Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T11:45:18.262Z Has data issue: false hasContentIssue false

Lectures on anabelian phenomena in geometry and arithmetic

Published online by Cambridge University Press:  05 January 2012

Florian Pop
Affiliation:
University of Pennsylvania
John Coates
Affiliation:
University of Cambridge
Minhyong Kim
Affiliation:
University College London
Florian Pop
Affiliation:
University of Pennsylvania
Mohamed Saïdi
Affiliation:
University of Exeter
Peter Schneider
Affiliation:
Universität Münster
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[An] André, Y., On a geometric description of Gal(Qp|ℚ) and a p-adic avatar of, Duke Math. J. 119 (2003), 1–39.CrossRefGoogle Scholar
[Ar] Artin, E., Geometric Algebra, Interscience Publishers, New York 1957.
[Be] Belyi, G. V., On Galois extensions of a maximal cyclotomic field, Mathematics USSR Izvestija, Vol. 14 (1980), no. 2, 247–256. (Original in Russian: Izvestiya Akademii Nauk SSSR, vol. 14 (1979), no. 2, 269–276.)CrossRefGoogle Scholar
[Bo] Bogomolov, F. A., On two conjectures in birational algebraic geometry, in Algebraic geometry and analytic geometry, ICM-90 Satellite Conference Proceedings, ed. A., Fujiki et al., Springer Verlag, Tokyo 1991.Google Scholar
[B–T1] Bogomolov, F. A., and Tschinkel, Y.Commuting elements in Galois groups of function fields, in: Motives, Polylogs and Hodge Theory, International Press 2002, 75–120.Google Scholar
[B–T2] Bogomolov, F. A., and Tschinkel, Y., Reconstruction of function fields, Geometric and Functional Analysis 18 (2008), 400–462.CrossRefGoogle Scholar
[BOU] Bourbaki, , Algèbre commutative, Hermann, Paris 1964.Google Scholar
[C–P] Corry, S. and Pop, F., Pro-p hom-form of the birational anabelian conjecture over sub-p-adic fields, Journal reine angew. Math. 628 (2009), 121–128.Google Scholar
[De] Deligne, P., Le groupe fondamental de la droite projective moins trois points, in: Galois groups over Q, Math. Sci. Res. Inst. Publ. 16, 79–297, Springer 1989.CrossRefGoogle Scholar
[Dr] Drinfeld, V. G., On quasi-triangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/ℚ) (Russian), Algebra i Analiz 2, no. 4 (1990), 149–181; translation in: Leningrad Math. J. 2, no. 4 (1991), 829–860.Google Scholar
[Ef1] Efrat, I., Construction of valuations from K-theory, Mathematical Research Letters 6 (1999), 335–344.CrossRefGoogle Scholar
[Ef2] Efrat, I., Recovering higher global and local fields from Galois groups–an algebraic approach, Invitation to higher local fields (Münster, 1999), 273–279 (electronic), Geom., Topol. Monogr. 3, Geom. Topol. Publ., Coventry, 2000Google Scholar
[E–K] Engler, A. J. and Koenigsmann, J., Abelian subgroups of pro-p Galois groups, Trans. AMS 350 (1998), no. 6, 2473–2485.CrossRefGoogle Scholar
[E–W] Esnault, H. and Wittenberg, O., On abelian birational sections, J. AMS, 23 (2010), 713–724.Google Scholar
[F1] Faltings, G., p-adic Hodge theory, Journal AMS 1 (1988), 255–299.Google Scholar
[F2] Faltings, G., Hodge–Tate structures and modular forms, Math. Annalen 278 (1987), 133–149.CrossRefGoogle Scholar
[F3] Faltings, G., Curves and their fundamental groups [following Grothendieck, Tamagawa, Mochizuki], Séminaire Bourbaki, Vol 1997-98, Exposé 840, Mars 1998.Google Scholar
[F–J] Fried, M. D. and Jarden, M., Field arithmetic, in: Ergebnisse der Mathematik und ihre Grenzgebiete, 3. Folge, Vol 11, Springer Verlag 2004.
[G1] Grothendieck, A., Letter to Faltings, June 1983. See [GGA].
[G2] Grothendieck, A., Esquisse d'un programme, 1984. See [GGA].
