Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T06:49:24.524Z Has data issue: false hasContentIssue false

4 - Modelling Water Resources for Nature-based Solutions

Published online by Cambridge University Press:  13 March 2020

Neil Sang
Affiliation:
Swedish University of Agricultural Sciences
Get access

Summary

This chapter first summarises different approaches to hydrological and hydrochemical modelling of freshwater, and then goes on to provide an overview of how models are being used in practice to address typical policy and environmental issues, with a special focus on Nature-based Solutions (NBS). For a broader overview of hydrologic and water quality models the reader is referred to review articles such as Singh and Woolhiser (2002), Borah and Bera (2003), Cox (2003), Kampf and Burges (2007), Schoumans et al. (2009a, 2009b), Arthington et al. (2010), Ampadu et al. (2013), Kelly et al (2013), Li and Heap (2014). Several categories of NBS approaches, as defined by Cohen-Schacham et al. (2016) relate to the water environment. These include: climate adaptation services (e.g. modification of water use through changed agricultural practice), natural/green infrastructure (e.g. natural flood retention ponds), integrated water resources management to meet the needs of multiple stakeholders, and area-based conservation (e.g. protection of wetland areas). These approaches are not specifically new, but can be clustered as part of the overarching NBS concept and contribute to the development of an operational framework for NBS. This chapter considers the role of modelling in evaluating and designing NBS for water.

Type
Chapter
Information
Modelling Nature-based Solutions
Integrating Computational and Participatory Scenario Modelling for Environmental Management and Planning
, pp. 100 - 151
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E. & Rasmussen, J. 1986. An introduction to the European Hydrological System – Systeme Hydrologique Europeen, SHE. 1. History and philosophy of a physically-based, distributed modeling system. Journal of Hydrology, 87, 4559.Google Scholar
Ampadu, B., Chappell, N. A. & Kasei, R. A. 2013. Rainfall–riverflow modelling approaches: making a choice of data-based mechanistic modelling approach for data limited catchments: a review. Canadian Journal of Pure & Applied Sciences, 7, 25712580.Google Scholar
Andersson, L., Olsson, J. A., Arheimer, B. & Jonsson, A. 2008. Use of participatory scenario modelling as platforms in stakeholder dialogues. Water SA, 34, 439447.CrossRefGoogle Scholar
Arnold, J. G. & Fohrer, N. 2005. SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes, 19, 563572.CrossRefGoogle Scholar
Arnold, J. G., Srinivasan, R., Muttiah, R. S. & Williams, J. R. 1998. Large area hydrologic modeling and assessment – Part 1: Model development. Journal of the American Water Resources Association, 34, 7389.Google Scholar
Arthington, A. H., Naiman, R. J., McClain, M. E. & Nilsson, C. 2010. Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshwater Biology, 55, 116.Google Scholar
Baffaut, C. & Sadeghi, A. 2010. Bacteria modeling with SWAT for assessment and remediation studies: a review. Transactions of the ASABE, 53, 15851594.CrossRefGoogle Scholar
Barlund, I., Kirkkala, T., Malve, O. & Kamari, J. 2007. Assessing SWAT model performance in the evaluation of management actions for the implementation of the Water Framework Directive in a Finnish catchment. Environmental Modelling & Software, 22, 719724.CrossRefGoogle Scholar
Barthel, R., Seidl, R., Nickel, D. & Buttner, H. 2016. Global change impacts on the Upper Danube Catchment (Central Europe): a study of participatory modelling. Regional Environmental Change, 16, 15951611.CrossRefGoogle Scholar
Barton, D. N., Saloranta, T., Moe, S. J., Eggestad, H. O. & Kuikka, S. 2008. Bayesian belief networks as a meta-modelling tool in integrated river basin management – pros and cons in evaluating nutrient abatement decisions under uncertainty in a Norwegian river basin. Ecological Economics, 66, 91104.Google Scholar
Beier, C., Emmett, B. A., Penuelas, J., Schmidt, I. K., Tietema, A., Estiarte, M., et al. 2008. Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Science of the Total Environment, 407, 692697.CrossRefGoogle ScholarPubMed
Bende, U. 1997. Regional hydrochemical modelling by delineation of chemical hydrological response units (CHRUs) within a GIS: an approach of observing man-made impacts in the Broel River catchment (Germany). Mathematics and Computers in Simulation, 43, 305312.Google Scholar
Beven, K. 1993. Prophecy, reality and uncertainty in distributed hydrological modeling. Advances in Water Resources, 16, 4151.CrossRefGoogle Scholar
Beven, K. & Freer, J. 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 249, 1129.CrossRefGoogle Scholar
Beven, K. J., Kirkby, M. J., Schofield, N. & Tagg, A. F. 1984. Testing a physically-based flood forecasting-model (TOPMODEL) for 3 UK catchments. Journal of Hydrology, 69, 119143.CrossRefGoogle Scholar
Bicknell, B. R. 1997. Hydrological Simulation Program – Fortran. User’s Manual for Version 11. Imhoff, J. C., Kittle, J. L. Jr, Donigian, A. S. Jr & Johanson, R. C. (eds.). Athens, GA: US Environmental Protection Agency, National Exposure Research Laboratory, EPA/600/R-97/080.Google Scholar
