Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T03:57:31.881Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 November 2014

N. O. Weiss
Affiliation:
University of Cambridge
M. R. E. Proctor
Affiliation:
University of Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Magnetoconvection , pp. 370 - 394
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbett, W. P. 2007. The magnetic connection between the convection zone and corona in the quiet Sun. Astrophys. J. 665, 1469–1488.Google Scholar
Acheson, D. J. 1979. Instability by magnetic buoyancy. Sol. Phys. 62, 23–50.Google Scholar
Acheson, D. J. 1990. Elementary Fluid Dynamics (Oxford: Clarendon Press).
Alfvén, H. 1942a. Existence of electromagnetic-hydrodynamic waves. Nature 150, 405–406.Google Scholar
Alfvén, H. 1942b. On the existence of electromagnetic-hydromagnetic waves. Ark. Mat. Astr. Fys. 29B, No. 2, 1–7.Google Scholar
Alfvén, H. 1950. Cosmical Electrodynamics (Oxford: Clarendon Press).
Andronov, A. A. 1929. Application of Poincaré's theorem on bifurcation points and change in stability to simple auto-oscillatory systems. C. R. Acad. Sci. 189(15), 559–561.Google Scholar
Andronov, A. A., Vitt, A. A. and Chaikin, S. E. 1966. Theory of Oscillators (trans. Immirzi; Oxford: Pergamon).
Antia, H. M. and Chitre, S. M. 1979. Waves in the sunspot umbra. Sol. Phys. 63, 67–78.Google Scholar
Antia, H. M., Chitre, S. M. and Kale, D. M. 1978. Overstabilization of acoustic modes in a polytropic atmosphere. Sol. Phys. 56, 275–292.Google Scholar
Arnéodo, A., Coullet, P. H. and Spiegel, E. A. 1985a. The dynamics of triple convection. Geophys. Astrophys. Fluid Dyn. 31, 1–48.Google Scholar
Arnéodo, A., Coullet, P. H., Spiegel, E. A. and Tresser, C. 1985b. Asymptotic chaos. Physica D 14, 327–347.Google Scholar
Arnéodo, A., Coullet, P. H. and Tresser, C. 1982. Oscillators with chaotic behavior: an illustration of a theorem by Shil'nikov. J. Stat. Phys. 27, 171–182.Google Scholar
Arnéodo, A. and Thual, O. 1985. Direct numerical simulations of a triple convection problem versus normal form predictions. Phys. Lett. A 109, 367–373.Google Scholar
Arnold, V. I. 1972. Lectures on bifurcations and versal systems. Russ. Math. Surveys 27, 54–123.Google Scholar
Arnold, V. I. 1977. Loss of stability of self oscillations close to resonances and versal deformations of equivariant vector fields. Funct. Anal. Appl. 11(2), 1–10.Google Scholar
Arnold, V. I. 1983. Geometrical Methods in the Theory of Ordinary Differential Equations (New York: Springer).
Arter, W. 1983a. Nonlinear convection in an imposed horizontal magnetic field. Geophys. Astrophys. Fluid Dyn. 25, 259–292.Google Scholar
Arter, W. 1983b. Magnetic-flux transport by a convecting layer – topological geometrical and compressible phenomena. J. Fluid Mech. 132, 25–48.Google Scholar
Arter, W. 1985. Magnetic-flux transport by a convecting layer including dynamical effects. Geophys. Astrophys. Fluid Dyn. 31, 311–344.Google Scholar
Arter, W., Proctor, M. R. E. and Galloway, D. J. 1982. New results on the mechanism of magnetic flux pumping by three-dimensional convection. Mon. Not. Roy. Astron. Soc. 201, 57P–61P.Google Scholar
Bajer, K., Bassom, A. P. and Gilbert, A. D. 2001. Accelerated diffusion in the centre of a vortex. J. Fluid Mech. 437, 395–411.Google Scholar
Balbus, S. A., Bonart, J., Latter, H. and Weiss, N. O. 2009. On differential rotation and convection in the Sun. Mon. Not. Roy. Astron. Soc. 400, 176–182.Google Scholar
Barker, A. J., Silvers, L. J., Proctor, M. R. E. and Weiss, N. O. 2012. Magnetic buoyancy instabilities in the presence of magnetic flux pumping at the base of the solar convection zone. Mon. Not. Roy. Astron. Soc. 424, 115–127.Google Scholar
Bassom, A. P. and Zhang, K. 1994. Strongly nonlinear convection cells in a rapidly rotating fluid layer. Geophys. Astrophys. Fluid Dyn. 76, 223–238.Google Scholar
Batchelor, G. K. 1953. The condition for dynamical similarity of a frictionless perfect gas atmosphere. Q. J. Roy. Met. Soc. 79, 224–235.Google Scholar
Batchelor, G. K. 1956. A proposal concerning laminar wakes behind bluff bodies at large Reynolds number. J. Fluid Mech. 1, 388–398.Google Scholar
Batiste, O., Knobloch, E., Alonso, A. and Mercader, E. 2006. Spatially localized binary-fluid convection. J. Fluid Mech. 560, 149–158.Google Scholar
Beaume, C., Bergeon, A. and Knobloch, E. 2011. Homoclinic snaking of localized states in doubly diffusive convection. Phys. Fluids 23, 094102.Google Scholar
Beer, J., Tobias, S. M. and Weiss, N. O. 1998. An active Sun throughout the Maunder Minimum. Sol. Phys. 181, 237–249.Google Scholar
Bekki, N. and Karakisawa, T. 1995. Bifurcations from periodic solution in a simplified model of two-dimensional magnetoconvection. Phys. Plasmas 2, 2945–2962.Google Scholar
Bekki, N. and Moriguchi, H. 2007. Temporal chaos in Boussinesq magnetoconvection. Phys. Plasmas 14, 012306.Google Scholar
Bénard, H. 1901. Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Ann. Chim. Phys. 23, 62–144.Google Scholar
Bercik, D. J., Fisher, G. H., Johns-Krull, C. M. and Abbett, W. P. 2005. Convective dynamos and the minimum X-ray flux in main-sequence stars. Astrophys. J. 631, 529–539.Google Scholar
Berdyugina, S. V. 2005. Starspots: a key to the stellar dynamo. Living Revs. Solar Phys. 2, 6 (livingreviews.org/lrsp-2005–6).Google Scholar
Berger, T. E., Rouppe van der Voort, L. and Löfdahl, M. G. 2007. Contrast analysis of solar faculae and magnetic bright points. Astrophys. J. 661, 1272–1288.Google Scholar
Berhanu, M., Verhille, G., Boisson, J., et al. 2010. Dynamo regimes and transitions in the VKS experiment. Eur. Phys. J. B 77, 459–468.Google Scholar
Bernoff, A. J. 1986. Transitions from Order in Convection (Ph.D. dissertation: University of Cambridge).
Bharti, L., Jain, R. and Jaaffrey, S. N. A. 2007. Evidence for magnetoconvection in sunspot umbral dots. Astrophys. J. 665, L79–L82.Google Scholar
Biermann, L. 1941. Der gegenwärtige Stand der Theorie konvectiver Sonnenmodelle. Vierteljahresschr. Astron. Ges. 76, 194–200.Google Scholar
Blanchflower, S. M. 1999a. Modelling Photospheric Magnetoconvection (Ph.D. dissertation: University of Cambridge).
Blanchflower, S. M. 1999b. Magnetohydrodynamic convectons. Phys. Lett. A 261, 74–81.Google Scholar
Blanchflower, S. and Weiss, N.O. 2002. Three-dimensional magnetohydrodynamic convectons. Phys. Lett. A 294, 297–303.Google Scholar
Blanchflower, S. M., Rucklidge, A. M. and Weiss, N. O. 1998. Modelling photospheric magnetoconvection. Mon. Not. Roy. Astron. Soc. 301, 593–608.Google Scholar
Bogdanov, R. I. 1975. Versal deformations of a singular point on the plane in the case of zero eigenvalues. Sel. Math. Sov. 1(4), 389–421.Google Scholar
Boldyrev, S. and Cattaneo, F. 2004. Magnetic-field generation in Kolmogorov turbulence. Phys. Rev. Lett. 92, 144501.Google Scholar
Borrero, J. M. and Ichimoto, K. 2011. Magnetic structure of sunspots. Living Revs. Solar Phys. 8, 4 (livingreviews.org/lrsp-2011–4).Google Scholar
Botha, G. J. J., Rucklidge, A. M. and Hurlburt, N. E. 2007. Nonaxisymmetric instabilities of convection around magnetic flux tubes. Astrophys. J. 662, L27–L30.Google Scholar
Botha, G. J. J., Rucklidge, A. M. and Hurlburt, N. E. 2012. Formation of magnetic flux tubes in cylindrical wedge geometry. Geophys. Astrophys. Fluid Dyn. 106, 701–709.Google Scholar
Boussinesq, J. 1903. Théorie Analytique de la Chaleur, vol. 2, 254–257. (Paris: Gauthier-Villars).
Braginsky, S. I. and Roberts, P. H. 1995. Equations governing convection in Earth's core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 1–97.Google Scholar
Brandenburg, A. 2011. Nonlinear small-scale dynamos at low magnetic Prandtl numbers. Astrophys. J. 741, 92.Google Scholar
Brandenburg, A. and Subramanian, K. 2005. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209.Google Scholar
Bretherton, C. S. and Spiegel, E. A. 1983. Intermittency through modulational instability. Phys. Lett. A 96, 152–156.Google Scholar
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S. and Toomre, J. 2010. Persistent magnetic wreaths in a rapidly rotating sun. Astrophys. J. 711, 424–438.Google Scholar
Brown, B. P., Miesch, M. S., Browning, M. K., Brun, A. S. and Toomre, J. 2011. Magnetic cycles in a convective dynamo simulation of a young solar-type star. Astrophys. J. 731, 69.Google Scholar
Browning, M. K. 2008. Simulations of dynamo action in fully convective stars. Astrophys. J. 676, 1262–1280.Google Scholar
Brownjohn, D. P., Hurlburt, N. E., Proctor, M. R. E. and Weiss, N. O. 1995. Nonlinear compressible magnetoconvection. Part 3. Travelling waves in a horizontal field. J. Fluid Mech. 300, 287–309.Google Scholar
Brummell, N. H., Tobias, S. M. and Cattaneo, F. 2010. Dynamo efficiency in compressible convective dynamos with and without penetration. Geophys. Astrophys. Fluid Dyn. 104, 565–576.Google Scholar
Brummell, N. H., Tobias, S. M., Thomas, J. H. and Weiss, N. O. 2008. Flux pumping and magnetic fields in the outer penumbra of a sunspot. Astrophys. J., 686, 1454–1465.Google Scholar
Bullard, E. C. 1949. Electromagnetic induction in a rotating sphere. Proc. Roy. Soc. Lond. A 199, 413–443.Google Scholar
Burke, J. and Knobloch, E. 2007a. Snakes and ladders: localized states in the Swift Hohenberg equation. Phys. Lett. A 360, 681–688.Google Scholar
Burke, J. and Knobloch, E. 2007b. Homoclinic snaking: structure and stability. Chaos 17, 037102.Google Scholar
Bushby, P. J. 2003. Modelling dynamos in rapidly rotating late-type stars. Mon. Not. Roy. Astron. Soc. 338, 655–664.Google Scholar
Bushby, P. J. 2006. Zonal flows and grand minima in a solar dynamo model. Mon. Not. Roy. Astron. Soc. 371, 772–780.Google Scholar
Bushby, P. J. and Houghton, S. M. 2005. Spatially intermittent fields in photo-spheric magnetoconvection. Mon. Not. Roy. Astron. Soc. 362, 313–320.Google Scholar
Bushby, P. J., Favier, B., Proctor, M. R. E. and Weiss, N. O. 2012. Convectively driven dynamo action in the quiet Sun. Geophys. Astrophys. Fluid Dyn. 106, 508–523.Google Scholar
Bushby, P. J., Houghton, S. M., Proctor, M. R. E. and Weiss, N. O. 2008. Convective intensification of magnetic fields in the quiet Sun. Mon. Not. Roy. Astron. Soc. 387, 698–706.Google Scholar
Bushby, P. J., Proctor, M. R. E. and Weiss, N. O. 2010. Small-scale dynamo action in compressible convection. In Numerical Modeling of Space Plasma Flows, eds. N. V. Pogorelov, E. Audit and G. P., Zauk (San Francisco: Astron. Soc. Pac. Conf. Ser. 429), 181–185.
