Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-31T21:09:28.025Z Has data issue: false hasContentIssue false

Chapter 3 - Flow Cytometry of Normal Blood, Bone Marrow and Lymphatic Tissue

Published online by Cambridge University Press:  30 January 2025

Anna Porwit
Affiliation:
Lunds Universitet, Sweden
Marie Christine Béné
Affiliation:
Université de Nantes, France
Get access

Summary

Good knowledge of immunophenotypic features of normal cells in various compartments is important when potentially pathological specimen are sent for examination in the flow cytometry platform. This chapter proposes a comprehensive description of these features, together with some functional and/or maturation characteristics of some cell types. Blood and bone marrow are considered, but also body fluids and, briefly, some tissues.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnoulet, C, Béné, MC, Durrieu, F, et al. Four- and five-color flow cytometry analysis of leukocyte differentiation pathways in normal bone marrow: a reference document based on a systematic approach by the GTLLF and GEIL. Cytometry B Clin Cytom 2010; 78: 410.CrossRefGoogle ScholarPubMed
Borowitz, MJ, Guenther, KL, Shults, KE, Stelzer, GT. Immunophenotyping of acute leukemia by flow cytometric analysis: use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol 1993; 100: 534540.CrossRefGoogle ScholarPubMed
Cherian, S, Levin, G, Lo, WY, et al. Evaluation of an 8-color flow cytometric reference method for white blood cell differential enumeration. Cytometry B Clin Cytom 2010; 78: 319328.CrossRefGoogle ScholarPubMed
Faucher, JL, Lacronique-Gazaille, C, Frébet, E, et al. ‘6 markers/5 colors’ extended white blood cell differential by flow cytometry. Cytometry A. 2007; 1: 934944.CrossRefGoogle Scholar
Allou, K, Vial, JP, Béné, MC, Lacombe, F. The routine leukocyte differential flow cytometry HematoFlow™ method: a new flagging system for automatic validation. Cytometry B Clin Cytom 2015; 88: 375384.CrossRefGoogle Scholar
Melzer, S, Zachariae, S, Bocsi, J, Engel, C, Löffler, M, Tárnok, A. Reference intervals for leukocyte subsets in adults: results from a population-based study using 10-color flow cytometry. Cytometry B Clin Cytom 2015; 88: 270281.CrossRefGoogle ScholarPubMed
Sahir, F, Mateo, JM, Steinhoff, M, Siveen, KS. Development of a 43 color panel for the characterization of conventional and unconventional T-cell subsets, B cells, NK cells, monocytes, dendritic cells, and innate lymphoid cells using spectral flow cytometry. Cytometry A 2020 Epub ahead of print.CrossRefGoogle Scholar
Park, LM, Lannigan, J, Jaimes, MC. OMIP-069: Forty-color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytometry A 2020; 97: 10441051.CrossRefGoogle ScholarPubMed
Barros-Martins, J, Bruni, E, Fichtner, AS, Cornberg, M, Prinz, I. OMIP-084: 28-color full spectrum flow cytometry panel for the comprehensive analysis of human γδ T cells. Cytometry A 2022; 101: 856861.CrossRefGoogle ScholarPubMed
Pierzchalski, A, Zenclussen, AC, Herberth, G. OMIP-94: twenty-four-color (thirty-marker) panel for deep immunophenotyping of immune cells in human peripheral blood. Cytometry A 2023; 103: 695702.CrossRefGoogle ScholarPubMed
Imbratta, C, Reid, TD, Toefy, A, et al. OMIP-101: 27-color flow cytometry panel for immunophenotyping of major leukocyte populations in fixed whole blood. Cytometry A 2024; 105: 165170.CrossRefGoogle ScholarPubMed
van Dongen, JJ, Lhermitte, L, Böttcher, S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012; 26: 19081975.CrossRefGoogle ScholarPubMed