Bicknell, B. R., Imhoff, J. C., Kittle, J. L., Jobes, T. H. & Donigian, A. S. 2005. Hydrological Simulation Program – FORTRAN. User’s Manual for Release 12.2. Athens, GA: US Environmental Protection Agency, Ecosystem Research Division, and Reston, VA: US Geological Survey, Office of Surface Water.Google Scholar
Boatman, N., Ramwell, C., Parry, H., Jones, N., Bishop, J., Gaskell, P., et al. 2008. A Review of Environmental Benefits Supplied by Agri-environment Schemes. Peterborough: Land Use Policy Group (FST20/79/041).Google Scholar
Borah, D. K. & Bera, M. 2003. Watershed-scale hydrologic and nonpoint-source pollution models: review of mathematical bases. Transactions of the ASABE, 46, 15531566.CrossRefGoogle Scholar
Borah, D. K., Yagow, G., Saleh, A., Barnes, P. L., Rosenthal, W., Krug, E. C., et al. 2006. Sediment and nutrient modeling for TMDL development and implementation. Transactions of the ASABE, 49, 967986.Google Scholar
Borken, W. & Matzner, E. 2009. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 15, 808824.CrossRefGoogle Scholar
Borowski, I. & Hare, M. 2007. Exploring the gap between water managers and researchers: difficulties of model-based tools to support practical water management. Water Resources Management, 21, 10491074.CrossRefGoogle Scholar
Borsuk, M. E., Stow, C. A. & Reckhow, K. H. 2004. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecological Modelling, 173, 219239.Google Scholar
Bosch, D. D., Bingner, R. L., Theurer, F. D., Felton, G. & Chaubey, I. 1998. Evaluation of the AnnAGNPS water quality model. Presented at the ASAE Annual International Meeting, Orlando, Florida, USA, 12–16 July 1998.Google Scholar
Bouraoui, F. & Grizzetti, B. 2014. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Science of the Total Environment, 468, 12671277.Google Scholar
Bradford, S. A., Morales, V. L., Zhang, W., Harvey, R. W., Packman, A. I., Mohanram, A., et al. 2013. Transport and fate of microbial pathogens in agricultural settings. Critical Reviews in Environmental Science and Technology, 43, 775893.Google Scholar
Brouziyne, Y., Abouabdillah, A., Hirich, A., Bouabid, R., Zaaboul, R. & Benaabidate, L. 2018. Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios. Agricultural Systems, 162, 154163.CrossRefGoogle Scholar
Bruelheide, H., Jandt, U., Gries, D., Thomas, F. M., Foetzki, A., Buerkert, A., et al. 2003. Vegetation changes in a river oasis on the southern rim of the Taklamakan Desert in China between 1956 and 2000. Phytocoenologia, 33, 801818.Google Scholar
Castelletti, A. & Soncini-Sessa, R. 2007. Bayesian networks and participatory modelling in water resource management. Environmental Modelling & Software, 22, 10751088.CrossRefGoogle Scholar
Chappell, N. A., McKenna, P., Bidin, K., Douglas, I. & Walsh, R. P. D. 1999. Parsimonious modelling of water and suspended sediment flux from nested catchments affected by selective tropical forestry. Philosophical Transactions of the Royal Society B – Biological Sciences, 354, 18311846.CrossRefGoogle ScholarPubMed
Cherry, K. A., Shepherd, M., Withers, P. J. A. & Mooney, S. J. 2008. Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: a review of methods. Science of the Total Environment, 406, 123.CrossRefGoogle Scholar
Christiaens, K. & Feyen, J. 2001. Analysis of uncertainties associated with different methods to determine soil hydraulic properties and their propagation in the distributed hydrological MIKE SHE model. Journal of Hydrology, 246, 6381.CrossRefGoogle Scholar
Chu, T. W., Shirmohammadi, A., Montas, H. & Sadeghi, A. 2004. Evaluation of the SWAT model’s sediment and nutrient components in the piedmont physiographic region of Maryland. Transactions of the ASABE, 47, 15231538.CrossRefGoogle Scholar
Cohen-Shacham, E., Janzen, C., Maginnis, S. & Walters, G. 2016. Nature-based Solutions to Address Global Societal Challenges. Gland: IUCN. DOI:https://doi.org/10.2305/IUCN.CH.2016.13.enCrossRefGoogle Scholar
Collins, A. L. & McGonigle, D. F. 2008. Monitoring and modelling diffuse pollution from agriculture for policy support: UK and European experience. Environmental Science & Policy, 11, 97101.CrossRefGoogle Scholar
Collins, A. L., Stutter, M. & Kronvang, B. 2014. Mitigating diffuse pollution from agriculture: international approaches and experience. Science of the Total Environment, 468, 11731177.Google Scholar
Collins, A. L., Zhang, Y. S., Winter, M., Inman, A., Jones, J. I., Johnes, P. J., et al. 2016. Tackling agricultural diffuse pollution: what might uptake of farmer-preferred measures deliver for emissions to water and air? Science of the Total Environment, 547, 261289.CrossRefGoogle ScholarPubMed
Colloff, M. J., Lavorel, S., Wise, R. M., Dunlop, M., Overton, I. C. & Williams, K. J. 2016. Adaptation services of floodplains and wetlands under transformational climate change. Ecological Applications, 26, 10031017.CrossRefGoogle ScholarPubMed
Conan, C., Bouraoui, F., Turpin, N., De Marsily, G. & Bidoglio, G. 2003. Modeling flow and nitrate fate at catchment scale in Brittany (France). Journal of Environmental Quality, 32, 20262032.CrossRefGoogle ScholarPubMed
Cools, J., Meyus, Y., Woldeamlak, S. T., Batelaan, O. & Smedt, De, F. 2006. Large-scale GIS-based hydrogeological modeling of Flanders: a tool for groundwater management. Environmental Geology, 50, 12011209.CrossRefGoogle Scholar
Cosby, B. J., Ferrier, R. C., Jenkins, A. & Wright, R. F. 2001. Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrology and Earth System Sciences, 5, 499517.CrossRefGoogle Scholar