Bushby, P. J., Proctor, M. R. E. and Weiss, N. O. 2011. The influence of stratification upon small-scale convectively-driven dynamos. In IAU Symp. 271, Astrophysical Dynamics: From Stars to Galaiies, eds. N.H. Brummell, A. S.Brun, M. S. Miesch and Y., Ponty (Cambridge: Cambridge University Press), 197–204.
Busse, F. H. 1970. Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441–460.Google Scholar
Busse, F. H. 1975a. Non-linear interaction of magnetic field and convection. J. Fluid Mech. 71, 193–206.Google Scholar
Busse, F. H. 1975b. A model of the geodynamo. Geophys. J. Roy. Astron. Soc. 42, 437–450.Google Scholar
Busse, F. H. 1978. Non-linear properties of thermal convection. Rep. Prog. Phys. 41, 1929–1967.Google Scholar
Busse, F. H. 1987. A new mechanism for the Evershed effect. In The Role of Fine-Scale Magnetic Fields on the Structure of the Solar Atmosphere, eds. E. H. Schröter, M. Vázquez and A. A., Wyller (Cambridge: Cambridge University Press), 187–195.
Busse, F. H. and Clever, R. M. 1982. Stability of convection rolls in the presence of a vertical magnetic field. Phys. Fluids 25, 931–935.Google Scholar
Busse, F. H. and Clever, R. M. 1983. Stability of convection rolls in the presence of a horizontal magnetic field. J. Mec. Theor. Appl. 2, 495–502.Google Scholar
Busse, F. H. and Frick, H. 1985. Square-pattern convection in fluids with strongly temperature-dependent viscosity. J. Fluid Mech. 150, 451–465.Google Scholar
Busse, F. H. and Heikes, K. E. 1980. Convection in a rotating layer: a simple case of turbulence. Science 208, 173–175.Google Scholar
Busse, F. H. and Simitev, R. 2005. Dynamos driven by convection in rotating spherical shells. Astron. Nachr. 326, 231–240.Google Scholar
Busse, F. H. and Simitev, R. 2007. Convection in rotating spherical fluid shells. In Mathematical Aspects of Natural Dynamos, eds. E., Dormy and A.M., Soward (Boca Raton, FL: Grenoble Sciences/CRC Press), 168–198.
Busse, F. H., Müller, U., Stieglitz, R. and Tilgner, A. 1996. A two-scale homogeneous dynamo: an extended analytical model and an experimental demonstration under development. Magnetohydrodynamics 32, 235–248.Google Scholar
Cameron, R. and Galloway, D. 2005. The structure of small-scale magnetic flux tubes. Mon. Not. Roy. Astron. Soc. 358, 1025–1035.Google Scholar
Cameron, R., Schüssler, M., Vöglar, A. and Zakharov, V. 2007. Radiative magnetohydrodynamic simulations of solar pores. Astron. Astrophys. 474, 261–272.Google Scholar
Cardin, P. and Brito, D. 2007. Survey of experimental results. In Mathematical Aspects of Natural Dynamos, eds. E., Dormy and A. M., Soward (Boca Raton, FL: Grenoble Sciences/CRC Press), 361–407.
Carlsson, M., Stein, R. F., Nordlund, Å and Scharmer, G. B. 2004. Observational manifestations of solar magneto convection: center-to-limb variation. Astrophys. J. 610(2), L137–L140.Google Scholar
Cattaneo, F. 1984a. Compressible Magnetoconvection (Ph.D. dissertation: University of Cambridge).
Cattaneo, F. 1984b. Oscillatory convection in sunspots. In The Hydromagnetics of the Sun, eds. T. D., Guyenne and J. J., Hunt (Paris: ESA SP-220), 47–50.
Cattaneo, F. 1999. On the origin of magnetic fields in the quiet photosphere. Astrophys. J. 515, L39–L42.Google Scholar
Cattaneo, F. and Hughes, D. W. 2006. Dynamo action in a rotating convective layer. J. Fluid Mech. 553, 401–418.Google Scholar
Cattaneo, F., Brummell, N. H., Toomre, J., Malagoli, A. and Hurlburt, N. E. 1991. Turbulent compressible convection. Astrophys. J. 370, 282–294.Google Scholar
Cattaneo, F., Emonet, T. and Weiss, N. O. 2003. On the interaction between convection and magnetic fields. Astrophys. J. 588, 1183–1198.Google Scholar
Cattaneo, F., Lenz, D. and Weiss, N. O. 2001. On the origin of the solar mesogranulation. Astrophys. J. 563, L91–L94.Google Scholar
Champneys, A. R. and Kuznetsov, Y. A. 1994. Numerical detection and continuation of codimension-two homoclinic bifurcations. Int. J. Bif. Chaos 4, 785–822.Google Scholar
Chan, S. K. 1974. Investigation of turbulent convection under a rotational constraint. J. Fluid Mech. 64, 477–506.Google Scholar
Chandrasekhar, S. 1952. On the inhibition of convection by a magnetic field. Phil. Mag. (7th Ser.) 43, 501–532.Google Scholar
Chandrasekhar, S. 1961. Hydrodynamic and Hydromagnetic Stability (Oxford: Clarendon Press). (Dover Edition, 1981.)
Charbonneau, P. 2010. Dynamo models of the solar cycle. Living Revs. Solar Phys. 2, 2 (livingreviews.org/lrsp-2005–2).Google Scholar
Cheung, M. C. M., Rempel, M., Title, A. M. and Schüssler, M. 2010. Simulation of the formation of a solar active region. Astrophys. J. 730, 233–244.Google Scholar
Childress, S. and Gilbert, A. D. 1995. Stretch, Twist, Fold: the Fast Dynamo (Berlin: Springer).
Childress, S. and Soward, A. M. 1972. Convection driven hydromagnetic dynamo. Phys. Rev. Lett. 29, 837–839.Google Scholar
Choudhuri, A. R. 1998. The Physics of Fluids and Plasmas (Cambridge: Cambridge University Press).
Choudhuri, A. R. 2010. Astrophysics for Physicists (Cambridge: Cambridge University Press).
Choudhuri, A. R., Schiissler, M. and Dikpati, M. 1995. The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29–L32.Google Scholar
Christensen, U. R. 2010. Dynamo scaling laws and applications to the planets. Space Sci. Rev. 152, 565–590.Google Scholar
Christensen, U. R. and Aubert, J. 2006. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166, 97–114.Google Scholar
Christensen, U. R., Holzwarth, V. and Reiners, A. 2009. Energy flux determines magnetic field strength of planets and stars. Nature 457, 167–169.Google Scholar
Christensen-Dalsgaard, J. and Thompson, M. J. 2007. Observational results and issues concerning the tachocline. In The Solar Tachocline, eds. D., HughesR., Rosner and N., Weiss (Cambridge: Cambridge University Press), 53–85.
Christopherson, D. G. 1940. Note on the vibration of membranes. Quart. J. Math. 11, 63–65.Google Scholar
Clark, Jr., A. 1964. Production and dissipation of magnetic energy by differential fluid motions. Phys. Fluids 7, 1299–1305.Google Scholar
Clark, Jr., A. 1965. Some exact solutions in magnetohydrodynamics with astro-physical applications. Phys. Fluids 8, 644–649.Google Scholar
Clark, Jr., A. 1966. Some kinematical models for small-scale solar magnetic fields. Phys. Fluids 9, 485–492.Google Scholar
Clark, Jr., A. and Johnson, H. K. 1967. Magnetic-field accumulation in supergranules. Sol. Phys. 2, 433–440.Google Scholar
Clever, R. M. and Busse, F. H. 1989. Nonlinear oscillatory convection in the presence of a vertical magnetic field. J. Fluid Mech. 201, 507–523.Google Scholar
Clune, T. L. and Knobloch, E. 1994. Pattern selection in three-dimensional magnetoconvection. Physica D 74, 151–176.Google Scholar
Corfield, C. N. 1984. The magneto-Boussinesq approximation by scale analysis. Geophys. Astrophys. Fluid Dyn. 29, 19–28.Google Scholar
Coullet, P. H. and Iooss, G. 1990. Instabilities of one-dimensional cellular patterns. Phys. Rev. Lett. 64, 866–869.Google Scholar
Coullet, P. H. and Spiegel, E. A. 1983. Amplitude equations for systems with competing instabilities. SIAM J. Appl. Math. 43, 776–821.Google Scholar
Courvoisier, A., Hughes, D. W. and Proctor, M. R. E. 2010. A self-consistent treatment of the electromotive force in magnetohydrodynamics for large diffusivities. Astron. Nachr. 331, 667–670.Google Scholar
Cowling, T. G. 1953. Solar electrodynamics. In The Sun, ed. G. P., Kuiper (Chicago: University of Chicago Press), 532–591.
Cowling, T. G. 1957. Magnetohydrodynamics (New York: Interscience).
Cowling, T. G. 1976a. Magnetohydrodynamics, 2nd edition (Bristol: Adam Hilger).
Cowling, T. G. 1976b. On the thermal structure of sunspots. Mon. Not. Roy. Astron. Soc. 177, 409–414.Google Scholar
Cowling, T. G. 1985. Astronomer by accident. Ann. Rev. Astron. Astrophys. 23, 1–18.Google Scholar
Cox, S. M. and Matthews, P. C. 2000. Instability of rotating convection. J. Fluid Mech. 403, 153–172.Google Scholar
Cox, S. M. and Matthews, P. C. 2001. New instabilities in two-dimensional rotating convection and magnetoconvection. Physica D 149, 210–229.Google Scholar
Cox, S. M., Matthews, P. C. and Pollicott, S. L. 2004. Swift-Hohenberg model for magnetoconvection. Phys. Rev. E 69, 066314.Google Scholar
Crawford, J. D. and Knobloch, E. 1991. Symmetry and symmetry-breaking bifurcations in fluid dynamics. Ann. Rev. Fluid Mech. 23, 341–387.Google Scholar
Curry, J. H. 1978. A generalized Lorenz system. Commun. Math. Phys. 60, 193–204.Google Scholar
Da Costa, L. N., Knobloch, E. and Weiss, N. O. 1981. Oscillations in double-diffusive convection. J. Fluid Mech. 109, 25–43.Google Scholar
Dangelmayr, G. 1996. Ginzburg-Landau description of waves in extended systems. In Pitman Res. Notes in Math. Ser. 352, Dynamics of Nonlinear Waves in Dissipative Systems: Reduction, Bifurcation and Stability, eds. G., Dangelmayr, B., Fiedler, K., Kirchgiässner and A., Mielker (Harlow: Longmans), 5–78.
Dangelmayr, G. and Knobloch, E. 1986. Interaction between standing and travelling waves and steady states in magnetoconvection. Phys. Lett. A 117, 394–398.Google Scholar
Dangelmayr, G. and Knobloch, E. 1987. The Takens-Bogdanov bifurcation with O(>2) symmetry. Phil. Trans. R. Soc. A 322, 243–279.Google Scholar
Danielson, R. E. 1961. The structure of sunspot penumbras. II. Theoretical. Astrophys. J. 134, 289–311.Google Scholar
Danielson, R. E. 1965. Sunspots: theory. In IAU Symp. 29Stellar and Solar Magnetic Fields, ed. R., Lüst (Amsterdam: North-Holland), 314–329.
