Scholar
Milgrom, M. 1983. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. ApJ, 270(July), 365–370.Google Scholar
Milgrom, M. 1995. MOND and the seven dwarfs. ApJ, 455(Dec.), 439.Google Scholar
Milgrom, M. 1999. The modified dynamics as a vacuum effect. Physics Letters A, 253(Mar.), 273–279.Google Scholar
Milgrom, M. 2007. MOND and the mass discrepancies in tidal dwarf galaxies. ApJ, 667(Sept.), L45–L48.Google Scholar
Milgrom, M. 2008. Marriage Á-la-MOND: baryonic dark matter in galaxy clusters and the cooling flow puzzle. New A Rev., 51 (May), 906–915.Google Scholar
Milgrom, M. 2009. The central surface density of ‘dark haloes’ predicted by MOND. MNRAS, 398(Sept.), 1023–1026.Google Scholar
Moffat, J. W. 2006. Scalar tensor vector gravity theory. J. Cosmology Astropart. Phys., 3(Mar.), 4.Google Scholar
Moffat, J. W. and Toth, V. T. 2008. Testing modified gravity with globular cluster velocity dispersions. ApJ, 680(June), 1158–1161.Google Scholar
Moffat, J. W. and Toth, V. T. 2009a. Modified gravity and the origin of inertia. MNRAS, 395(May), L25–L28.Google Scholar
Moffat, J. W. and Toth, V. T. 2009b. Fundamental parameter-free solutions in modified gravity. Classical and Quantum Gravity, 26(Apr.), 085002.Google Scholar
Moore, B., Diemand, J., Madau, P., Zemp, M., and Stadel, J. 2006. Globular clusters, satellite galaxies and stellar haloes from early dark matter peaks. MNRAS, 368(May), 563–570.Google Scholar
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., and Tozzi, P. 1999a. Dark matter substructure within galactic halos. ApJ, 524(Oct.), L19–L22.Google Scholar
Moore, B., Lake, G., Quinn, T., and Stadel, J. 1999b. On the survival and destruction of spiral galaxies in clusters. MNRAS, 304(Apr.), 465–474.Google Scholar
Murray, N. 2009. The sizes and luminosities of massive star clusters. ApJ, 691(Feb.), 946–962.Google Scholar
Navarro, J. F., and 8 colleagues. 2010. The diversity and similarity of simulated cold dark matter haloes. MNRAS, 402(Feb.), 21–34.Google Scholar
Navarro, J. F., Frenk, C. S., and White, S. D. M. 1997. A universal density profile from hierarchical clustering. ApJ, 490(Dec.), 493.Google Scholar
Nipoti, C., Ciotti, L., Binney, J., and Londrillo, P. 2008. Dynamical friction in modified Newtonian dynamics. MNRAS, 386(June), 2194–2198.Google Scholar
Okamoto, T. and Frenk, C. S. 2009. The origin of failed sub-haloes and the common mass scale of the Milky Way satellite galaxies. MNRAS, 399(Oct.), L174–L178.Google Scholar
Okazaki, T. and Taniguchi, Y. 2000. Dwarf galaxy formation Induced by galaxy interactions. ApJ, 543(Nov.), 149–152.Google Scholar
Okamoto, T., Frenk, C. S., Jenkins, A., and Theuns, T. 2010. The properties of satellite galaxies in simulations of galaxy formation. MNRAS, 406(July), 208–222.Google Scholar
Oort, J. H. 1932. The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bull. Astron. Inst. Netherlands, 6(Aug.), 249.Google Scholar
Ott, J., Walter, F., and Brinks, E. 2005. A Chandra X-ray survey of nearby dwarf starburst galaxies – II. Starburst properties and outflows. MNRAS, 358(Apr.), 1453–1471.Google Scholar