Couture, R.-M., Tominaga, K., Starrfelt, J., Moe, S. J., Kaste, O. & Wright, R. F. 2014. Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment–lake system under changing land-use and climate. Environmental Science-Processes & Impacts, 16, 15881599.CrossRefGoogle Scholar
Cox, B. A. 2003. A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers. Science of the Total Environment, 314, 335377.Google Scholar
Daggupati, P., Douglas-Mankin, K. R., Sheshukov, A. Y., Barnes, P. L. & Devlin, D. L. 2011. Field-level targeting using SWAT: mapping output from HRUs to fields and assessing limitations of GIS input data. Transactions of the ASABE, 54, 501514.CrossRefGoogle Scholar
Davison, P. S., Withers, P. J. A., Lord, E. I., Betson, M. J. & Stroemqvist, J. 2008. PSYCHIC – a process-based model of phosphorus and sediment mobilisation and delivery within agricultural catchments. Part 1: model description and parameterisation. Journal of Hydrology, 350, 290302.CrossRefGoogle Scholar
De Lange, W. J., Prinsen, G. F., Hoogewoud, J. C., Veldhuizen, A. A., Verkaik, J., Essink, G. H. P. O., et al. 2014. An operational, multi-scale, multi-model system for consensus-based, integrated water management and policy analysis: the Netherlands Hydrological Instrument. Environmental Modelling & Software, 59, 98108.Google Scholar
De Vente, J., Poesen, J. & Verstraeten, G. 2005. The application of semi-quantitative methods and reservoir sedimentation rates for the prediction of basin sediment yield in Spain. Journal of Hydrology, 305, 6386.CrossRefGoogle Scholar
De Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., et al. 2013. Predicting soil erosion and sediment yield at regional scales: where do we stand? Earth-Science Reviews, 127, 1629.CrossRefGoogle Scholar
Dean, S., Freer, J., Beven, K., Wade, A. J. & Butterfield, D. 2009. Uncertainty assessment of a process-based integrated catchment model of phosphorus. Stochastic Environmental Research and Risk Assessment, 23, 9911010.Google Scholar
Del Grosso, S., Ojima, D., Parton, W., Mosier, A., Peterson, G. & Schimel, D. 2002. Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model. Environmental Pollution, 116, S75S83.CrossRefGoogle ScholarPubMed
Dong, C., Schoups, G. & Van De Giesen, N. 2013. Scenario development for water resource planning and management: a review. Technological Forecasting and Social Change, 80, 749761.CrossRefGoogle Scholar
Doody, D.G., Archbold, M., Foy, R. H. & Flynn, R. 2012. Approaches to the implementation of the Water Framework Directive: targeting mitigation measures at critical source areas of diffuse phosphorus in Irish catchments. Journal of Environmental Management, 93, 225234.CrossRefGoogle Scholar
Dorner, S. M., Anderson, W. B., Slawson, R. M., Kouwen, N. & Huck, P. M. 2006. Hydrologic modeling of pathogen fate and transport. Environmental Science & Technology, 40, 47464753.Google Scholar
Dunn, S. M., Brown, I., Sample, J. & Post, H. 2012a. Relationships between climate, water resources, land use and diffuse pollution and the significance of uncertainty in climate change. Journal of Hydrology, 434, 1935.CrossRefGoogle Scholar
Dunn, S. M., Darling, W. G., Birkel, C. & Bacon, J. R. 2012b. The role of groundwater characteristics in catchment recovery from nitrate pollution. Hydrology Research, 43, 560575.CrossRefGoogle Scholar
Dunn, S. M., Johnston, L., Taylor, C., Watson, H., Cook, Y. & Langan, S. J. 2013. Capability and limitations of a simple grid-based model for simulating land use influences on stream nitrate concentrations. Journal of Hydrology, 507, 110123.Google Scholar
Dunn, S. M., Lilly, A., Degroote, J. & Vinten, A. A. 2004a. Nitrogen risk assessment model for Scotland: II. Hydrological transport and model testing. Hydrology and Earth System Sciences, 8, 205219.CrossRefGoogle Scholar
Dunn, S. M., Vinten, A. J. A., Lilly, A., Degroote, J., Sutton, M. A. & Mcgechan, M. 2004b. Nitrogen risk assessment model for Scotland: I. Nitrogen leaching. Hydrology and Earth System Sciences, 8, 191204.CrossRefGoogle Scholar
Ejaz Qureshi, M., Whitten, S. M., Mainuddin, M., Marvanek, S. & Elmahdi, A. 2013. A biophysical and economic model of agriculture and water in the Murray–Darling Basin, Australia. Environmental Modelling & Software, 41, 98106.Google Scholar
Exbrayat, J. F., Viney, N. R., Frede, H. G. & Breuer, L. 2013. Using multi-model averaging to improve the reliability of catchment scale nitrogen predictions. Geoscientific Model Development, 6, 117125.CrossRefGoogle Scholar
Farkas, C., Beldring, S., Bechmann, M. & Deelstra, J. 2013. Soil erosion and phosphorus losses under variable land use as simulated by the INCA-P model. Soil Use and Management, 29, 124137.Google Scholar
Ferguson, C., Husman, A. M. D., Altavilla, N., Deere, D. & Ashbolt, N. 2003. Fate and transport of surface water pathogens in watersheds. Critical Reviews in Environmental Science and Technology, 3, 299361.CrossRefGoogle Scholar
Futter, M. N., Butterfield, D., Cosby, B. J., Dillon, P. J., Wade, A. J. & Whitehead, P. G. 2007. Modeling the mechanisms that control in-stream dissolved organic carbon dynamics in upland and forested catchments. Water Resources Research, 43(2).CrossRefGoogle Scholar
Futter, M. N., Poste, A. E., Butterfield, D., Dillon, P. J., Whitehead, P. G., Dastoor, A. P., et al. 2012. Using the INCA-Hg model of mercury cycling to simulate total and methyl mercury concentrations in forest streams and catchments. Science of the Total Environment, 424, 219231.CrossRefGoogle ScholarPubMed
