Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Thermoelastic behavior of laminated composites
- 3 Strength of continuous-fiber composites
- 4 Short-fiber composites
- 5 Hybrid composites
- 6 Two-dimensional textile structural composites
- 7 Three-dimensional textile structural composites
- 8 Flexible composites
- 9 Nonlinear elastic finite deformation of flexible composites
- References
- Author index
- Subject index
Preface
Published online by Cambridge University Press: 10 December 2009
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Thermoelastic behavior of laminated composites
- 3 Strength of continuous-fiber composites
- 4 Short-fiber composites
- 5 Hybrid composites
- 6 Two-dimensional textile structural composites
- 7 Three-dimensional textile structural composites
- 8 Flexible composites
- 9 Nonlinear elastic finite deformation of flexible composites
- References
- Author index
- Subject index
Summary
The science and technology of composite materials are based on a design concept which is fundamentally different from that of conventional structural materials. Metallic alloys, for instance, generally exhibit a uniform field of material properties; hence, they can be treated as homogeneous and isotropic. Fiber composites, on the other hand, show a high degree of spacial variation in their microstructures, resulting in non-uniform and anisotropic properties. Furthermore, metallic materials can be shaped into desired geometries through secondary work (e.g. rolling, extrusion, etc.); the macroscopic configuration and the microscopic structure of a metallic component are related through the processing route it undergoes. With fiber composites, the co-relationship between microstructure and macroscopic configuration and their dependence on processing technique are even stronger. As a result, composites technology offers tremendous potential to design materials for specific end uses at various levels of scale.
First, at the microscopic level, the internal structure of a component can be controlled through processing. A classical example is the molding of short-fiber composites, where fiber orientation, fiber length and fiber distribution may be controlled to yield the desired local properties. Other examples can be found in the filament winding of continuous fibers, hybridization of fibers, and textile structural forms based upon weaving, braiding, knitting, etc. In all these cases, the desired local stiffness, strength, toughness and other prespecified properties may be achieved by controlling the fiber type, orientation, and volume fraction throughout the structural component.
- Type
- Chapter
- Information
- Microstructural Design of Fiber Composites , pp. xvii - xxPublisher: Cambridge University PressPrint publication year: 1992