Dawes, J. H. P. 2007. Localized convection cells in the presence of a vertical magnetic field. J. Fluid Mech. 570, 385–406.Google Scholar
Dawes, J. H. P. 2008. Localized pattern formation with a large-scale mode. SIAM J. Appl. Dyn. Syst. 7, 186–206.Google Scholar
Dawes, J. H. P. 2010. The emergence of a coherent structure for coherent structures: localized states in nonlinear systems. Phil. Trans. Roy. Soc. Lond. A 368, 3519–3534.Google Scholar
Deane, A. E., Toomre, J. and Knobloch, E. 1987. Traveling waves and chaos in thermosolutal convection. Phys. Rev. A 36, 2862–2869.Google Scholar
Dikpati, M. and Gilman, P. A. 2009. Flux-transport solar dynamos. Space Sci. Rev. 144, 67–75.Google Scholar
Doedel, E. and Kernévez, J. 1986. AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations (Pasadena, CA: CalTech Press).
Donati, J.-F. 2011. Large -scale magnetic fields of low-mass dwarfs: the many faces of dynamo. In IAU Symp. 271Astrophysical Dynamics: from Stars to Galaxies, eds. N. H., Brummell, A. S., Brun, M. S., Miesch and Y., Ponty (Cambridge: Cambridge University Press), 23–31.
Dorch, S. B. F. and Nordlund, A. 2001. On the transport of magnetic fields by solar-like stratified convection. Astron. Astrophys. 365, 562–570.Google Scholar
Dormy, E. and Soward, A. M. (eds.) 2007. Mathematical Aspects of Natural Dynamos (Boca Raton, FL: Grenoble Sciences, CRC Press).
Dormy, E., Soward, A. M., Jones, C. A., Jault, D. and Cardin, P. 2004. The onset of thermal convection in rotating spherical shells. J. Fluid Mech. 501, 43–70.
Drazin, P. G. 1992. Nonlinear Systems (Cambridge: Cambridge University Press).
Drobyshevski, E. M. and Yuferev, V. S. 1974. Topological pumping of magnetic flux by three-dimensional convection. J. Fluid Mech. 65, 33.Google Scholar
Dudley, M. L. and James, R. W. 1989. Time-dependent kinematic dynamos with stationary flows. Proc. Roy. Soc. Lond. A 425, 407–429.Google Scholar
Eddington, A. S. 1926. The Internal Constitution of the Stars (Cambridge: Cambridge University Press).
Elgin, J. N. and Molina Garza, J. B. 1989. On the travelling wave solutions of the Maxwell-Bloch equations. In Structure, Coherence and Chaos in Dynamical Systems, eds. P. L., Christiansen and R. D., Parmentier (Manchester: Manchester University Press), 553–561.
Eltayeb, I. A. 1972. Hydromagnetic convection in a rapidly rotating fluid layer. Proc. Roy. Soc. Lond. A 326, 229–254.Google Scholar
Eltayeb, I. A. 1975. Overstable hydromagnetic convection in a rotating fluid layer. J. Fluid Mech. 71, 161–179.Google Scholar
Fan, Y. 2001. Nonlinear growth of the three-dimensional undular instability of a horizontal magnetic layer and the formation of arching flux tubes. Astrophys. J. 546, 509–527.Google Scholar
Fan, Y. 2009. Magnetic fields in the solar convection zone. Living Revs. Solar Phys. 6, 4 (livingreviews.org/lrsp-2009–4).Google Scholar
Fautrelle, Y. and Childress, S. 1982. Convective dynamos with intermediate and strong fields. Geophys. Astrophys. Fluid Dyn. 22, 235–279.Google Scholar
Favier, B. and Bushby, P. J. 2012. Small-scale dynamo action in rotating compressible convection. J. Fluid Mech. 690, 262–287.Google Scholar
Favier, B. and Proctor, M. R. E. 2013. Kinematic dynamo action in square and hexagonal patterns. Phys. Rev. E 88(5).Google Scholar
Favier, B. F. N., Jouve, L., Edmunds, W., Silvers, L. J. and Proctor, M. R. E. 2012. How can twisted magnetic structures naturally emerge from buoyancy instabilities?Mon. Not. Roy. Astron. Soc. 426, 3349–3359.Google Scholar
Fearn, D. R. 1979. Thermal and magnetic instabilities in a rapidly rotating fluid sphere. Geophys. Astrophys. Fluid Dyn. 14, 103–126.Google Scholar
Fearn, D. R. and Ogden, R. R. 2000. Magnetostrophic magnetoconvection. Phys. Earth Planet. Inter. 117, 273–294.Google Scholar
Ferraro, V. C. A. 1937. The non-uniform rotation of the Sun and its magnetic field. Mon. Not. Roy. Astron. Soc. 97, 458–472.Google Scholar
Ferraro, V. C. A. and Plumpton, C. 1961. Magneto-fluid Mechanics (Oxford: Clarendon Press).
Forest, C. B., O'Connell, R., Kendrick, R., Spence, E. and Nornberg, M. D. 2002. Hydrodynamic and numerical modeling of a spherical homogeneous dynamo experiment. Magnetohydrodynamics 38, 107–120.Google Scholar
Foukal, P. V. 2004. Solar Astrophysics, 2nd edition (Weinheim: Wiley-VCH).
Foukal, P. V. and Jokipii, J. R. 1975. On the rotation of gas and magnetic fields at the solar photosphere. Astrophys. J. 199, L71–L73.Google Scholar
Gailitis, A., Lielausis, S., Dementev, S., et al. 2000. Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Phys. Rev. Lett. 84, 4265–4368.Google Scholar
Gailitis, A., Lielausis, S., Dementev, S., et al. 2001. Magnetic field saturation in the Riga dynamo experiment. Phys. Rev. Lett. 86, 3024–3027.Google Scholar
Galloway, D. J. 1975. Fine structure and Evershed motions in the sunspot penumbra. Sol. Phys. 44, 409–415.Google Scholar
Galloway, D. J. and Moore, D. R. 1979. Axisymmetric convection in the presence of a magnetic field. Geophys. Astrophys. Fluid Dyn. 12, 73–105.Google Scholar
Galloway, D. J. and Proctor, M. R. E. 1983. The kinematics of hexagonal magnetoconvection. Geophys. Astrophys. Fluid Dyn. 24, 109–136.Google Scholar
Galloway, D. J. and Proctor, M. R. E. 1992. Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion. Nature 356, 691–693.Google Scholar
Galloway, D. J. and Weiss, N. O. 1981. Convection and magnetic fields in stars. Astrophys. J. 243, 945–953.Google Scholar
Galloway, D. J., Proctor, M. R. E. and Weiss, N. O. 1978. Magnetic flux ropes and convection. J. Fluid Mech. 87, 243–261.Google Scholar
Gaspard, P., Kapral, R. and Nicolis, G. 1984. Bifurcation phenomena near homoclinic systems: a two parameter analysis. J. Stat. Phys. 35, 697–727.Google Scholar
Ghizaru, M., Charbonneau, P. and Smolarkiewicz, P. K. 2010. Magnetic cycles in global large-eddy simulations of solar convection. Astrophys. J. 715, L133–L137.Google Scholar
Gibson, R. D. 1966. Overstability in the magnetohydrodynamic Bénard problem at large Hartmann numbers. Proc. Camb. Phil. Soc. 62, 287–299.Google Scholar
Gilman, P. A. 1983. Dynamically consistent nonlinear dynamos driven by convection in a rotating shell. II. Dynamos with cycles and strong feedbacks. Astrophys. J. Suppl. 53, 243–268.Google Scholar
Gilman, P. A. and Glatzmaier, G. A. 1981. Compressible convection in a rotating spherical shell. I – Anelastic equations. Astrophys. J. Suppl. 45, 335–349.Google Scholar
Gizon, L. and Birch, A. C. 2005. Local helioseismology. Living Revs. Solar Phys. 2, 6 (livingreviews.org/lrsp-2005–6).Google Scholar
Glatzmaier, G. A. 1984. Numerical simulations of stellar convective dynamos. I – The model and method. J. Comp. Phys. 55, 461–484.Google Scholar
Glatzmaier, G. A. 2013. Introduction to Modeling Convection in Planets and Stars (Princeton: Princeton University Press).
Glatzmaier, G. A. and Roberts, P. H. 1995. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209.Google Scholar
Glatzmaier, G. A. and Roberts, P. H. 1996. Rotation and magnetism of the Earth's inner core. Science 274, 1887–1891.Google Scholar
Glendinning, P. 1994. Stability, Instability and Chaos (Cambridge: Cambridge University Press).
Glendinning, P. and Sparrow, C. 1984. Local and global behavior near homoclinic orbits. J. Stat. Phys. 35, 645–696.Google Scholar
Goldhirsch, I., Pelz, R. B. and Orszag, S. A. 1989. Numerical simulation of thermal convection in a two-dimensional finite box. J. Fluid Mech. 199, 1–28.Google Scholar
Golubitsky, M. and Stewart, I. N. 1985. Hopf bifurcation in the presence of symmetry. Arch. Rat. Mech. Anal. 87, 107–165.Google Scholar
Golubitsky, M., Stewart, I. and Schaeffer, D. G. 1998. Singularities and Groups in Bifurcation Theory, Volume II (New York: Springer).
Gorkov, L. P. 1958. Stationary convection in a plane liquid layer near the critical heat transfer point. JETP 6, 311.Google Scholar
Gough, D. O. 1969. The anelastic approximation for thermal convection. J. Atmos. Sci. 26, 448–456.Google Scholar
Gough, D. O. and Tayler, R. J. 1966. The influence of a magnetic field on Schwarzschild's criterion for convective instability in an ideally conducting fluid. Mon. Not. Roy. Astron. Soc. 133, 85–98.Google Scholar
Gough, D. O., Moore, D. R., Spiegel, E. A. and Weiss, N. O. 1976. Convective instability in a compressible atmosphere. II. Astrophys. J. 206, 536–542.Google Scholar
Grad, H. and Rubin, H. 1958. Hydrodynamic equilibria and force-free fields. In Proc. 2nd U.N. Conf. on Peaceful Uses of Atomic Energy, vol. 31 (Geneva: United Nations), 190–197.
Graham, E. 1975. Numerical simulation of two-dimensional compressible convection. J. Fluid Mech. 70, 689–703.Google Scholar
Graham, E. 1977. Compressible convection. In Problems of Stellar Convection, eds. E. A., Spiegel and J. P., Zahn (Berlin: Springer), 151–155.
Graham, E. and Moore, D. R. 1978. The onset of compressible convection. Mon. Not. Roy. Astron. Soc. 183, 617–632.Google Scholar
Guckenheimer, J. 1984. Multiple bifurcation problems of codimension two. SIAM J. Math. Anal. 15, 1–49.Google Scholar
Guckenheimer, J. and Holmes, P. 1986. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, 2nd Printing (New York: Springer).