Gassman, P. W., Reyes, M. R., Green, C. H. & Arnold, J. G. 2007. The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE, 50, 12111250.Google Scholar
Gburek, W. J., Sharpley, A. N., Heathwaite, L. & Folmar, G. J. 2000. Phosphorus management at the watershed scale: a modification of the phosphorus index. Journal of Environmental Quality, 29, 130144.Google Scholar
Glavan, M., White, S. M. & Holman, I. P. 2012. Water quality targets and maintenance of valued landscape character – experience in the Axe catchment, UK. Journal of Environmental Management, 103, 142153.Google Scholar
Gooday, R. D., Anthony, S. G., Chadwick, D. R., Newell-Price, P., Harris, D., Duethmann, D., et al. 2014. Modelling the cost-effectiveness of mitigation methods for multiple pollutants at farm scale. Science of the Total Environment, 468, 11981209.CrossRefGoogle ScholarPubMed
Graham, D. & Butts, M. 2005. Flexible integrated watershed modeling with MIKE SHE. In: Singh, V. P. & Frevert, D. K. (eds.) Watershed Modelling, pp. 245272. Boca Raton, FL: CRC Press.Google Scholar
Haygarth, P. M., Condron, L. M., Heathwaite, A. L., Turner, B. L. & Harris, G. P. 2005. The phosphorus transfer continuum: linking source to impact with an interdisciplinary and multi-scaled approach. Science of the Total Environment, 344, 514.CrossRefGoogle ScholarPubMed
Heathwaite, A. L. 2003. Making process-based knowledge useable at the operational level: a framework for modelling diffuse pollution from agricultural land. Environmental Modelling & Software, 18, 753760.CrossRefGoogle Scholar
Henriksen, H. J., Troldborg, L., Hojberg, A. L. & Refsgaard, J. C. 2008. Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater-surface water model. Journal of Hydrology, 348, 224240.Google Scholar
Hojberg, A. L., Refsgaard, J. C., Van Geer, F., Jorgensen, L. F. & Zsuffa, I. 2007. Use of models to support the monitoring requirements in the Water Framework Directive. Water Resources Management, 21, 16491672.CrossRefGoogle Scholar
Hojberg, A. L., Troldborg, L., Stisen, S., Christensen, B. B. S. & Henriksen, H. J. 2013. Stakeholder driven update and improvement of a national water resources model. Environmental Modelling & Software, 40, 202213.CrossRefGoogle Scholar
Holvoet, K., Gevaert, V., Van Griensven, A., Seuntjens, P. & Vanrolleghem, P. A. 2007. Modelling the effectiveness of agricultural measures to reduce the amount of pesticides entering surface waters. Water Resources Management, 21, 20272035.Google Scholar
Howitt, R. E. 1995. Positive mathematical-programming. American Journal of Agricultural Economics, 77, 329342.CrossRefGoogle Scholar
Iho, A. 2005. Does scale matter? Cost-effectiveness of agricultural nutrient abatement when target level varies. Agricultural and Food Science, 14, 277292.CrossRefGoogle Scholar
Islam, N., Sadiq, R., Rodriguez, M. J. & Francisque, A. 2013. Evaluation of source water protection strategies: a fuzzy-based model. Journal of Environmental Management, 121, 191201.CrossRefGoogle ScholarPubMed
Jajarmizadeh, M., Harun, S. & Salarpour, M. 2012. A review on theoretical consideration and types of models in hydrology. Journal of Environmental Science and Technology, 5, 249261.Google Scholar
Jakeman, A. J., Letcher, R. A. & Norton, J. P. 2006. Ten iterative steps in development and evaluation of environmental models. Environmental Modelling & Software, 21, 602614.CrossRefGoogle Scholar
James, R. T., Martin, J., Wool, T. & Wang, P. F. 1997. A sediment resuspension and water quality model of Lake Okeechobee. Journal of the American Water Resources Association, 33, 661680.CrossRefGoogle Scholar
Jarvie, H. P., Jickells, T. D., Skeffington, R. A. & Withers, P. J. A. 2012. Climate change and coupling of macronutrient cycles along the atmospheric, terrestrial, freshwater and estuarine continuum. Science of the Total Environment, 434, 252258.Google Scholar
Jessel, B. & Jacobs, J. 2005. Land use scenario development and stakeholder involvement as tools for watershed management within the Havel River Basin. Limnologica, 35, 220233.Google Scholar
Johnes, P. J. 1996. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach. Journal of Hydrology, 183, 323349.Google Scholar
Jonsson, A. C., Andersson, L., Olsson, J. A. & Johansson, M. 2011. Defining goals in participatory water management: merging local visions and expert judgements. Journal of Environmental Planning and Management, 54, 909935.Google Scholar
Junier, S. & Mostert, E. 2014. A decision support system for the implementation of the Water Framework Directive in the Netherlands: process, validity and useful information. Environmental Science & Policy, 40, 4956.Google Scholar
Kampf, S. K. & Burges, S. J. 2007. A framework for classifying and comparing distributed hillslope and catchment hydrologic models. Water Resources Research, 43(5).Google Scholar
Keck, F. & Lepori, F. 2012. Can we predict nutrient limitation in streams and rivers? Freshwater Biology, 57, 14101421.Google Scholar
Kelly, R. A., Jakeman, A. J., Barreteau, O., Borsuk, M. E., Elsawah, S., Hamilton, S. H., et al. 2013. Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling & Software, 47, 159181.Google Scholar
Klauer, B., Rode, M., Schiller, J., Franko, U. & Mewes, M. 2012. Decision support for the selection of measures according to the requirements of the EU Water Framework Directive. Water Resources Management, 26, 775798.Google Scholar