Palma, C., Majewski, S. R., and Johnston, K. V. 2002. On the distribution of orbital poles of Milky Way satellites. ApJ, 564(Jan.), 736–761.Google Scholar
Parriott, J. R. and Bregman, J. N. 2008. Mass loss from evolved stars in elliptical galaxies. ApJ, 681 (July), 1215–1232.Google Scholar
Peñarrubia, J., McConnachie, A. W., and Navarro, J. F. 2008. The cold dark matter halos of Local Group dwarf spheroidals. ApJ, 672(Jan.), 904–913.Google Scholar
Perlmutter, S., and 32 colleagues. 1999. Measurements of Omega and Lambda from 42 high-redshift supernovae. ApJ, 517(June), 565–586.Google Scholar
Pflamm-Altenburg, J. and Hensler, G. 2011. Accretion regulated star formation in late-type galaxies. UP2010: Have Observations Revealed a Variable Upper End of the Initial Mass Function? 440(June), 403.Google Scholar
Pflamm-Altenburg, J. and Kroupa, P. 2009. Recurrent gas accretion by massive star clusters, multiple stellar populations and mass thresholds for spheroidal stellar systems. MNRAS, 397(July), 488–494.Google Scholar
Piontek, F. and Steinmetz, M. 2009. The modeling of feedback processes in cosmological simulations of disk galaxy formation. (Sept.), arXiv:0909.4167.
Pompei, E. and Iovino, A. 2010. Compact groups of galaxies: small, dense, and elusive. Galaxies in Isolation: Exploring Nature Versus Nurture, 421 (Oct.), 279.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical recipes in C. The art of scientific computing. 2nd ed. Cambridge UK: University Press.
Primack, J. R. 2009. Cosmology: small scale issues. American Institute of Physics Conference Series, 1166(Sept.), 3–9.Google Scholar
Recchi, S., Theis, C., Kroupa, P., and Hensler, G. 2007. The early evolution of tidal dwarf galaxies. A&A, 470(July), L5–L8.Google Scholar
Riess, A. G., and 19 colleagues 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant. AJ, 116(Sept.), 1009–1038.Google Scholar
Rubin, V. C. and Ford, W. K. III 1970. Rotation of the Andromeda nebula from a spectroscopic survey of emission regions. ApJ, 159(Feb.), 379.Google Scholar
Sanders, R. H. 2005. A tensor-vector-scalar framework for modiied dynamics and cosmic dark matter. MNRAS, 363(Oct.), 459–468.Google Scholar
Sanders, R. H. 2008a. Forming galaxies with MOND. MNRAS, 386(May), 1588–1596.Google Scholar
Sanders, R. H. 2008b. From dark matter to MOND. (June), arXiv:0806.2585.
Sanders, R. H. and McGaugh, S. S. 2002. Modiied Newtonian dynamics as an alternative to dark matter. ARA&A, 40, 263–317.Google Scholar
Sanders, R. H. and Noordermeer, E. 2007. Confrontation of modiied Newtonian dynamics with the rotation curves of early-type disc galaxies. MNRAS, 379(Aug.), 702–710.Google Scholar
Serra, A. L., Angus, G. W., and Diaferio, A. 2010. Implications for dwarf spheroidal mass content from interloper removal. A&A, 524(Dec.), A16.Google Scholar
Shaya, E., and 20 colleagues 2009. Properties of dark matter revealed by astrometric measurements of the Milky Way and local galaxies. astro2010: The Astronomy and Astrophysics Decadal Survey, 2010, 274.