Rovati, B, Mariucci, S, Poma, R, Tinelli, C, Delfanti, S, Pedrazzoli, P. An eight-colour flow cytometric method for the detection of reference values of lymphocyte subsets in selected healthy donors. Clin Exp Med 2014; 14: 249259.CrossRefGoogle ScholarPubMed
Hedley, BD, Keeney, M, Popma, J, Chin-Yee, I. Novel lymphocyte screening tube using dried monoclonal antibody reagents. Cytometry B Clin Cytom 2015; 88: 361370.CrossRefGoogle ScholarPubMed
Rajab, A, Axler, O, Leung, J, Wozniak, M, Porwit, A. Ten-color 15-antibody flow cytometry panel for immunophenotyping of lymphocyte population. Int J Lab Hematol 2017; 39: 7685.CrossRefGoogle ScholarPubMed
Tosato, F, Bucciol, G, Pantano, G, et al. Lymphocytes subsets reference values in childhood. Cytometry A 2015; 87: 8185.CrossRefGoogle ScholarPubMed
Szczepański, T, van der Velden, VH, van Dongen, JJ. Flow-cytometric immunophenotyping of normal and malignant lymphocytes. Clin Chem Lab Med 2006; 44: 775796.CrossRefGoogle ScholarPubMed
Mandala, WL, Ananworanich, J, Apornpong, T, et al. Control lymphocyte subsets: can one country’s values serve for another’s? J Allergy Clin Immunol 2014; 134: 759761.CrossRefGoogle ScholarPubMed
Sagnia, B, Ateba Ndongo, F, Ndiang Moyo Tetang, S, et al. Reference values of lymphocyte subsets in healthy, HIV-negative children in Cameroon. Clin Vaccine Immunol 2011; 18: 790795.CrossRefGoogle ScholarPubMed
Valiathan, R, Deeb, K, Diamante, M, Ashman, M, Sachdeva, N, Asthana, D. Reference ranges of lymphocyte subsets in healthy adults and adolescents with special mention of T cell maturation subsets in adults of South Florida. Immunobiology 2014; 219: 487496.CrossRefGoogle ScholarPubMed
Nieto, WG, Almeida, J, Romero, A, et al. Increased frequency (12%) of circulating chronic lymphocytic leukemia-like B-cell clones in healthy subjects using a highly sensitive multicolor flow cytometry approach. Blood 2009; 114: 3337.CrossRefGoogle ScholarPubMed
Durrieu, F, Geneviève, F, Arnoulet, C, et al. Normal levels of peripheral CD19(+) CD5(+) CLL-like cells: toward a defined threshold for CLL follow-up – a GEIL-GOELAMS study. Cytometry B Clin Cytom 2011; 80: 346353.CrossRefGoogle Scholar
Lundell, AC, Johansen, S, Adlerberth, I, Wold, AE, Hesselmar, B, Rudin, A. High proportion of CD5+ B cells in infants predicts development of allergic disease. J Immunol 2014; 193: 510518.CrossRefGoogle ScholarPubMed
Clavarino, G, Delouche, N, Vettier, C, et al. Novel strategy for phenotypic characterization of human B lymphocytes from precursors to effector cells by flow cytometry. PLoS ONE 2016; 11: e0162209.CrossRefGoogle Scholar
Horna, P, Weybright, MJ, Ferrari, M, et al. Dual T-cell constant β chain (TRBC)1 and TRBC2 staining for the identification of T-cell neoplasms by flow cytometry. Blood Cancer J 2024; 14: 34.CrossRefGoogle ScholarPubMed
Boldt, A, Borte, S, Fricke, S, et al. Eight-color immunophenotyping of T-, B-, and NK-cell subpopulations for characterization of chronic immunodeficiencies. Cytometry B Clin Cytom 2014; 86: 191206.CrossRefGoogle Scholar
Aggarwal, N, Fischer, J, Swerdlow, SH, Craig, FE. Splenic lymphoid subsets with less well-recognized phenotypes mimic aberrant antigen expression. Am J Clin Pathol 2013 140: 787794.CrossRefGoogle ScholarPubMed
Vasudev, A, Ying, CT, Ayyadhury, S, et al. γ/δ T cell subsets in human aging using the classical α/β T cell model. J Leukoc Biol 2014; 96: 647655.CrossRefGoogle Scholar
Roden, AC, Morice, WG, Hanson, CA. Immunophenotypic attributes of benign peripheral blood gammadelta T cells and conditions associated with their increase. Arch Pathol Lab Med 2008; 132: 17741780.CrossRefGoogle ScholarPubMed