Köhne, J. M., Köhne, S. H. & Simunek, J. 2009. A review of model applications for structured soils: b) Pesticide transport. Journal of Contaminant Hydrology, 104, 3660. DOI:10.1016/j.jconhyd.2008.10.003CrossRefGoogle ScholarPubMed
Kouwen, N., Soulis, E. D., Pietroniro, A., Donald, J. & Harrington, R. A. 1993. Grouped response units for distributed hydrologic modeling. Journal of Water Resources Planning and Management – ASCE, 119, 289305.Google Scholar
Kronvang, B., Behrendt, H., Andersen, H. E., Arheimer, B., Barr, A., Borgvang, S. A., et al. 2009. Ensemble modelling of nutrient loads and nutrient load partitioning in 17 European catchments. Journal of Environmental Monitoring, 11, 572583.CrossRefGoogle ScholarPubMed
Krysanova, V., Muller-Wohlfeil, D. I. & Becker, A. 1998. Development and test of a spatially distributed hydrological water quality model for mesoscale watersheds. Ecological Modelling, 106, 261289.Google Scholar
Lake, I. R., Lovett, A. A., Hiscock, K. M., Betson, M., Foley, A., Sunnenberg, G., et al. 2003. Evaluating factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS. Journal of Environmental Management, 68, 315328.Google Scholar
Ledesma, J. L. J., Kohler, S. J. & Futter, M. N. 2012. Long-term dynamics of dissolved organic carbon: implications for drinking water supply. Science of the Total Environment, 432, 111.CrossRefGoogle ScholarPubMed
Lescot, J.-M., Bordenave, P., Petit, K. & Leccia, O. 2013. A spatially-distributed cost-effectiveness analysis framework for controlling water pollution. Environmental Modelling & Software, 41, 107122.Google Scholar
Li, J. & Heap, A. D. 2014. Spatial interpolation methods applied in the environmental sciences: a review. Environmental Modelling & Software, 53, 173189.Google Scholar
Luo, Y., Ficklin, D. L., Liu, X. & Zhang, M. 2013. Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Science of the Total Environment, 450, 7282.Google Scholar
MacDonald, G. K., Bennett, E. M. & Taranu, Z. E. 2012. The influence of time, soil characteristics, and land-use history on soil phosphorus legacies: a global meta-analysis. Global Change Biology, 18, 19041917.Google Scholar
Macleod, C. J. A., Falloon, P. D., Evans, R. & Haygarth, P. M. 2012. The effects of climate change on the mobilization of diffuse substances from agricultural systems. In: Sparks, D. L. (ed.) Advances in Agronomy, Vol. 115, pp. 4177. Oxford: Elsevier.Google Scholar
Mahajan, R., Uber, J. G. & Eisenberg, J. N. S. 2013. A dynamic model to quantify pathogen loadings from Combined Sewer Overflows suitable for river basin scale exposure assessments. Water Quality, Exposure and Health, 5, 163172.CrossRefGoogle Scholar
Maier, H. R. & Dandy, G. C. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software, 15, 101124.CrossRefGoogle Scholar
Maier, H. R. & Dandy, G. C. 2001. Neural network based modelling of environmental variables: a systematic approach. Mathematical and Computer Modelling, 33, 669682.CrossRefGoogle Scholar
Malone, R. W., Ahuja, L. R., Ma, L. W., Wauchope, R. D., Ma, Q. L. & Rojas, K. W. 2004. Application of the Root Zone Water Quality Model (RZWQM) to pesticide fate and transport: an overview. Pest Management Science, 60, 205221.Google Scholar
McDowell, R. W., Nash, D., George, A., Wang, Q. J. & Duncan, R. 2009. Approaches for quantifying and managing diffuse phosphorus exports at the farm/small catchment scale. Journal of Environmental Quality, 38, 19681980.Google Scholar
McIntyre, N., Jackson, B., Wade, A. J., Butterfield, D. & Wheater, H. S. 2005. Sensitivity analysis of a catchment-scale nitrogen model. Journal of Hydrology, 315, 7192.Google Scholar
Meals, D. W., Dressing, S. A. & Davenport, T. E. 2010. Lag time in water quality response to best management practices: a review. Journal of Environmental Quality, 39, 8596.Google Scholar
Murphy, J. M., Sexton, D. M. H., Jenkins, G. J., Booth, B. B. B., Brown, C. C., Clark, R. T., et al. 2009. UK Climate Projections Science Report: Climate Change Projections. Exeter: Met Office Hadley Centre.Google Scholar
Neitsch, S. L., Arnold, J. G., Kiniry, J. R. & Williams, J. R. 2011. Soil and Water Assessment Tool Theoretical Documentation Version 2009. College Station, TX: Texas Water Resources Institute.Google Scholar
Nesshöver, C., Assmuth, T., Irvine, K. N., Rusch, G. M., Waylen, K. A., Delbaere, B., et al. 2017. The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Science of the Total Environment, 579, 12151227.Google Scholar
Neumann, S., Kaphengst, T., McFarland, K. & Stadler, J. 2014. Nature-based Approaches for Climate Change Mitigation and Adaptation. Bonn: German Federal Agency for Nature Conservation.Google Scholar
Newell Price, J. P., Harris, D., Taylor, M., Williams, J. R., Anthony, S. G., Duethmann, D., et al. 2011. An Inventory of Mitigation Methods and Guide to their Effects on Diffuse Water Pollution, Greenhouse Gas Emissions and Ammonia Emissions from Agriculture. Abingdon: ADAS.Google Scholar
Noges, P., Van De Bund, W., Cardoso, A. C., Solimini, A. G. & Heiskanen, A.-S. 2009. Assessment of the ecological status of European surface waters: a work in progress. Hydrobiologia, 633, 197211.CrossRefGoogle Scholar
Novotna, B., Bochove, Van, E. & Theriault, G. 2014. Potential ecological impact of climate change on the water quality of an intensively managed agricultural watershed in Quebec, Canada. Journal of Water and Climate Change, 5, 8199.Google Scholar