Silk, J. and Norman, C. 1981. Dissipational galaxy formation – confrontation with observations. ApJ, 247(July), 59–76.Google Scholar
Simon, J. D. and Geha, M. 2007. The kinematics of the ultrafaint Milky Way satellites: solving the missing satellite problem. ApJ, 670(Nov.), 313–331.Google Scholar
Skordis, C. 2009. TOPICAL REVIEW: The tensor-vector-scalar theory and its cosmology. Classical and Quantum Gravity, 26(July), 143001.Google Scholar
Spergel, D. N., and 21 colleagues. 2007. Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology. ApJS, 170(June), 377–408.Google Scholar
Strigari, L. E., Bullock, J. S., Kaplinghat, M., Simon, J. D., Geha, M., Willman, B., and Walker, M. G. 2008. A common mass scale for satellite galaxies of the Milky Way. Nature, 454(Aug.), 1096–1097.Google Scholar
Tegmark, M., and 65 colleagues. 2004. The three-dimensional power spectrum of galaxies from the Sloan Digital Sky Survey. ApJ, 606(May), 702–740.Google Scholar
Tiret, O. and Combes, F. 2007. Evolution of spiral galaxies in modified gravity. A&A, 464(Mar.), 517–528.Google Scholar
Tiret, O. and Combes, F. 2008. Interacting galaxies with modified Newtonian dynamics. Formation and Evolution of Galaxy Disks, 396(Oct.), 259.Google Scholar
Tollerud, E. J., Bullock, J. S., Strigari, L. E., and Willman, B. 2008. Hundreds of Milky Way satellites? Luminosity bias in the satellite luminosity function. ApJ, 688(Nov.), 277–289.Google Scholar
Tully, R. B. and Fisher, J. R. 1977. A new method of determining distances to galaxies. A&A, 54(Feb.), 661–673.Google Scholar
Unruh, W. G. 1976. Notes on black-hole evaporation. Phys. Rev. D, 14(Aug.), 870–892.Google Scholar
van den Bergh, S. 2008. Astrophysics: how do galaxies form?Nature, 455(Oct.), 1049–1051.Google Scholar
van der Marel, R. P., Alves, D. R., Hardy, E., and Suntzeff, N. B. 2002. New understanding of Large Magellanic Cloud Structure, dynamics, and orbit from carbon star kinematics. AJ, 124(Nov.), 2639–2663.Google Scholar
Walsh, S. M., Willman, B., and Jerjen, H. 2009. The invisibles: a detection algorithm to trace the faintest Milky Way satellites. AJ, 137(Jan.), 450–469.Google Scholar
Walsh, S. M., Willman, B., Sand, D., Harris, J., Seth, A., Zaritsky, D., and Jerjen, H. 2008. Bootes II reBooted: An MMT/MegaCam study of an ultrafaint Milky Way satellite. ApJ, 688(Nov.), 245–253.Google Scholar
Watkins, L. L., and 10 colleagues. 2009. Substructure revealed by RRLyraes in SDSS Stripe 82. MNRAS, 398(Oct.), 1757–1770.Google Scholar
Weidner, C., Kroupa, P., and Larsen, S. S. 2004. Implications for the formation of star clusters from extragalactic star formation rates. MNRAS, 350(June), 1503–1510.Google Scholar
Weil, M. L., Eke, V. R., and Efstathiou, G. 1998. The formation of disc galaxies. MNRAS, 300(Nov.), 773–789.Google Scholar
Wetzstein, M., Naab, T., and Burkert, A. 2007. Do dwarf galaxies form in tidal tails?MNRAS, 375(Mar.), 805–820.Google Scholar
Wolf, J., Martinez, G. D., Bullock, J. S., Kaplinghat, M., Geha, M., Muñoz, R. R., Simon, J. D., and Avedo, F. F. 2010. Accurate masses for dispersion-supported galaxies. MNRAS, 406(Aug.), 1220–1237.Google Scholar
Zhao, H. 1996. A steady-state dynamical model for the COBE-detected Galactic bar. MNRAS, 283(Nov.), 149–166.Google Scholar
Zhao, H. S. 2008. An ecological approach to problems of dark energy, dark matter, MOND and neutrinos. Journal of Physics Conference Series, 140(Nov.), 012002.Google Scholar
Zlosnik, T. G., Ferreira, P. G., and Starkman, G. D. 2007. Modifying gravity with the aether: an alternative to dark matter. Phys. Rev. D, 75(Feb.), 044017.Google Scholar
Zwicky, F. 1933. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6, 110–127.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×