Guckenheimer, J. and Knobloch, E. 1983. Nonlinear convection in a rotating layer – amplitude expansions and normal forms. Geophys. Astrophys. Fluid Dyn. 23, 247–272.Google Scholar
Hagenaar, H. J., Schrijver, C. J. and Title, A. M. 2003. The properties of small magnetic regions on the solar surface and the implications for the solar dynamo(s). Astrophys. J. 584, 1107–1119.Google Scholar
Haken, H. 1975. Analogy between higher instabilities in fluids and lasers. Phys. Lett. A 53(1), 77–78.Google Scholar
Hale, G. E. 1908. On the probable existence of a magnetic field in sun-spots. Astrophys. J. 28, 315–343.Google Scholar
Halford, A. R. and Proctor, M. R. E. 2002. An oscillatory secondary bifurcation for magnetoconvection and rotating convection at small aspect ratio. J. Fluid Mech. 467, 241–257.Google Scholar
von Hardenberg, J., Parodi, A., Passoni, G., Provenzale, A. and Spiegel, E. A. 2008. Large-scale patterns in Rayleigh-Bénard convection. Phys. Lett. A 372, 2223–2229.Google Scholar
Hart, A. B. 1954. Motions in the Sun at the photospheric level. IV. The equatorial rotation and possible velocity fields in the photosphere. Mon. Not. Roy. Astron. Soc. 114, 19–38.Google Scholar
Hart, A. B. 1956. Motions in the Sun at the photospheric level. VI. Large-scale motions in the equatorial region. Mon. Not. Roy. Astron. Soc. 116, 38–55.Google Scholar
Harvey-Angle, K. L. 1993. Magnetic Bipoles on the Sun (Ph.D. dissertation: University of Utrecht).
Hasan, S. S. 1983. Time-dependent convective collapse of flux tubes. In IAU Symp. 102, Solar and Stellar Magnetic Fields: Origins and Coronal Effects, ed. J. O., Stenflo (Dordrecht: Reidel), 73–77.
Hasan, S. S. 1985. Convective instability in a solar flux tube. II. Nonlinear calculations with horizontal radiative heat transport and finite viscosity. Astrophys. J. 143, 39–45.Google Scholar
Hasan, S. S. 1986. Oscillatory motions in intense flux tubes. Mon. Not. Roy. Astron. Soc. 219, 357–372.Google Scholar
Hathaway, D. H. 1982. Nonlinear simulations of solar rotation effects in supergran ules. Solar Phys. 77, 341–356.Google Scholar
Hathaway, D. H. 2012a. Supergranules as probes of solar convection zone dynamics. Astrophys. J. 749, L13.Google Scholar
Hathaway, D. H. 2012b. Supergranules as probes of the Sun's meridional circulation. Astrophys. J. 760, 84.Google Scholar
Heinemann, T., Nordlund, å., Scharmer, G. B. and Spruit, H. C. 2007. MHD simulations of penumbra fine structure. Astrophys. J. 669, 1390–1394.Google Scholar
Hollerbach, R. and Jones, C. A. 1995. On the magnetically stabilizing role of the Earth's inner core. Phys. Earth. Planet. Inter. 87, 171–181.Google Scholar
Hood, A. W., Archontis, V., Galsgaard, K. and Moreno-Insertis, F. 2009. The emergence of toroidal flux tubes from beneath the solar photosphere. Astron. Astrophys. 503, 999–1011.Google Scholar
Hood, A. W., Archontis, V. and MacTaggart, D. 2012. 3D MHD flux emergence experiments: idealised models and coronal interactions. Sol. Phys. 278, 3–31.Google Scholar
Hopf, E. 1942. Abzweigung einer periodischen Löisung von einer stationiären Lösung eines Differential-systems. Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. 94, 1–22.Google Scholar
Houghton, S. M. and Bushby, P. J. 2011. Localized plumes in three-dimensional compressible magnetoconvection. Mon. Not. Roy. Astron. Soc. 412, 555–560.Google Scholar
Howard, L. N. and Krishnamurti, R. 1986. Large-scale flow in turbulent convection: a mathematical model. J. Fluid Mech. 170, 385–410.Google Scholar
Howe, R. 2009. Solar interior rotation and its variation. Living Revs. Solar Phys. 6, 1 (livingreviews.org/lrsp-2009–1).Google Scholar
Hoyle, R. 2006. Pattern Formation (Cambridge: Cambridge University Press).
Hughes, D. W. 1985. Magnetic buoyancy instabilities for a static plane layer. Geophys. Astrophys. Fluid Dyn. 32, 273–316.Google Scholar
Hughes, D. W. 2007. Magnetic buoyancy instabilities in the tachocline. In The Solar Tachocline, eds. D. W., Hughes, R., Rosner and N. O., Weiss (Cambridge: Cambridge University Press), 275–298.
Hughes, D. W. and Cattaneo, F. 2008. The alpha-effect in rotating convection: size matters. J. Fluid Mech. 594, 445–461.Google Scholar
Hughes, D. W. and Proctor, M. R. E. 1988. Magnetic fields in the solar convection zone: magnetoconvection and magnetic buoyancy. Ann. Rev. Fluid Mech. 20, 187–223.Google Scholar
Hughes, D. W. and Weiss, N. O. 1995. Double-diffusive convection with two stabilizing gradients: strange consequences of magnetic buoyancy. J. Fluid Mech. 301, 383–406.Google Scholar
Hughes, D. W., Cattaneo, F. and Kim, E.-J. 1996. Kinetic helicity, magnetic helicity and fast dynamo action. Phys. Lett. A 223, 167–172.Google Scholar
Hughes, D. W., Rosner, R. and Weiss, N. O. (eds.) 2007. The Solar Tachocline (Cambridge: Cambridge University Press).
Huppert, H. E. 1976. Transitions in double-diffusive convection. Nature 263, 20–22.Google Scholar
Huppert, H. E. and Moore, D. R. 1976. Nonlinear double-diffusive convection. J. Fluid Mech. 78, 821–854.Google Scholar
Hurlburt, N. E. and Rucklidge, A. M. 2000. Development of structure in pores and sunspots: flows around axisymmetric magnetic flux tubes. Mon. Not. Roy. Astron. Soc. 314, 793–806.Google Scholar
Hurlburt, N. E. and Toomre, J. 1988. Magnetic fields interacting with nonlinear compressible convection. Astrophys. J. 327, 920–932.Google Scholar
Hurlburt, N. E., Matthews, P. C. and Proctor, M. R. E. 1996. Nonlinear compressible convection in oblique magnetic fields. Astrophys. J. 457, 933.Google Scholar
Hurlburt, N. E., Matthews, P. C. and Rucklidge, A. M. 2000. Solar magnetocon-vection. Sol. Phys. 192, 109–118.Google Scholar
Hurlburt, N. E., Proctor, M. R. E., Weiss, N. O. and Brownjohn, D. P. 1989. Nonlinear compressible magnetoconvection. Part 1. Travelling waves and oscillations. J. Fluid Mech. 207, 587–628.Google Scholar
Hurlburt, N. E., Toomre, J. and Massaguer, J. M. 1984. Two-dimensional compressible convection extending over multiple scale heights. Astrophys. J. 282, 557–573.Google Scholar
Isobe, H., Proctor, M. R. E. and Weiss, N. O. 2008. Convection-driven emergence of granular scale magnetic field and its role in coronal heating and solar wind acceleration. Astrophys. J. 679, L57–L60.Google Scholar
Jeffreys, H. 1926. The stability of a layer of fluid heated below. Phil. Mag. (7th Ser.) 2, 833–844.Google Scholar
Jeffreys, H. 1930. The instability of a compressible fluid heated below. Proc. Camb. Phil. Soc. 26, 170–172.Google Scholar
Jones, C. A. 1976. Acoustic overstability in a polytropic atmosphere. Mon. Not. Roy. Astron. Soc. 176, 145–159.Google Scholar
Jones, C. A. 2011. Planetary magnetic fields and fluid dynamos. Ann. Rev. Fluid Mech. 43, 583–614.Google Scholar
Jones, C. A., Boronski, P., Brun, A. S., et al. 2011. Anelastic convection-driven dynamo benchmarks. Icarus 216, 120–135.Google Scholar
Jones, C. A. and Moore, D. R. 1979. The stability of axisymmetric convection. Geophys. Astrophys. Fluid Dyn. 11, 245–270.Google Scholar
Jones, C. A., Moore, D. R., and Weiss, N. O. 1976. Axisymmetric convection in a cylinder. J. Fluid Mech. 73, 353–388.Google Scholar
Jones, C. A., Moussa, A. I. and Worland, S. J. 2003. Magnetoconvection in a rapidly rotating sphere: the weak-field case. Proc. Roy. Soc. Lond. A 459, 773–797.Google Scholar
Jones, C. A. and Roberts, P. H. 1990. Magnetoconvection in rapidly rotating Boussinesq and compressible fluids. Geophys. Astrophys. Fluid Dyn. 55, 263–308.Google Scholar
Jones, C. A. and Roberts, P. H. 2000a. Convection driven dynamos in a rotating plane layer. J. Fluid Mech. 404, 311–343.Google Scholar
Jones, C. A. and Roberts, P. H. 2000b. The onset of magnetoconvection at large Prandtl number in a rotating layer. II. Small magnetic diffusion. Geophys. Astrophys. Fluid Dyn. 93, 173–226.Google Scholar
Jones, C. A., Soward, A. M. and Moussa, A. I. 2000. The onset of convection in a rapidly rotating sphere. J. Fluid Mech. 405, 157–179.Google Scholar
Jones, C. A., Thompson, M. J. and Tobias, S. M. 2010. The solar dynamo. Space Sci. Rev. 152, 591–616.Google Scholar
Julien, K., Knobloch, E. and Tobias, S. M. 1999. Strongly nonlinear magnetoconvection in three dimensions. Physica D 128, 105–129.Google Scholar
Julien, K., Knobloch, E. and Tobias, S. M. 2000. Nonlinear magnetoconvection in the presence of strong oblique fieldsJ. Fluid Mech. 410, 285.Google Scholar
Julien, K., Knobloch, E. and Tobias, S. 2003. Highly supercritical convection in strong magnetic fields. In Advances in Nonlinear Dynamos, eds. A., Ferriz-Mas and M., Núñez-Jimenez (Bristol: Taylor and Francis), 195–236.
Kato, S. 1966. The effect of compressibility upon oscillatory convection. Pub. Astron. Soc. Japan 18, 201–208.Google Scholar
Kerswell, R. and Childress, S. 1992. Equilibrium of a magnetic flux tube in a compressible flow. Astrophys. J. 385, 746–757.Google Scholar
Kitiashvili, I. N., Kosovichev, A. G., Wray, A. A. and Mansour, N. N. 2010. Mechanism of spontaneous formation of stable magnetic structures on the Sun. Astrophys. J. 719, 307–312.Google Scholar
Kloosterziel, R. C. and Carnevale, G. F. 2003a. Closed-form linear stability conditions for rotating Rayleigh-Bénard convection. J. Fluid Mech. 480, 25–42.Google Scholar
Kloosterziel, R. C. and Carnevale, G. F. 2003b. Closed-form linear stability conditions for magneto-convection. J. Fluid Mech. 490, 333–344.Google Scholar
Knobloch, E. 1986. On convection in a horizontal magnetic field with periodic boundary conditions. Geophys. Astrophys. Fluid Dyn. 36, 161–177.Google Scholar
Knobloch, E. 2008. Spatially localized structures in dissipative systems: open problems. Nonlinearity 21, T45–T60.Google Scholar
Knobloch, E. 2014. Spatial localization in dissipative systems. Ann. Rev. Condensed Matter Phys. 6, in press.Google Scholar
Knobloch, E. and Proctor, M. R. E. 1981. Nonlinear periodic convection in double diffusive systems. J. Fluid Mech. 108, 291–316.Google Scholar
Knobloch, E. and Weiss, N. O. 1983. Bifurcations in a model of magnetoconvection. Physica D 9, 379–407.Google Scholar
Knobloch, E., Moore, D. R., Toomre, J. and Weiss, N. O. 1986. Transitions to chaos in two-dimensional double-diffusive convection. J. Fluid Mech. 166, 409–448.Google Scholar
Knobloch, E., Proctor, M. R. E., Rucklidge, A. M. and Weiss, N. O. 1996. Comment on ‘Bifurcations from periodic solution in a simplified model of two-dimensional magnetoconvection’ by N., Bekki and T., Karakisawa. Phys. Plasmas 3, 2475–2476.Google Scholar
Knobloch, E., Proctor, M. R. E. and Weiss, N. O. 1992. Heteroclinic bifurcations in a simple model of double-diffusive convection. J. Fluid Mech. 239, 273–292.Google Scholar
Knobloch, E., Tobias, S. M. and Weiss, N. O. 1998. Modulation and symmetry changes in stellar dynamos. Mon. Not. Roy. Astron. Soc. 297, 1123–1138.Google Scholar
Knobloch, E., Weiss, N. O. and Da Costa, L. N. 1981. Oscillatory and steady convection in a magnetic field. J. Fluid Mech. 113, 153–186.Google Scholar
Komarova, N. L. and Newell, A. C. 2000. Nonlinear dynamics of sand banks and sand waves. J. Fluid Mech. 415, 285–321.Google Scholar
Kovshov, V. I. 1978. Three approximations for free convection. Astron. Zh. 55, 501–515; Sov. Astron. 22, 288–296.Google Scholar
Krause, F. and Radler, K.-H. 1980. Mean-field Magnetohydrodynamics and Dynamo Theory (Berlin: Akademie-Verlag).