Olesen, J. E., Carter, T. R., Diaz-Ambrona, C. H., Fronzek, S., Heidmann, T., Hickler, T., et al. 2007. Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change, 81, 123143.Google Scholar
Osenbrück, K., Fiedler, S., Knöller, K., Weise, S. M., Sültenfuß, J., Oster, H., et al. 2006. Timescales and development of groundwater pollution by nitrate in drinking water wells of the Jahna‐Aue, Saxonia, Germany. Water Resources Research, 42(12). https://doi.org/10.1029/2006WR004977Google Scholar
Pachepsky, Y. A., Smettem, K. R. J., Vanderborght, J., Herbst, M., Vereecken, H. & Wosten, J. H. M. 2004. Reality and Fiction of Models and Data in Soil Hydrology. Dordrecht: Springer.Google Scholar
Panagopoulos, Y., Makropoulos, C., Baltas, E. & Mimikou, M. 2011. SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations. Ecological Modelling, 222, 35003512.Google Scholar
Parry, M. L., Fischer, C., Livermore, M., Rosenzweig, C., Iglesias, A. 1999. Climate change and world food security: a new assessment. Global Environmental Change, 9, 17.Google Scholar
Payraudeau, S. & Gregoire, C. 2012. Modelling pesticides transfer to surface water at the catchment scale: a multi-criteria analysis. Agronomy for Sustainable Development, 32, 479500.Google Scholar
Phillips, S. W. 2006. US Geological Survey Chesapeake Bay Studies: Scientific Solutions for a Healthy Bay and Watershed. Reston, VA: US Department of the Interior, US Geological Survey.Google Scholar
Pistocchi, A., Sarigiannis, D. A. & Vizcaino, P. 2010. Spatially explicit multimedia fate models for pollutants in Europe: state of the art and perspectives. Science of the Total Environment, 408, 38173830.Google Scholar
Preston, S. D., Alexander, R. B., Woodside, M. D. & Hamilton, P. A. 2009. Sparrow Modeling – Enhancing Understanding of the Nation’s Water Quality. Reston, VA: US Geological Survey, Fact Sheet 2009–3019.Google Scholar
Prommer, H., Barry, D. A. & Zheng, C. 2003. MODFLOW/MT3DMS-based reactive multicomponent transport modeling. Ground Water, 41, 247257.CrossRefGoogle ScholarPubMed
Quinn, P. 2004. Scale appropriate modelling: representing cause-and-effect relationships in nitrate pollution at the catchment scale for the purpose of catchment scale planning. Journal of Hydrology, 291, 197217.Google Scholar
Quinn, P., Beven, K., Chevallier, P. & Planchon, O. 1991. The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes, 5, 5979.Google Scholar
Radcliffe, D. E., Freer, J. & Schoumans, O. 2009. Diffuse phosphorus models in the United States and Europe: their usages, scales, and uncertainties. Journal of Environmental Quality, 38, 19561967.Google Scholar
Rankinen, K., Granlund, K., Futter, M. N., Butterfield, D., Wade, A. J., Skeffington, R., et al. 2013. Controls on inorganic nitrogen leaching from Finnish catchments assessed using a sensitivity and uncertainty analysis of the INCA-N model. Boreal Environment Research, 18, 373386.Google Scholar
Reaney, S. M., Lane, S. N., Heathwaite, A. L. & Dugdale, L. J. 2011. Risk-based modelling of diffuse land use impacts from rural landscapes upon salmonid fry abundance. Ecological Modelling, 222, 10161029.CrossRefGoogle Scholar
Reckhow, K. H. 1999. Water quality prediction and probability network models. Canadian Journal of Fisheries and Aquatic Sciences, 56, 11501158.Google Scholar
Refsgaard, J. C. & Storm, B. 1995. MIKE SHE. In: Singh, V. P. (ed.) Computer Models of Watershed Hydrology, pp. 809846. Lone Tree, CO: Water Resource Publications.Google Scholar
Refsgaard, J. C., Van Der Sluijs, J. P., Brown, J. & Van Der Keur, P. 2006. A framework for dealing with uncertainty due to model structure error. Advances in Water Resources, 29, 15861597.Google Scholar
Refsgaard, J. C., Van Der Sluijs, J. P., Hojberg, A. L. & Vanrolleghem, P. A. 2007. Uncertainty in the environmental modelling process – a framework and guidance. Environmental Modelling & Software, 22, 15431556.CrossRefGoogle Scholar
Riedo, M., Grub, A., Rosset, M. & Fuhrer, J. 1998. A pasture simulation model for dry matter production, and fluxes of carbon, nitrogen, water and energy. Ecological Modelling, 105, 141183.Google Scholar
Ritter, L., Solomon, K., Sibley, P., Hall, K., Keen, P., Mattu, G., et al. 2002. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. Journal of Toxicology and Environmental Health Part A Current Issues, 65, 1142.Google Scholar
Rizvi, A. R., Barrow, E., Zapata, F., Cordero, D., Podvin, K., Kutegeka, S., et al. 2014. Ecosystem-based Adaptation: Building on No Regret Adaptation Measures. Gland: International Union for Conservation of Nature, Technical Paper.Google Scholar
Romanowicz, R. J., Young, P. C., Beven, K. J. & Pappenberger, F. 2008. A data based mechanistic approach to nonlinear flood routing and adaptive flood level forecasting. Advances in Water Resources, 31, 10481056.Google Scholar
Salmon-Monviola, J., Moreau, P., Benhamou, C., Durand, P., Merot, P., Oehler, F., et al. 2013. Effect of climate change and increased atmospheric CO2 on hydrological and nitrogen cycling in an intensive agricultural headwater catchment in western France. Climatic Change, 120, 433447.Google Scholar
Saloranta, T. M., Kamari, J., Rekolainen, S. & Malve, O. 2003. Benchmark criteria: a tool for selecting appropriate models in the field of water management. Environmental Management, 32, 322333.Google Scholar