Moretta, L, Montaldo, E, Vacca, P, et al. Human natural killer cells: origin, receptors, function, and clinical applications. Int Arch Allergy Immunol 2014; 164: 253264.CrossRefGoogle ScholarPubMed
Montaldo, E, Vacca, P, Moretta, L, Mingari, MC. Development of human natural killer cells and other innate lymphoid cells. Semin Immunol 2014; 26: 107113CrossRefGoogle ScholarPubMed
Zambello, R, Teramo, A, Barilà, G, Gattazzo, C, Semenzato, G. Activating KIRs in chronic lymphoproliferative disorder of NK Cells: protection from viruses and disease induction? Front Immunol 2014; 5: 72.CrossRefGoogle ScholarPubMed
van Lochem, EG, van der Velden, VH, Wind, HK, te Marvelde, JG, Westerdaal, NA, van Dongen, JJ. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry B Clin Cytom 2004; 60: 113.CrossRefGoogle Scholar
Malik, M, Chiles, J 3rd, Xi, HS, et al. Genetics of CD33 in Alzheimer’s disease and acute myeloid leukemia. Hum Mol Genet 2015; 24: 35573570.CrossRefGoogle ScholarPubMed
Ziegler-Heitbrock, L. Blood monocytes and their subsets: established features and open questions. Front Immunol 2015; 6: 423.CrossRefGoogle ScholarPubMed
Williams, H, Mack, C, Baraz, R, Marimuthu, R, Naralashetty, S, Li, S, Medbury, H. Monocyte differentiation and heterogeneity: inter-subset and interindividual differences. Int J Mol Sci 2023; 24: 8757.CrossRefGoogle ScholarPubMed
Wong, L, Hill, BL, Hunsberger, BC, Bagwell, CB, Curtis, AD, Davis, BH. Automated analysis of flow cytometric data for measuring neutrophil CD64 expression using a multi-instrument compatible probability state model. Cytometry B Clin Cytom 2015; 88: 227235.CrossRefGoogle ScholarPubMed
Hoffmann, JJ. Neutrophil CD64: a diagnostic marker for infection and sepsis. Clin Chem Lab Med 2009; 47: 903916.CrossRefGoogle Scholar
Cimato, TR, Furlage, RL, Conway, A, Wallace, PK. Simultaneous measurement of human hematopoietic stem and progenitor cells in blood using multicolor flow cytometry. Cytometry B Clin Cytom 2016; 90: 415423.CrossRefGoogle ScholarPubMed
Freeman, CM, Curtis, JL, Hastie, AT. Finding the right biological: eosinophil subset differences in asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2023; 208: 121123.CrossRefGoogle ScholarPubMed
Han, X, Jorgensen, JL, Brahmandam, A, et al. Immunophenotypic study of basophils by multiparameter flow cytometry. Arch Pathol Lab Med 2008; 132: 813819.CrossRefGoogle ScholarPubMed
Del Prete, A, Sozio, F, Barbazza, I, et al. Functional role of dendritic cell subsets in cancer progression and clinical implications. Int J Mol Sci 2020; 21: 3930.CrossRefGoogle ScholarPubMed
Bizymi, N, Matthaiou, AM, Matheakakis, A, et al. New perspectives on myeloid-derived suppressor cells and their emerging role in haematology. J Clin Med 2022; 11: 5326.CrossRefGoogle ScholarPubMed
Terstappen, LW, Levin, J. Bone marrow cell differential counts obtained by multidimensional flow cytometry. Blood Cells 1992; 18: 311330.Google ScholarPubMed
Terstappen, LW, Huang, S, Picker, LJ. Flow cytometric assessment of human T-cell differentiation in thymus and bone marrow. Blood 1992; 79: 666677.CrossRefGoogle ScholarPubMed
Orfao, A, Matarraz, S, Pérez-Andrés, M, et al. Immunophenotypic dissection of normal hematopoiesis. J Immunol Methods 2019; 475: 112684.CrossRefGoogle ScholarPubMed
Lúcio, P, Parreira, A, van den Beemd, MW, et al. Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia 1999; 13: 419427.CrossRefGoogle ScholarPubMed
Porwit-MacDonald, A, Björklund, E, Lucio, P, et al. BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia 2000; 14: 816825.CrossRefGoogle ScholarPubMed