Krishnamurti, R. and Howard, L. N. 1986. Large-scale flow generation in turbulent convection. Proc. Nat. Acad. Sci. 78, 1981–1985.Google Scholar
Kuang, W. and Bloxham, J. 1997. An Earth-like numerical dynamo model. Nature 389, 371–374.Google Scholar
Kuppers, G. and Lortz, D. 1969. Transition from laminar convection to thermal turbulence in a rotating fluid layer. J. Fluid Mech. 35, 609–620.Google Scholar
Kuznetsov, Y. A. 1998. Elements of Applied Bifurcation Theory, 2nd edition (New York: Springer).
Landsberg, A. S. and Knobloch, E. 1991. Direction-reversing traveling waves. Phys. Lett. A 159, 17–20.Google Scholar
Lantz, S. R. 1992. Dynamical Behavior of Magnetic Fields in a Stratified, Convect ing Fluid Layer (Ph.D. dissertation: Cornell University).
Lantz, S. R. 1995. Magnetoconvection dynamics in a stratified layer. 2: A low-order model of the tilting instability. Astrophys. J. 441, 925–941.Google Scholar
Lantz, S. R. and Fan, Y. 1999. Anelastic magnetohydrodynamic equations for modeling solar and stellar convection zones. Astrophys. J. Suppl. 121, 247–264.Google Scholar
Lantz, S. R. and Sudan, R. N. 1995. Magnetoconvection dynamics in a stratified layer. I. 2D simulations and visualization. Astrophys. J. 441, 903–924.Google Scholar
Lehnert, B. 1954. Magneto-hydrodynamic waves in liquid sodium. Phys. Rev. 94, 815–824.Google Scholar
Leighton, R. B. 1969. A magneto-kinematic model of the solar cycle. Astro phys. J. 156, 1–20.Google Scholar
Leighton, R. B., Noyes, R. W. and Simon, G. W. 1962. Velocity fields in the solar atmosphere. I. Preliminary report. Astrophys. J. 135, 474–499.Google Scholar
Leka, K. D. and Skumanich, A. 1998. The evolution of pores and the development of penumbrae. Astrophys. J. 507(1), 454–469.Google Scholar
Liang, S. F., Vidal, A. and Acrivos, A. 1969. Buoyancy-driven convection in cylindrical geometries. J. Fluid Mech. 36, 239–256.Google Scholar
Lo Jacono, D., Bergeon, A. and Knobloch, E. 2011. Magnetohydrodynamic convectons. J. Fluid Mech. 687, 595–605.Google Scholar
Lo Jacono, D., Bergeon, A. and Knobloch, E. 2012. Spatially localized magneto convection. Fluid Dyn. Res. 44, 031411.Google Scholar
Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141.Google Scholar
Lorenz, E. N. 1980. Noisy periodicity and reverse bifurcations. Ann. N. Y. Acad. Sci. 357, 282–291.Google Scholar
Lundquist, S. 1952. Studies in magneto-hydrodynamics. Ark. Fys. 5, 297–347.Google Scholar
Malkus, W. V. R. 1959. Magnetoconvection in a viscous fluid of infinite electrical conductivity. Astrophys. J. 130, 259–275.Google Scholar
Malkus, W. V. R. 1964. Boussinesq equations and convection energetics. WHOI GFD Notes, 64–46.Google Scholar
Malkus, W. V. R. and Veronis, G. 1958. Finite amplitude cellular convection. J. Fluid Mech. 4, 225–260.Google Scholar
Marcus, P. S. 1981. Effects of truncation in modal representations of thermal convection. J. Fluid Mech. 103, 241–255.Google Scholar
Massaglia, S., Rossi, P. and Bodo, G. 1989. Overstability of magnetic flux tubes in the Eddington approximation. Astron. Astrophys. 209, 399–405.Google Scholar
Matloch, L., Cameron, R., Shelyag, S., Schmitt, D. and Schüssler, M. 2010. Mesogranular structure in a hydrodynamical simulation. Astron. Astrophys. 519, A52.Google Scholar
Matthews, P. C. 1998. Hexagonal patterns in finite domains. Physica D 116, 81–94.Google Scholar
Matthews, P. C. 1999. Asymptotic solutions for nonlinear magnetoconvection. J. Fluid Mech. 387, 397–409.Google Scholar
Matthews, P. C. and Cox, S. M. 2000. Pattern formation with a conservation law. Nonlinearity 13, 1293–1320.Google Scholar
Matthews, P. C. and Rucklidge, A. M. 1993. Travelling and standing waves in magnetoconvection. Proc. Roy. Soc. Lond. A 441, 649–658.Google Scholar
Matthews, P. C., Hughes, D. W. and Proctor, M. R. E. 1995. Magnetic buoyancy, vorticity, and three-dimensional flux-tube formation. Astrophys. J. 448, 938–941.Google Scholar
Matthews, P. C., Hurlburt, N. E., Proctor, M. R. E. and Brownjohn, D. P. 1992. Compressible magnetoconvection in oblique fields: linearized theory and simple nonlinear models. J. Fluid Mech. 240, 559–569.Google Scholar
Matthews, P. C., Proctor, M. R. E., Rucklidge, A. M. and Weiss, N. O. 1993. Pulsating waves in nonlinear magnetoconvection. Phys. Lett. A 183, 69–73.Google Scholar
Matthews, P. C., Proctor, M. R. E. and Weiss, N. O. 1995. Compressible magnetoconvection in three dimensions: planform selection and weakly nonlinear behaviour. J. Fluid Mech. 305, 281–305.Google Scholar
Matthews, P. C., Rucklidge, A. M., Weiss, N. O. and Proctor, M. R. E. 1996. The three-dimensional development of the shearing instability of convection. Phys. Fluids 8, 1350–1352.Google Scholar
Maneguzzi, M. and Pouquet, A. 1989. Turbulent dynamos driven by convection. J. Fluid Mech. 205, 297–318.Google Scholar
Meneguzzi, M., Sulem, C., Sulem, P. L. and Thual, O. 1987. Three-dimensional numerical simulation of convection in low-Prandtl-number fluids. J. Fluid Mech. 182, 169–191.Google Scholar
Mercader, I., Batiste, O., Alonso, A. and Knobloch, E. 2011. Convectons, anticonvectons and multiconvectons in binary fluid convection. J. Fluid Mech. 667, 586–606.Google Scholar
Mestel, L. 2012. Stellar Magnetism, 2nd edition (Oxford: Clarendon Press).
Meyer, F., Schmidt, H. U., Weiss, N. O. and Wilson, P. R. 1974. The growth and decay of sunspots. Mon. Not. Roy. Astron. Soc. 169, 35–57.Google Scholar
Miesch, M. S. 2005. Large-scale dynamics of the convection zone and tachocline. Living Revs. Solar Phys. 2, 1 (livingreviews.org/lrsp-2005-1).Google Scholar
Miesch, M. S. and Hindman, B. W. 2011. Gyroscopic pumping in the solar near surface shear layer. Astrophys. J. 743(1), 79.Google Scholar
Miesch, M. S. and Toomre, J. 2009. Turbulence, magnetism and shear in stellar interiors. Ann. Rev. Astron. Astrophys. 41, 317–345.Google Scholar
Miesch, M. S., Brown, B. P., Browning, M. R., Brun, A. S. and Toomre, J. 2011. Magnetic cycles and meridional circulation in global models of solar convection. In IAU Symp. 271, Astrophysical Dynamics: from Stars to Galaxies, eds. N. H., Brummell, A. S., Brun, M. S., Miesch and Y., Ponty (Cambridge: Cambridge University Press), 261–269.
Miesch, M. S., Elliott, J. R., Toomre, J., et al. 2000. Three-dimensional spherical simulations of solar convection. I. Differential rotation and pattern evolution achieved with laminar and turbulent states. Astrophys. J. 532, 593–615.Google Scholar
Mihaljan, J. M. 1962. A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid. Astrophys. J. 136, 1126–1133.Google Scholar
Moffatt, H. K. 1978. Magnetic Field Generation in Electrically Conducting Fluids (Cambridge: Cambridge University Press).
Moffatt, H. K. and Kamkar, H. 1983. The time-scale associated with flux expulsion. In Stellar and Planetary Magnetism, ed. A. M., Soward (New York: Gordon and Breach), 91–97.