Sample, J. & Dunn, S. M. 2014. Spatially Distributed Modelling in Support of the 2013 Review of the Nitrates Directive. Aberdeen: Scotland’s Centre of Expertise for Waters.Google Scholar
Sarangi, A., Cox, C. A. & Madramootoo, C. A. 2007. Evaluation of the AnnAGNPS model for prediction of runoff and sediment yields in St Lucia watersheds. Biosystems Engineering, 97, 241256.Google Scholar
Schoumans, O. F., Chardon, W. J., Bechmann, M. E., Gascuel-Odoux, C., Hofman, G., Kronvang, B., et al. 2014. Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review. Science of the Total Environment, 468, 12551266.CrossRefGoogle ScholarPubMed
Schoumans, O. F., Silgram, M., Groenendijk, P., Bouraoui, F., Andersen, H. E., Kronvang, B., et al. 2009a. Description of nine nutrient loss models: capabilities and suitability based on their characteristics. Journal of Environmental Monitoring, 11, 506514.Google Scholar
Schoumans, O. F., Silgram, M., Walvoort, D. J. J., Groenendijk, P., Bouraoui, F., Andersen, H. E., et al. 2009b. Evaluation of the difference of eight model applications to assess diffuse annual nutrient losses from agricultural land. Journal of Environmental Monitoring, 11, 540553.Google Scholar
Shenk, G. W. & Linker, L .C. 2013. Development and application of the 2010 Chesapeake Bay Watershed total maximum daily load model. Journal of the American Water Resources Association, 49, 10421056.CrossRefGoogle Scholar
Shepherd, A., Wu, L. H., Chadwick, D. & Bol, R. 2011. A review of quantitative tools for assessing the diffuse pollution response to farmer adaptations and mitigation methods under climate change. In: Sparks, D. L. (ed.) Advances in Agronomy, Vol. 112. Oxford: Elsevier.Google Scholar
Silgram, M., Schoumans, O. F., Walvoort, D. J. J., Anthony, S. G., Groenendijk, P., Stromqvist, J., et al. 2009. Subannual models for catchment management: evaluating model performance on three European catchments. Journal of Environmental Monitoring, 11, 526539.Google Scholar
Simunek, J., Van Genuchten, M. T. & SEJNA, M. 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal, 7, 587600.Google Scholar
Singh, V. P. & Woolhiser, D. A. 2002. Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 7, 270292.Google Scholar
Smith, V. H. 2003. Eutrophication of freshwater and coastal marine ecosystems – a global problem. Environmental Science and Pollution Research, 10, 126139.CrossRefGoogle ScholarPubMed
Sokolova, E., Astrom, J., Pettersson, T. J. R., Bergstedt, O. & Hermansson, M. 2012. Estimation of pathogen concentrations in a drinking water source using hydrodynamic modelling and microbial source tracking. Journal of Water and Health, 10, 358370.Google Scholar
Steffens, K., Larsbo, M., Moeys, J., Kjellstrom, E., Jarvis, N. & Lewan, E. 2014. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty. Hydrology and Earth System Sciences, 18, 479491.Google Scholar
Stewart-Koster, B., Bunn, S. E., Mackay, S. J., Poff, N. L., Naiman, R. J. & Lake, P. S. 2010. The use of Bayesian networks to guide investments in flow and catchment restoration for impaired river ecosystems. Freshwater Biology, 55, 243260.Google Scholar
Stithou, M., Hynes, S., Hanley, N. & Campbell, D. 2012. Estimating the value of achieving ‘good ecological status’ in the Boyne River catchment in Ireland using choice experiments. Economic and Social Review, 43, 397422.Google Scholar
Street, R. B., Steynor, A., Bowyer, P. & Humphrey, K. 2009. Delivering and using the UK climate projections 2009. Weather, 64, 227231.Google Scholar
Stroemqvist, J., Collins, A. L., Davison, P. S. & Lord, E. I. 2008. PSYCHIC – a process-based model of phosphorus and sediment transfers within agricultural catchments. Part 2. A preliminary evaluation. Journal of Hydrology, 350, 303316.Google Scholar
Towers, W., Dunn, S. M., Sample, J. & Dawson, J. 2012. The Potential Risks to Water Quality from Diffuse Pollution Driven by Future Land Use and Climate Change. Aberdeen: CREW.Google Scholar
USEPA (US Environmental Protection Agency). 2010a. Chesapeake Bay Total Maximum Daily Load for Nitrogen, Phosphorus and Sediment. Washington, DC: USEPA.Google Scholar
USEPA (US Environmental Protection Agency). 2010b. Chesapeake Bay Phase 5.3 Community Watershed Model. EPA 903S10002 – CBP/TRS-303–10. Annapolis, MD: USEPA, Chesapeake Bay Program Office.Google Scholar
Vagstad, N., French, H. K., Andersen, H. E., Behrendt, H., Grizzetti, B., Groenendijk, P., et al. 2009. Comparative study of model prediction of diffuse nutrient losses in response to changes in agricultural practices. Journal of Environmental Monitoring, 11, 594601.CrossRefGoogle ScholarPubMed
Van Groenigen, J. W., Schils, R. L. M., Velthof, G. L., Kuikman, P. J., Oudendag, D. A. & Oenema, O. 2008. Mitigation strategies for greenhouse gas emissions from animal production systems: synergy between measuring and modelling at different scales. Australian Journal of Experimental Agriculture, 48, 4653.Google Scholar
Van Roosmalen, L., Christensen, B. S. B. & Sonnenborg, T. O. 2007. Regional differences in climate change impacts on groundwater and stream discharge in Denmark. Vadose Zone Journal, 6, 554571.Google Scholar
Voinov, A. & Bousquet, F. 2010. Modelling with stakeholders. Environmental Modelling & Software, 25, 12681281.CrossRefGoogle Scholar