Porwit, A, Béné, MC, Duetz, C, et al. Multiparameter flow cytometry in the evaluation of myelodysplasia analytical issues: recommendations from the European LeukemiaNet/International Myelodysplastic Syndrome Flow Cytometry Working Group. Cytometry B Clin Cytom 2023; 104: 2750.CrossRefGoogle ScholarPubMed
Yahata, T, Muguruma, Y, Yumino, S, et al. Quiescent human hematopoietic stem cells in the bone marrow niches organize the hierarchical structure of hematopoiesis. Stem Cells 2008; 26: 32283236.CrossRefGoogle ScholarPubMed
Björklund, E, Gruber, A, Mazur, J, Mårtensson, A, Hansson, M, Porwit, A. CD34+ cell subpopulations detected by 8-color flow cytometry in bone marrow and in peripheral blood stem cell collections: application for MRD detection in leukemia patients. Int J Hematol 2009; 90: 292302.CrossRefGoogle ScholarPubMed
Notta, F, Doulatov, S, Laurenti, E, Poeppl, A, Jurisica, I, Dick, JE. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 2011; 333: 218221.CrossRefGoogle ScholarPubMed
Jafari, K, Tierens, A, Rajab, A, Musani, R, Schuh, A, Porwit, A. Visualization of cell composition and maturation in the bone marrow using 10-color flow cytometry and radar plots. Cytometry B Clin Cytom 2018; 94: 219229.CrossRefGoogle ScholarPubMed
Stetler-Stevenson, M, Arthur, DC, Jabbour, N, et al. Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood 2001; 98: 979987.CrossRefGoogle ScholarPubMed
Loken, MR, Chu, SC, Fritschle, W, Kalnoski, M, Wells, DA. Normalization of bone marrow aspirates for hemodilution in flow cytometric analyses. Cytometry B Clin Cytom 2009; 76: 2736.CrossRefGoogle ScholarPubMed
Matarraz, S, Almeida, J, Flores-Montero, J, et al. Introduction to the diagnosis and classification of monocytic-lineage leukemias by flow cytometry. Cytometry B Clin Cytom 2017; 92: 218227.CrossRefGoogle Scholar
Eidenschink Brodersen, L, Menssen, AJ, Wangen, JR, et al. Assessment of erythroid dysplasia by ‘difference from normal’ in routine clinical flow cytometry workup. Cytometry B Clin Cytom 2015; 88: 125135.CrossRefGoogle ScholarPubMed
Laranjeira, P, Rodrigues, R, Carvalheiro, T, et al. Expression of CD44 and CD35 during normal and myelodysplastic erythropoiesis. Leuk Res 2015; 39: 361370.CrossRefGoogle ScholarPubMed
Violidaki, D, Axler, O, Jafari, K, et al. Analysis of erythroid maturation in the nonlysed bone marrow with help of radar plots facilitates detection of flow cytometric aberrations in myelodysplastic syndromes. Cytometry B Clin Cytom 2020; 98: 399411.CrossRefGoogle ScholarPubMed
Béné, MC, Axler, O, Violidaki, D, Lacombe, F, Ehinger, M, Porwit, A. Definition of erythroid differentiation subsets in normal human bone marrow using flowSOM unsupervised cluster analysis of flow cytometry data. Hemasphere 2020; 5: e512.CrossRefGoogle ScholarPubMed
Campana, D, Coustan-Smith, E. Minimal residual disease studies by flow cytometry in acute leukemia. Acta Haemato. 2004; 112: 815.CrossRefGoogle ScholarPubMed
Fuda, FS, Karandikar, NJ, Chen, W. Significant CD5 expression on normal stage 3 hematogones and mature B Lymphocytes in bone marrow. Am J Clin Pathol 2009; 132: 733737.CrossRefGoogle ScholarPubMed
Flores-Montero, J, de Tute, R, Paiva, B, et al. Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin Cytom 2016; 90: 6172.CrossRefGoogle ScholarPubMed
Klein, F, Feldhahn, N, Lee, S, et al. T lymphoid differentiation in human bone marrow. Proc Natl Acad Sci USA 2003; 100: 67476752.CrossRefGoogle ScholarPubMed
Six, EM, Bonhomme, D, Monteiro, M, et al. A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. J Exp Med 2007; 204: 30853093.CrossRefGoogle ScholarPubMed
Freud, AG, Yokohama, A, Becknell, B, et al. Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med 2006; 203: 10331043.CrossRefGoogle ScholarPubMed