Moffatt, H. K. and Proctor, M. R. E. 1985. Topological constraints associated with fast dynamo action. J. Fluid Mech. 154, 493–507.Google Scholar
Moll, R., Cameron, R. H. and Schüssler, M. 2011. Vortices in simulations of solar surface convection. Astron. Astrophys. 533, A126.Google Scholar
Moll, R., Cameron, R. H. and Schüssler, M. 2012. Vortices, shocks and heating in the solar photosphere: effect of a magnetic field. Astron. Astrophys. 541, A68.Google Scholar
Monchaux, R., Berhanu, M., Bourgoin, M., et al. 2007. Generation of magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett. 98, 044502.Google Scholar
Moore, D. W. and Spiegel, E. A. 1966. A thermally excited non-linear oscillator. Astrophys. J. 143, 871–887.Google Scholar
Moore, D. R. and Weiss, N. O. 1973. Two-dimensional Rayleigh-Bénard convection. J. Fluid Mech. 58, 289–312.Google Scholar
Moore, D. R. and Weiss, N. O. 1990. Dynamics of double convection. Phil. Trans. Roy. Soc. A 332, 121–134.Google Scholar
Moore, D. R. and Weiss, N. O. 2000. Resonant interactions in thermosolutal convection. Proc. Roy. Soc. Lond. A 456, 39–62.Google Scholar
Moore, D. R., Peckover, R. S. and Weiss, N. O. 1973. Difference methods for time dependent two-dimensional convection. Comp. Phys. Comm. 6, 198–220.Google Scholar
Moore, D. R., Toomre, J., Knobloch, E. and Weiss, N. O. 1983. Period doubling and chaos in partial differential equations for thermosolutal convection. Nature 303, 663–667.Google Scholar
Moore, D. R., Weiss, N. O. and Wilkins, J. M. 1990a. Symmetry-breaking in thermosolutal convection. Phys. Lett. A 147, 209–214.Google Scholar
Moore, D. R., Weiss, N. O. and Wilkins, J. M. 1990b. The reliability of numerical experiments: transitions to chaos in thermosolutal convection. Nonlinearity 3, 997–1014.Google Scholar
Moore, D. R., Weiss, N. O. and Wilkins, J. M. 1991. Asymmetric oscillations in thermosolutal convection. J. Fluid Mech. 233, 561–585.Google Scholar
Morin, J., Donati, J.-F., Petite, P., et al. 2010. Large-scale magnetic topologies of late M dwarfs. Mon. Not. Roy. Astron. Soc. 407, 2269–2286.Google Scholar
Morin, V. and Dormy, E. 2009. The dynamo bifurcation in rotating spherical shells. Int. J. Mod. Phys. B 23, 5467–5482.Google Scholar
Müller, U., Stieglitz, R. and Horanyi, S. 2004. A two-scale hydromagnetic dynamo experiment. J. Fluid Mech. 498, 31–71.Google Scholar
Musman, S. 1967. Alfvén waves in sunspots. Astrophys. J. 149, 201–209.Google Scholar
Nagata, M., Proctor, M. R. E. and Weiss, N. O. 1990. Transitions to asymmetry in magnetoconvection. Geophys. Astrophys. Fluid Dyn. 51, 211–241.Google Scholar
Nakagawa, Y. 1955. An experiment on the inhibition of thermal convection by a magnetic field. Nature 175, 417–419.Google Scholar
Nakagawa, Y. 1957. Experiments on the inhibition of thermal convection by a magnetic field. Proc. Roy. Soc. Lond. A 240, 108–113.Google Scholar
Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S. and Toomre, J. 2011. Buoyant magnetic loops in a global dynamo simulation of a young Sun. Astrophys. J. 739, L38.Google Scholar
Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S. and Toomre, J. 2012. Magnetic wreaths and cycles in convective dynamos. Astrophys. J. 762, 73.Google Scholar
Newcomb, W. A. 1961. Convective instability induced by gravity in a plasma with a frozen-in magnetic field. Phys. Fluids 4, 391–396.Google Scholar
Nordlund, Å. 1984. Magnetoconvection: the interaction of convection and small scale magnetic fields. In The Hydromagnetics of the Sun, eds. T. D., Guyenne and J. J., Hunt (Paris: ESA SP-220), 37–46.Google Scholar
Nordlund, Å., Stein, R. F. and Asplund, M. 2009. Solar surface convection. Living Revs. Sol. Phys. 6, 2 (livingreviews.org/lrsp-2009–2).Google Scholar
Oberbeck, A. 1879. Über die Wärmeleitung der Flüissigkeiten bei Berüicksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. 243, 271–292.Google Scholar
Ogura, Y. and Phillips, N. A. 1962. Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173–179.Google Scholar
Ossendrijver, M., Stix, M., Brandenburg, A. and Rüdiger, G. 2002. Magnetoconvection and dynamo coefficients II. Field-direction dependent pumping of magnetic field. Astron. Astrophys. 394, 735–745.Google Scholar
Ott, E. 1993. Chaos in Dynamical Systems (Cambridge: Cambridge University Press).
Parker, E. N. 1955. Hydromagnetic dynamo models. Astrophys. J. 122, 293–314.Google Scholar
Parker, E. N. 1963. Kinematical hydromagnetic theory and its application to the low solar photosphere. Astrophys. J. 138, 552–575.Google Scholar
Parker, E. N. 1974. The nature of the sunspot phenomenon I: solutions of the heat transport equation. Sol. Phys. 36, 249–274.Google Scholar
Parker, E. N. 1978. Hydraulic concentration of magnetic fields in the solar photosphere. VI – Adiabatic cooling and concentration in downdrafts. Astro phys. J. 221, 368–377.Google Scholar
Parker, E. N. 1979. Cosmical Magnetic Fields: their Origin and their Activity (Oxford: Clarendon Press).
Parker, E. N. 1993. A solar dynamo surface-wave at the interface between convection and non-uniform rotation. Astrophys. J. 408, 707–719.Google Scholar
Parker, R. L. 1966. Reconnection of lines of force in rotating spheres and cylinders. Proc. R. Soc. Lond. A 291, 60–72.Google Scholar
Peckover, R. S. and Weiss, N. O. 1978. On the dynamic interaction between magnetic fields and convection. Mon. Not. Roy. Astron. Soc. 182, 189–208.Google Scholar
Pietarila Graham, J., Cameron, R. and Schüssler, M. 2010. Turbulent small-scale dynamo action in solar surface simulations. Astrophys. J. 714, 1606–1616.Google Scholar
Pikelner, S. B. 1961. Osnovy Kosmicheskoy Elektrodinamiki (Moscow: Nauka).
Poincaré, H. 1885. Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation. Acta Math. 7, 259–380.Google Scholar
Pomeau, Y. 1986. Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D 23, 3–11.Google Scholar
Ponomarenko, Y. B. 1973. On the theory of the hydromagnetic dynamo. J. Appl. Mech. Tech. Phys. 14, 775–778.Google Scholar
Prandtl, L. 1904. Über Flüissigkeitsbewegung bei sehr kleiner Reibung. Proc. Internat. Math. Cong., Heidelberg (see Gesammelte Abhandlungen, 575–584, 1981).Google Scholar
Priest, E. R. 2014. Magnetohydrodynamics of the Sun (Cambridge: Cambridge University Press).
Proctor, M. R. E. 1983. Amplification of fields by compressible convection. In IAU Symp. 102, Solar and Stellar Magnetic Fields: Origins and Coronal Effects, ed. J. O., Stenflo (Dordrecht: Reidel), 301–305.
Proctor, M. R. E. 1986. Columnar convection in double-diffusive systems. Contemp. Math. 56, 267–276.Google Scholar
Proctor, M. R. E. 1992. Magnetoconvection. In Theory and Observation of Sunspots, eds. J. H., Thomas and N. O., Weiss (Dordrecht: Kluwer), 221–241.
Proctor, M. R. E. 2001. Finite amplitude behaviour of the Matthews-Cox instability. Phys. Lett. A 292, 181–187.Google Scholar
Proctor, M. R. E. 2005. Magnetoconvection. In Fluid Dynamics and Dynamos in Astrophysics and Geophysics, eds. A. M., Soward, C. A., Jones, D. W., Hughes and N. O., Weiss (Boca Raton, FL: CRC Press), 235–276.
Proctor, M. R. E. and Galloway, D. J. 1979. The dynamic effect of flux ropes on Rayleigh-Buenard convection. J. Fluid Mech. 90, 273–287.Google Scholar
Proctor, M. R. E. and Matthews, P. C. 1996. 2: 1 resonance in non-Boussinesq convection. Physica D 97, 229–241.Google Scholar
Proctor, M. R. E. and Weiss, N. O. 1982. Magnetoconvection. Rep. Prog. Phys. 45, 1317–1349.Google Scholar
Proctor, M. R. E. and Weiss, N. O. 1984. Amplification and maintenance of thin magnetic flux tubes by compressible convection. In The Hydromagnetics of the Sun, eds. T. D., Guyenne and J. J., Hunt (Paris: ESA SP-220), 77–80.Google Scholar
Proctor, M. R. E. and Weiss, N. O. 1990. Normal forms and chaos in thermosolutal convection. Nonlinearity 3, 619–637.Google Scholar
Proctor, M. R. E. and Weiss, N. O. 1993. Symmetries of time-dependent magneto convection. Geophys. Astrophys. Fluid Dyn. 70, 137–160.Google Scholar
Proctor, M. R. E., Weiss, N. O., Brownjohn, D. P. and Hurlburt, N. E. 1994. Nonlinear compressible magnetoconvection. Part 2. Streaming instabilities in two dimensions. J. Fluid Mech. 280, 227–253.Google Scholar
Proctor, M. R. E., Weiss, N. O., Thompson, S. D. and Roxburgh, N. T. 2011. Effects of boundary conditions on the onset of convection with tilted magnetic fields. Geophys. Astrophys. Fluid Dyn. 105, 82–89.Google Scholar
Racine, E., Charbonneau, P., Ghizaru, M., Bouchat, A. and Smolarkiewicz, P. K. 2011. On the mode of dynamo action in a global large-eddy simulation of solar convection. Astrophys. J. 735, 46.Google Scholar
Radko, T. 2013. Double-Diffusive Convection (Cambridge: Cambridge University Press).
Rand, D. 1982. Dynamics and symmetry. Predictions for modulated waves in rotating fluids. Arch. Rat. Mech. Anal. 79, 1–37.Google Scholar
Rayleigh, Lord (J. W., Strutt). 1896. Theory of Sound, vol. II, 232. (London: Macmillan).
Rayleigh, Lord (J. W., Strutt). 1916. On convective currents in a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag. 32, 329–346.Google Scholar
Rempel, M. 2010. 3D numerical MHD modeling of sunspots with radiative transport. In IAU Symp 273, Physics of Sun and Starspots, eds. D. P., Choudhary and K. G., Strassmeier (Cambridge: Cambridge University Press), 8–14.
Rempel, M. 2011a. Penumbral fine structure and driving mechanisms of large-scale flows in simulated sunspots. Astrophys. J. 729, 5.Google Scholar
Rempel, M. 2011b. Subsurface magnetic field and flow structure of simulated sunspots. Astrophys. J. 740, 15.Google Scholar
Rempel, M. 2012a. Numerical sunspot models: robustness of photospheric velocity and magnetic field structure. Astrophys. J. 750, 62.Google Scholar
Rempel, M. 2012b. Numerical models of sunspot formation and fine structure. Phil. Trans. Roy. Soc. Lond. A 370, 3114–3128.Google Scholar
Rempel, M. and Schlichenmaier, R. 2011. Sunspot modeling: from simplified models to radiative MHD simulations. Living Revs. Solar Phys. 8, 3 (livingreviews.org/lrsp-2011-3).Google Scholar
Rempel, M., Schüssler, M., Cameron, R. H. and Knölker, M. 2009a. Penumbral structure and outflows in simulated sunspots. Science 325, 171–174.Google Scholar
Rempel, M., Schüssler, M. and Knölker, M. 2009b. Radiative magnetohydrody namic simulation of sunspot structure. Astrophys. J. 691, 640–649.Google Scholar
Rhines, P. B. and Young, W. R. 1983. How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133–145.Google Scholar
Rieutord, M. and Rincon, F. 2010. The Sun's supergranulation. Living Revs. Solar Phys. 7, 2 (livingreviews.org/lrsp-2010-2).Google Scholar
Rimmele, T. R. 2008. On the relation between umbral dots, dark-cored filaments, and light bridges. Astrophys. J. 672, 684–695.Google Scholar
Rincon, F., Lignières, F. and Rieutord, M. 2005. Mesoscale flows in large aspect ratio simulations of turbulent compressible convection. Astron. Astrophys. 430, L57–L60.Google Scholar
Roberts, B. and Webb, A. R. 1978. Vertical motions in an intense magnetic flux tube. Sol. Phys. 56, 5.Google Scholar
Roberts, G. O. 1970. Spatially periodic dynamos. Phil. Trans. Roy. Soc. Lond. A 266, 535–558.Google Scholar
Roberts, G. O. 1972. Dynamo action of fluid motions with two-dimensional periodicity. Phil. Trans. Roy. Soc. Lond. A 271, 411–454.Google Scholar
Roberts, P. H. 1967. An Introduction to Magnetohydrodynamics (London: Long-mans).
Roberts, P. H. 1994. Fundamentals of dynamo theory. In Lectures on Solar and Planetary Dynamos, eds. M. R. E., Proctor and A. D., Gilbert (Cambridge: Cambridge University Press), 1–58.
Roberts, P. H. and Jones, C. A. 2000. The onset of magnetoconvection at large Prandtl number in a rotating layer. I. Finite magnetic diffusion. Geophys. Astrophys. Fluid Dyn. 92, 289–325.Google Scholar
Roberts, P. H. and Zhang, K. 2000. Thermal generation of Alfvén waves in oscillatory magnetoconvection. J. Fluid Mech. 420, 201–223.Google Scholar
Rosenblum, E., Garaud, P., Traxler, A. and Stellmach, S. 2011. Turbulent mixing and layer formation in double-diffusive convection: three-dimensional numerical simulations and theory. Astrophys. J. 731, 66.Google Scholar
Roxburgh, N. T. 2007. Anelastic Convection in an Inclined Magnetic Field (Ph.D. dissertation: University of Cambridge).