Volk, M., Hirschfeld, J., Dehnhardt, A., Schmidt, G., Bohn, C., Liersch, S. & Gassman, P. W. 2008. Integrated ecological–economic modelling of water pollution abatement management options in the Upper Ems River Basin. Ecological Economics, 66, 6676.Google Scholar
Volk, M., Liersch, S. & Schmidt, G. 2009. Towards the implementation of the European Water Framework Directive? Lessons learned from water quality simulations in an agricultural watershed. Land Use Policy, 26, 580588.Google Scholar
Volk, M., Moeller, M. & Wurbs, D. 2010. A pragmatic approach for soil erosion risk assessment within policy hierarchies. Land Use Policy, 27, 9971009.Google Scholar
Wade, A. J., Durand, P., Beaujouan, V., Wessel, W. W., Raat, K. J., Whitehead, P. G., et al. 2002a. A nitrogen model for European catchments: INCA, new model structure and equations. Hydrology and Earth System Sciences, 6, 559582.Google Scholar
Wade, A. J., Whitehead, P. G. & Butterfield, D. 2002b. The Integrated Catchments model of Phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: model structure and equations. Hydrology and Earth System Sciences, 6, 583606.Google Scholar
Wade, A. J., Whitehead, P. G. & O’Shea, L. C. M. 2002c. The prediction and management of aquatic nitrogen pollution across Europe: an introduction to the Integrated Nitrogen in European Catchments project (INCA). Hydrology and Earth System Sciences, 6, 299313.CrossRefGoogle Scholar
Whitehead, P. G., Crossman, J., Balana, B. B., Futter, M. N., Comber, S., Jin, L., et al. 2013. A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system. Philosophical Transactions of the Royal Society A – Mathematical Physical and Engineering Sciences, 371(2002).CrossRefGoogle ScholarPubMed
Whitehead, P. G., Wilson, E. J. & Butterfield, D. 1998. A semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA): Part I – model structure and process equations. Science of the Total Environment, 210, 547558.Google Scholar
Wilby, R. L., Orr, H. G., Hedger, M., Forrow, D. & Blackmore, M. 2006. Risks posed by climate change to the delivery of Water Framework Directive objectives in the UK. Environment International, 32, 10431055.Google Scholar
Woodbury, J. & Shoemaker, C. A. 2013. Stochastic assessment of long-term impacts of phosphorus management options on sustainability with and without climate change. Journal of Water Resources Planning and Management, 139, 512519.Google Scholar
Wright, R. F., Cosby, B. J., Hornberger, G. M. & Galloway, J. N. 1986. Comparison of paleolimnological with magic model reconstructions of water acidification. Water, Air and Soil Pollution, 30, 367380.Google Scholar
Wu, L., McGechan, M. B., McRoberts, N., Baddeley, J. A. & Watson, C. A. 2007. SPACSYS: integration of a 3D root architecture component to carbon, nitrogen and water cycling-model description. Ecological Modelling, 200, 343359.CrossRefGoogle Scholar
Xue, J., Gui, D. W., Lei, J. Q., Sun, H. W., Zeng, F. J. & Feng, X. L. 2017a. A hybrid Bayesian network approach for trade-offs between environmental flows and agricultural water using dynamic discretization. Advances in Water Resources, 110, 445458.Google Scholar
Xue, J., Gui, D., Lei, J., Zeng, F., Mao, D. & Zhang, Z. 2017b. Model development of a participatory Bayesian network for coupling ecosystem services into integrated water resources management. Journal of Hydrology, 554, 5065.CrossRefGoogle Scholar
Yang, Y. S. & Wang, L. 2010. A review of modelling tools for implementation of the EU Water Framework Directive in handling diffuse water pollution. Water Resources Management, 24, 18191843.Google Scholar
Young, P. C. 1992. Parallel processes in hydrology and water-quality – a unified time-series approach. Journal of the Institution of Water and Environmental Management, 6, 598612.Google Scholar
Young, P. C. & Beven, K. J. 1994. Data-based mechanistic modeling and the rainfall-flow nonlinearity. Environmetrics, 5, 335363.Google Scholar
Young, R. A., Onstad, C. A., Bosch, D. D. & Anderson, W. P. 1989. AGNPS – a nonpoint-source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation, 44, 168173.Google Scholar
Zabaleta, A., Meaurio, M., Ruiz, E. & Antigueedad, I. 2014. Simulation climate change impact on runoff and sediment yield in a small watershed in the Basque Country, Northern Spain. Journal of Environmental Quality, 43, 235245.CrossRefGoogle Scholar
Zhang, B. & Govindaraju, R. S. 2000. Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resources Research, 36, 753762.Google Scholar
Zhang, T., Page, T., Heathwaite, L., Beven, K., Oliver, D. M. & Haygarth, P. M. 2013. Estimating phosphorus delivery with its mitigation measures from soil to stream using fuzzy rules. Soil Use and Management, 29, 187198.Google Scholar
Zhang, W. & Rao, Y. R. 2012. Application of a eutrophication model for assessing water quality in Lake Winnipeg. Journal of Great Lakes Research, 38, 158173.Google Scholar
Zhang, Y., Collins, A. L. & Gooday, R. D. 2012. Application of the FARMSCOPER tool for assessing agricultural diffuse pollution mitigation methods across the Hampshire Avon Demonstration Test Catchment, UK. Environmental Science & Policy, 24, 120131.Google Scholar
Zhang, Y., Collins, A. L., Jones, J. I., Johnes, P. J., Inman, A. & Freer, J. E. 2017. The potential benefits of on-farm mitigation scenarios for reducing multiple pollutant loadings in prioritised agri-environment areas across England. Environmental Science & Policy, 73, 100114.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×