Escribano, L, Orfao, A, Díaz-Agustin, B, et al. Indolent systemic mast cell disease in adults: immunophenotypic characterization of bone marrow mast cells and its diagnostic implications. Blood 1998; 91: 27312736.CrossRefGoogle ScholarPubMed
Cortazar, JM, Dorfman, DM. Mast cell disease assessment by flow cytometric analysis. Clin Lab Med 2017; 37: 869878.CrossRefGoogle ScholarPubMed
Guermonprez, P, Gerber-Ferder, Y, Vaivode, K, Bourdely, P, Helft, J. Origin and development of classical dendritic cells. Int Rev Cell Mol Biol 2019; 349: 154.CrossRefGoogle ScholarPubMed
Pascual, V, Liu, YJ, Magalski, A, de Bouteiller, O, Banchereau, J, Capra, JD. Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med 1994; 180: 329339.CrossRefGoogle ScholarPubMed
Caron, G, Le Gallou, S, Lamy, T, Tarte, K, Fest, T. CXCR4 expression functionally discriminates centroblasts versus centrocytes within human germinal center B cells. J Immunol 2009; 182: 75957602.CrossRefGoogle ScholarPubMed
Högerkorp, CM, Borrebaeck, CA. The human CD77- B cell population represents a heterogeneous subset of cells comprising centroblasts, centrocytes, and plasmablasts, prompting phenotypical revision. J Immunol 2006; 177: 43414349.CrossRefGoogle ScholarPubMed
Mantei, K, Wood, BL. Flow cytometric evaluation of CD38 expression assists in distinguishing follicular hyperplasia from follicular lymphoma. Cytometry B Clin Cytom 2009; 76: 315320.CrossRefGoogle ScholarPubMed
Kussick, SJ, Kalnoski, M, Braziel, RM, Wood, BL. Prominent clonal B-cell populations identified by flow cytometry in histologically reactive lymphoid proliferations. Am J Clin Pathol 2004; 121: 464472.CrossRefGoogle ScholarPubMed
Santegoets, SJ, Dijkgraaf, EM, Battaglia, A, et al. Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunol Immunother 2015; 64: 12711286.CrossRefGoogle Scholar
Laurent, C, Fazilleau, N, Brousset, P. A novel subset of T-helper cells: follicular T-helper cells and their markers. Haematologica 2010; 95: 356358.CrossRefGoogle ScholarPubMed
Colovai, AI, Giatzikis, C, Ho, EK, et al. Flow cytometric analysis of normal and reactive spleen. Mod Pathol 2004; 17: 918927.CrossRefGoogle ScholarPubMed
Li, S, Juco, J, Mann, KP, Holden, JT. Flow cytometry in the differential diagnosis of lymphocyte-rich thymoma from precursor T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma. Am J Clin Pathol 2004; 121: 268274.CrossRefGoogle ScholarPubMed
Yuan, J, Gali, VL, Perry, DA, et al. Flow cytometric characteristics of extrathymic thymocytes in adenoid tissue: A case report and comparison to normal thymus and thymoma. Cytometry B Clin Cytom 2017 Epub ahead of print.CrossRefGoogle Scholar
Ohgami, RS, Zhao, S, Ohgami, JK, et al. TdT+ T-lymphoblastic populations are increased in Castleman disease, in Castleman disease in association with follicular dendritic cell tumors, and in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 2012; 36: 16191628.CrossRefGoogle ScholarPubMed
Yu, GH, Vergara, N, Moore, EM, King, RL. Use of flow cytometry in the diagnosis of lymphoproliferative disorders in fluid specimens. Diagn Cytopathol 2014; 42: 664670.CrossRefGoogle ScholarPubMed
van de Geijn, GM, van Gent, M, van Pul-Bom, N, Beunis, MH, van Tilburg, AJ, Njo, TL. A new flow cytometric method for differential cell counting in ascitic fluid. Cytometry B Clin Cytom 2016; 90: 506511.CrossRefGoogle ScholarPubMed
Song, JY, Filie, AC, Venzon, D, Stetler-Stevenson, M, Yuan, CM. Flow cytometry increases the sensitivity of detection of leukemia and lymphoma cells in bronchoalveolar lavage specimens. Cytometry B Clin Cytom 2012; 82: 305312.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×