Rucklidge, A. M. 1991. Chaos in Models of Double Convection (Ph.D. dissertation: University of Cambridge).
Rucklidge, A. M. 1992. Chaos in models of double convection. J. Fluid Mech. 237, 209–229.Google Scholar
Rucklidge, A. M. 1993. Chaos in a low-order model of magnetoconvection. Physica D 62, 323–337.Google Scholar
Rucklidge, A. M. 1994. Chaos in magnetoconvection. Nonlinearity 7, 1565–1591.Google Scholar
Rucklidge, A. M. and Matthews, P. C. 1993. Shearing instabilities in magnetocon vection. In Theory of Solar and Planetary Dynamos, eds. M. R. E., Proctor, P. C., Matthews and A. M., Rucklidge (Cambridge: Cambridge University Press), 257–264.
Rucklidge, A. M. and Matthews, P. C. 1995. The shearing instability in magne-toconvection. In Double-Diffusive Convection, Geophys. Monogr. Ser. 94, eds. A., Brandt and H. J. S., Fernando (Washington, DC: AGU), 171–184.
Rucklidge, A. M. and Matthews, P. C. 1996. Analysis of the shearing instability in nonlinear convection and magnetoconvection. Nonlinearity 9, 311–351.Google Scholar
Rucklidge, A. M., Weiss, N. O., Brownjohn, D. P., Matthews, P. C. and Proctor, M. R. E. 2000. Compressible magnetoconvection in three dimensions: pattern formation in a strongly stratified layer. J. Fluid Mech. 419, 283–323.Google Scholar
Rucklidge, A. M., Weiss, N. O., Brownjohn, D. P. and Proctor, M. R. E. 1993. Oscillations and secondary bifurcations in nonlinear magnetoconvection. Geophys. Astrophys. Fluid Dyn. 68, 133–150.Google Scholar
Rüdiger, G. and Hollerbach, R. 2004. The Magnetic Universe (Weinheim: Wiley VCH).
Ruelle, D. 1973. Bifurcations in the presence of a symmetry group. Arch. Rat. Mech. Anal. 51, 136–152.Google Scholar
St. Pierre, M. G. 1993. The stability of the magnetostrophic approximation. I: Taylor state solutions. Geophys. Astrophys. Fluid Dyn. 67, 99–115.Google Scholar
Saltzman, B. 1962. Finite amplitude free convection as an initial value problem. J. Atmos. Sci. 19, 329–341.Google Scholar
Savage, B. D. 1969. Thermal generation of hydromagnetic waves in sunspots. Astrophys. J. 156, 707–729.Google Scholar
Scharmer, G. B. and Henriques, V. M. J. 2012. SST/CRISP observations of convective flows in a sunspot penumbra. Astron. Astrophys. 540, A19.Google Scholar
Scharmer, G. B., de la Cruz Rodriguez, J., Süitterlin, P. and Henriques, V. M. J. 2013. Opposite polarity field with convective downflow and its relation to magnetic spines in a sunspot penumbra. Astron. Astrophys. 553, A63.Google Scholar
Scharmer, G. B., Gudiksen, B. V., Kiselman, D., Löfdahl, M. G. and Rouppe van der Voort, L. H. M. 2002. Dark cores in sunspot penumbral filaments. Nature 420, 151–153.Google Scholar
Scharmer, G. B., Henriques, V. M. J., Kiselman, D. and de la Cruz Rodriguez, J. 2011. Detection of convective downflows in a sunspot penumbra. Science 333, 316–319.Google Scholar
Schekochihin, A. A., Iskakov, A. B., Cowley, S. C., et al. 2007. Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers. New J. Phys. 9, 300.Google Scholar
Schlüter, A., Lortz, D. and Busse, F. 1965. On the stability of steady finite amplitude convection. J. Fluid Mech. 23, 129–144.Google Scholar
Schou, J., Antia, H. M., Basu, S., et al. 1998. Helioseismic studies of differential rotation in the solar envelope by the Solar Oscillations Investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390–417.Google Scholar
Schüssler, M. 1990. Theoretical aspects of small-scale photospheric magnetic fields. In IAU Symp. 138, Solar Photosphere: Structure, Convection and Magnetic Fields (Dordrecht: Kluwer), 161–179,
Schüssler, M. 2001. Numerical simulation of solar magneto-convection. In ASP Conf. Ser. 236, Advanced Solar Polarimetry: Theory, Observation and Instrumentation, ed. M., Sigwarth (San Francisco, CA: Astron. Soc. Pacific), 343.
Schüssler, M. 2013. Solar magneto-convection. In IAU Symp. 294, Solar and Astrophysical Dynamos and Magnetic Activity, eds. A. G., Kosovichev, E. M., de Gouveia dal Pino and Y., Yan (Cambridge: Cambridge University Press).
Schüssler, M. and Vögler, A. 2006. Magnetoconvection in a sunspot umbra. Astrophys. J. 641, L73–L76.Google Scholar
Schüssler, M. and Vögler, A. 2008. Strong horizontal photospheric magnetic field in a surface dynamo simulation. Astron. Astrophys. 481, L5–L8.Google Scholar
Shafranov, V. D. 1958. On magnetohydrodynamical equilibrium configurations. Sov. Phys. JETP 6, 545.Google Scholar
Shafranov, V. D. 1966. Plasma equilibrium in a magnetic field. Reviews of Plasma Physics, vol. 2, ed. M. A., Leontovich, trans. H., Lashinsky, 103. (New York: Consultants Bureau).
Sharkovsky, A. N. 1964. Coexistence of cycles of a continuous map of a line into itself. Ukr. Mat. Zh. 16, 61–70.Google Scholar
Shew, W. L. and Lathrop, D. P. 2005. Liquid sodium model of geophysical core convection. Phys. Earth. Planet. Int. 153, 136–149.Google Scholar
Shilnikov, A. P. 1991. Bifurcations and chaos in the Morioka-Shimizu system. Selecta Math. Sov. 10, 105–117.Google Scholar
Shilnikov, A. P. 1993. On bifurcations of the Lorenz attractor in the Shimizu Morioka model, Physica D 62, 338–346.Google Scholar
Shilnikov, L. P. 1965. A case of the existence of a countable number of periodic motions. Sov. Math. Dokl. 6, 163–166.Google Scholar
Shilnikov, L. P. 1970. A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle-focus type. Math. USSR Sbornik 10, 91–102.Google Scholar
Shilnikov, L. P. and Shilnikov, A. P. 2007. Shilnikov bifurcation. Scholarpedia 2(8), 1891.Google Scholar
Shimizu, T. and Morioka, N. 1978. Chaos and limit cycles in the Lorenz model. Phys. Lett. A 66, 182–184.Google Scholar
Silber, M. and Knobloch, E. 1991. Hopf bifurcation on a square lattice. Nonlinearity 4, 1063–1107.Google Scholar
Silber, M., Riecke, H. and Kramer, L. 1992. Symmetry-breaking Hopf bifurcation in anisotropic systems. Physica D 61, 260–278.Google Scholar
Silvers, L. J., Bushby, P. J. and Proctor, M. R. E. 2009. Interactions between mag netohydrodynamic shear instabilities and convective flows in the solar interior. Mon. Not. Roy. Astron. Soc. 400, 337–345.Google Scholar
Silvers, L. J., Vasil, G. M., Brummell, N. H. and Proctor, M. R. E. 2009. Double-diffusive instabilities of a shear-generated magnetic layer. Astrophys. J. 691, L138–L141.Google Scholar
Simon, G. W. and Leighton, R. B. 1964. Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. Astrophys. J. 140, 1120–1147.Google Scholar
Simon, G. W., Title, A. M. and Weiss, N. O. 2001. Sustaining the Sun's magnetic network with emerging bipoles. Astrophys. J. 561, 427–434.Google Scholar
Skinner, P. H. and Soward, A. M. 1988. Convection in a rotating magnetic field and Taylor's constraint. Geophys. Astrophys. Fluid Dyn. 44, 91–116.Google Scholar
Skinner, P. H. and Soward, A. M. 1991. Convection in a rotating magnetic field and Taylor's constraint. Part II. Numerical results. Geophys. Astrophys. Fluid Dyn. 60, 335–356.Google Scholar
Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Monthly Weather Review 91, 99–164.Google Scholar
Solanki, S. K. 2003. Sunspots: an overview. Astron. Astrophys. Rev. 11, 153–286.Google Scholar
Solanki, S. K., Inhester, B. and Schüssler, M. 2006. The solar magnetic field. Rep. Prog. Phys. 69, 563–668.Google Scholar
Soward, A. M. 1974. A convection-driven dynamo: I. The weak field case. Phil. Trans. Roy. Soc. Lond. A 275, 611–646.Google Scholar
Soward, A. M. 1979. Thermal and magnetically driven convection in a rapidly rotating fluid layer. J. Fluid Mech. 90, 669–684.Google Scholar
Soward, A. M. 1987. Fast dynamo action in a steady flow. J. Fluid Mech. 180, 267–295.Google Scholar
Sparrow, C. 1982. The Lorenz Equations: Bifurcations, Chaos, and Strange Attrac tors (New York: Springer).
Spiegel, E. A. 1964. The effect of radiative transfer on convective growth rates. Astrophys. J. 139, 959–974.Google Scholar
Spiegel, E. A. 1965. Convective instability in a compressible atmosphere. I. Astrophys. J. 141, 1068–1090.Google Scholar
Spiegel, E. A. and Veronis, G. 1960. On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442–447.Google Scholar
Spiegel, E. A. and Weiss, N. O. 1982. Magnetic buoyancy and the Boussinesq approximation. Geophys. Astrophys. Fluid Dyn. 22, 219–234.Google Scholar
Spruit, H. C. 1976. Pressure equilibrium and energy balance of small photospheric flux tubes. Sol. Phys. 50, 269–295.Google Scholar
Spruit, H. C. 1979. Convective collapse of flux tubes. Sol. Phys. 61, 363–378.Google Scholar
Spruit, H. C. and Scharmer, G. B. 2006. Fine structure, magnetic field and heating of sunspot penumbrae. Astron. Astrophys. 447, 343–354.Google Scholar
Spruit, H. C. and Zweibel, E. G. 1979. Convective instability of thin flux tubes. Solar Phys. 62, 15–22.Google Scholar
Spruit, H. C., Nordlund, Å. and Title, A. M. 1990. Solar convection. Ann. Rev. Astron. Astrophys. 28, 263–301.Google Scholar
Sreenivasan, B. and Jones, C. A. 2011. Helicity generation and subcritical behaviour in rapidly rotating dynamos. J. Fluid Mech. 688, 5–30.Google Scholar
Stein, R. F. 2012a. Magneto-convection. Phil. Trans. Roy. Soc. A 370, 3070–3087.Google Scholar
Stein, R. F. 2012b. Solar surface magneto-convection. Living Revs. Solar Phys. 9, 4 (livingreviews.org/lrsp-2012-4).Google Scholar
Stein, R. F. and Nordlund, Å. 1998. Simulations of solar granulation. I. General properties. Astrophys. J. 499, 914–933.Google Scholar
Stein, R. F. and Nordlund, Å. 2003. Solar surface magnetoconvection. In IAU Symp. 210, Modelling of Stellar Atmospheres, eds. N., Piskunov, W. W., Weiss and D. F., Gray (San Francisco, CA: Astronomical Society of the Pacific), 169–180.
Stein, R. F. and Nordlund, Å. 2006. Solar small-scale magnetoconvection. Astrophys. J. 642, 1246–1255.Google Scholar
Stellmach, S. and Hansen, U. 2004. Cartesian convection driven dynamos at low Ekman number. Phys. Rev. E 70, 056312.Google Scholar
Stix, M. 2002. The Sun, 2nd edition (Berlin: Springer).
Strassmeier, K. G. 2002. Doppler images of starspots. Astron. Nachr. 323, 309–316.Google Scholar
Strassmeier, K. G. 2009. Starspots. Astron. Astrophys. Rev. 17, 251–308.Google Scholar
Strassmeier, K. G., Pichler, T., Weber, M. and Granzer, T. 2003. Doppler imaging of stellar surface structure. XXI. The rapidly-rotating solar-type star HD 171488 = V889 Hercules. Astron. Astrophys. 411, 595–604.Google Scholar
Swift, J. W. and Wiesenfeld, K. 1984. Suppression of period-doubling in symmetric systems. Phys. Rev. Lett. 52, 705–708.Google Scholar
Syrovatsky, S. I. and Zhugzhda, Y. D. 1967. Oscillatory convection of a conducting gas in a strong magnetic field. Astron. Zh. 44, 1180–1190 (Sov. Astron. 11, 945–952).Google Scholar
Takens, F. 1974. Singularities of vector fields. Publ. Math. IHES 43, 47–100.Google Scholar
Tao, L. L., Weiss, N. O., Brownjohn, D. P. and Proctor, M. R. E. 1998. Flux separation in stellar magnetoconvection. Astrophys. J. 496, L39–L42.Google Scholar
Tayler, R. J. 1973. The adiabatic stability of stars containing magnetic fields – I. Toroidal fields. Mon. Not. Roy. Astron. Soc. 162, 17–23.Google Scholar
Taylor, J. B. 1963. The magneto-hydrodynamics of a rotating fluid and the earth's dynamo problem. Proc. Roy. Soc. Lond. A 274, 274–283.Google Scholar
Thelen, J. C. and Cattaneo, F. 2000. Dynamo action driven by convection: the influence of magnetic boundary conditions. Mon. Not. Roy. Astron. Soc. 315, L13–L17.Google Scholar
Thomas, J. H. and Weiss, N. O. 1992. The theory of sunspots. In Sunspots: Theory and Observations, eds. J. H., Thomas and N. O., Weiss (Dordrecht: Kluwer), 3–59.
Thomas, J. H. and Weiss, N. O. 2004. Fine structure in sunspots. Ann. Rev. Astron. Astrophys. 42, 517–548.Google Scholar
Thomas, J. H. and Weiss, N. O. 2008. Sunspots and Starspots (Cambridge: Cambridge University Press).
Thomas, J. H., Weiss, N. O., Tobias, S. M. and Brummell, N. H. 2002. Downward pumping of magnetic flux as the cause of filamentary structures in sunspot penumbrae. Nature 420, 390–393.Google Scholar
Thompson, M. J. 2006a. An Introduction to Astrophysical Fluid Dynamics (London: Imperial College Press).
Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M. S. and Toomre, J. 2003. The internal rotation of the Sun. Ann. Rev. Astron. Astrophys. 41, 599–643.Google Scholar
Thompson, S. D. 2005. Magnetoconvection in an inclined magnetic field: linear and weakly non-linear models. Mon. Not. Roy. Astron. Soc. 360, 1290–1304.Google Scholar
Thompson, S. D. 2006b. Modelling Magnetoconvection in Sunspots (Ph.D. dissertation, University of Cambridge).
Thompson, W. B. 1951. Thermal convection in a magnetic field. Phil. Mag. (7th Ser.) 42, 1417–1432.Google Scholar
Tiwari, S. K., van Noort, M., Lagg, A. and Solanki, S. K. 2013. Structure of sunspot penumbral filaments: A remarkable uniformity of properties. Astron. Astrophys. 557, A25.Google Scholar
Tobias, S. M. 1996. Grand minima in stellar dynamos. Astron. Astrophys. 307, L21–L24.Google Scholar
Tobias, S. M. 1997. The solar cycle: parity interactions and amplitude modulation. Astron. Astrophys. 322, 1007–1017.Google Scholar
Tobias, S. M. and Cattaneo, F. 2013. Shear-driven dynamo waves at high magnetic Reynolds number. Nature 497, 463–465.Google Scholar
Tobias, S. M. and Weiss, N. O. 2007a. The solar dynamo and the tachocline. In The Solar Tachocline, eds. D. W., Hughes, R., Rosner and N. O., Weiss (Cambridge: Cambridge University Press), 319–350.
Tobias, S. M. and Weiss, N. O. 2007b. Stellar dynamos. In Mathematical Aspects of Natural Dynamos, eds. E., Dormy and A. M., Soward (Boca Raton, FL: Grenoble Sciences/CRC Press), 281–311.
Tobias, S. M., Brummell, N. H., Clune, T. L. and Toomre, J. 1998. Pumping of magnetic fields by turbulent penetrative convection. Astrophys. J. 502, L177–L180.Google Scholar
Tobias, S. M., Brummell, N. H., Clune, T. L. and Toomre, J. 2001. Transport and storage of magnetic field by overshooting turbulent compressible convection. Astrophys. J. 549, 1183–1203.Google Scholar
Tobias, S. M., Cattaneo, F. and Boldyrev, S. 2013. MHD dynamos and turbulence. In Ten Chapters in Turbulence, eds. P. A., Davidson, Y., Kaneda and K. R., Sreenivasan (Cambridge: Cambridge University Press), 351–404.
Tuckerman, L. S. 2001. Thermosolutal and binary fluid convection as a 2 × 2 matrix problem. Physica D 156, 325–363.Google Scholar
Turner, J. S. 1973. Buoyancy Effects in Fluids (Cambridge: Cambridge University Press).
Unno, W. and Ando, H. 1979. Instability of a thin magnetic tube in the solar atmosphere. Geophys. Astrophys. Fluid Dyn. 12, 107–115.
Venkatakrishnan, P. 1986. Nonlinear development of convective instability within slender flux tubes. II – The effect of radiative heat transport. J. Astrophys. Astron. 6, 21–34.Google Scholar
Veronis, G. 1959. Cellular convection with finite amplitude in a rotating fluid. J. Fluid Mech. 5, 401–435.Google Scholar
Veronis, G. 1965. On finite-amplitude instability in thermohaline convection. J. Mar. Res. 23, 1–17.Google Scholar
Veronis, G. 1966. Motions at subcritical values of the Rayleigh number in a rotating fluid. J. Fluid Mech. 24, 545–554.Google Scholar
Vögler, A. and Schüissler, M. 2007. A solar surface dynamo. Astron. Astrophys. 465, L43–L46.Google Scholar
Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T. and Linde, T. 2005. Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335–351.Google Scholar
Walén, C. 1946. On the distribution of the solar general magnetic field and remarks concerning the geomagnetism and the solar rotation. Ark. Mat. Astr. Fys. 33A, No. 18.Google Scholar
Walén, C. 1949. On the Vibratory Rotation of the Sun (Stockholm: Henrik Lindstahls Bokhandel).
Watson, P. G. 1995. Sunspot Geometry and Magnetoconvection (Ph.D. dissertation: University of Cambridge).
Webb, A. R. and Roberts, B. 1978. Vertical motions in an intense magnetic flux tube. II. Convective instability. Solar Phys. 59, 249–274.Google Scholar
Weiss, N. O. 1964. Convection in the presence of restraints. Phil. Trans. Roy. Soc. Lond. A 256, 99–147.Google Scholar
Weiss, N. O. 1966. The expulsion of magnetic flux by eddies. Proc. Roy. Soc. Lond. A 293, 310–328.Google Scholar
Weiss, N. O. 1981a. Convection in an imposed magnetic field. Part 1. The development of nonlinear convection. J. Fluid Mech. 108, 247–272.Google Scholar
Weiss, N. O. 1981b. Convection in an imposed magnetic field. Part 2. The dynamical regime. J. Fluid Mech. 108, 273–289.Google Scholar
Weiss, N. O. 1981c. The interplay between magnetic fields and convection. J. Geophys. Res. 86, 11689–11694.Google Scholar
Weiss, N. O. 1991. Magnetoconvection. Geophys. Astrophys. Fluid Dyn. 62, 229–247.Google Scholar
Weiss, N. O. 2001. Turbulent magnetic fields in the Sun. Astron. Geophys. 42, 3.10–3.17.Google Scholar
Weiss, N. O. 2003. Modelling solar and stellar magnetoconvection. In Stellar Astrophysical Fluid Dynamics, eds. M. J., Thompson and J., Christensen-Dalsgaard (Cambridge: Cambridge University Press), 329–343.
Weiss, N. O. 2010. Modulation of the sunspot cycle. Astron. Geophys. 51, 3.9–3.15.Google Scholar
Weiss, N. O. 2012. Reflections on magnetoconvection, Geophys. Astrophys. Fluid. Dyn. 106, 353–371.Google Scholar
Weiss, N. O., Brownjohn, D. P., Hurlburt, N. E. and Proctor, M. R. E. 1990. Oscillatory convection in sunspot umbrae. Mon. Not. Roy. Astron. Soc. 245, 434–452.Google Scholar
Weiss, N. O., Brownjohn, D. P., Matthews, P. C. and Proctor, M. R. E. 1996. Photospheric convection in strong magnetic fields. Mon. Not. Roy. Astron. Soc. 283, 1153–1164.Google Scholar
Weiss, N. O., Proctor, M. R. E. and Brownjohn, D. P. 2002. Magnetic flux separation in photospheric convection. Mon. Not. Roy. Astron. Soc. 337, 293–304.Google Scholar
Weiss, N. O, Thomas, J. H., Brummell, N. H. and Tobias, S. M. 2004. The origin of penumbral structure in sunspots: downward pumping of magnetic flux. Astrophys. J. 600, 1073–1090.Google Scholar
White, D. B. 1988. The planforms and onset of convection with a temperature dependent viscosity. J. Fluid Mech. 191, 247–286.Google Scholar
Wiggins, S. 1990. Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer).
Winterbottom, D. M., Matthews, P. C. and Cox, S. M. 2005. Oscillatory pattern formation with a conserved quantity. Nonlinearity 18, 1031–1056.Google Scholar
Wissink, J. G., Hughes, D. W., Matthews, P. C. and Proctor, M. R. E. 2000a. The three-dimensional breakup of a magnetic layer. Mon. Not. Roy. Astron. Soc. 318, 501–510.Google Scholar
Wissink, J. G., Matthews, P. C., Hughes, D. W. and Proctor, M. R. E. 2000b Numerical simulations of buoyant magnetic flux tubes. Astrophys. J. 536, 982–997.Google Scholar
Woltjer, L. 1958. A theorem on force-free magnetic fields. Proc. Nat. Acad. Sci. 44, 489–491.Google Scholar
Yelles Chaouche., L., Moreno Insertis, F., Martínez Pillet, V., et al. 2011. Mesogranulation and the solar surface magnetic field distribution. Astrophys. J. 727, L30.Google Scholar
Zeldovich, Y. B., Ruzmaikin, A. A. and Sokoloff, D. D. 1983. Magnetic Fields in Astrophysics (New York: Gordon and Breach).
Zhugzhda, Y. D. 1970. The properties of low-frequency oscillatory convection in a strong magnetic field. Astron. Zh. 47, 340–350(Soviet Ast. 14, 274–282).Google Scholar
Zwaan, C. 1978. On the appearance of magnetic flux in the solar photosphere. Sol. Phys. 60, 213–240.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • N. O. Weiss, University of Cambridge, M. R. E. Proctor, University of Cambridge
  • Book: Magnetoconvection
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511667459.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • N. O. Weiss, University of Cambridge, M. R. E. Proctor, University of Cambridge
  • Book: Magnetoconvection
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511667459.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • N. O. Weiss, University of Cambridge, M. R. E. Proctor, University of Cambridge
  • Book: Magnetoconvection
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511667459.015
Available formats
×