[GGA] ,Geometric Galois Actions I, LMS LNS Vol. 242, eds. L. Schneps and P. Lochak, Cambridge University Press 1998.
[Hn] Hain, R., Rational points of universal curves, preprint, January 2010; see arXiv:mathNT/1001.5008v1.
[H–M] Hain, R. and Matsumoto, M., Tannakian fundamental groups associated to Galois groups, in: Galois Groups and Fundamental Groups, ed. L., Schneps, MSRI Pub. Series 41, 2003, pp.183–216.Google Scholar
[H–Sz] Harari, D. and Szamuely, T., Galois sections for abelianized fundamental groups, and Appendix by E. V., Flynn, Math. Annalen 344 (2009), 779–800.CrossRefGoogle Scholar
[Ha1] Harbater, D., Abhyankar's conjecture on Galois groups over curves, Invent. Math. 117 (1994), 1–25.CrossRefGoogle Scholar
[Ha2] Harbater, D., Fundamental groups of curves in characteristic p, in: Proceedings of the ICM (Zürich, 1994), Birkhauser, Basel, 1995, 656–666.Google Scholar
[H–Sch] Harbater, D. and Schneps, L., Fundamental groups of moduli and the Grothendieck–Teichmüller group, Trans. AMS, Vol. 352 (2000), 3117–3148.CrossRefGoogle Scholar
[Ho] Hoshi, Y., Existence of non-geometric pro-p Galois sections of hyperbolic curves, preprint, January 2010, RIMS preprint ∑ 1689.
[Hr] Hrushovski, E., The Mordell–Lang conjecture for function fields, Journal AMS 9 (1996), 667–690.Google Scholar
[I1] Ihara, Y., On Galois represent. arising from towers of covers of P1\{0, 1, 8}, Invent. Math. 86 (1986), 427–459.CrossRefGoogle Scholar
[I2] Ihara, Y., Braids, Galois groups, and some arithmetic functions, Proceedings of the ICM'90, Vol. I, II, Math. Soc. Japan, Tokyo, 1991, pp.99–120.Google Scholar
[I3] Ihara, Y., On beta and gamma functions associated with the Grothendieck–Teichmüller group II, J. reine angew. Math. 527 (2000), 1–11.CrossRefGoogle Scholar
[I–M] Ihara, Y. and Matsumoto, M., On Galois actions on profinite completions of braid groups, in: Recent developments in the inverse Galois problem (Seattle, WA, 1993), 173–200, Contemp. Math. 186 AMS Providence, RI, 1995.Google Scholar
[I–N] Ihara, Y., and Nakamura, H., Some illustrative examples for anabelian geometry in high dimensions, in: Geometric Galois Actions I, 127–138, LMS 242, Cambridge University Press, Cambridge, 1997.CrossRefGoogle Scholar
[Ik] Ikeda, M., Completeness of the absolute Galois group of the rational number field, J. reine angew. Math. 291 (1977), 1–22.Google Scholar
[J–W] Jannsen, U., and Wingberg, K., Die Struktur der absoluten Galoisgruppe p-adischer Zahlkörper, Invent. Math. 70 (1982/83), no. 1, 71–98.CrossRefGoogle Scholar
[J] de Jong, A. J., Families of curves and alterations, Annales de l'institute Fourier, 47 (1997), pp. 599–621.CrossRefGoogle Scholar
[Ka] Kato, K., Logarithmic structures of Fontaine–Illusie, Proceedings of the First JAMI Conference, Johns Hopkins Univ. Press (1990), 191–224.Google Scholar
[K–L] Katz, N., and Lang, S.Finiteness theorems in geometric class field theory, with an Appendix by K. Ribet, Enseign. Math. 27 (1981), 285–319.Google Scholar
[K–P–R] Kuhlmann, F.-V., Pank, M., and Roquette, P., Immediate and purely wild extensions of valued fields, Manuscripta Math. 55 (1986), 39–67.CrossRefGoogle Scholar
[K1] Kim, M., The motivic fundamental group of P\{0, 1, ∞} and the theorem of Siegel, Inventiones Math. 161 (2005), 629–656.CrossRefGoogle Scholar
[K2] Kim, M., The unipotent Albanese map and Selmer varieties for curves, Publ. Res. Inst. Math. Sci. 45 (2009), 89–133.CrossRefGoogle Scholar
[K3] Kim, M., Massey products for elliptic curves of rank one, J. AMS 23 (2010), 725–747.Google Scholar
[K4] Kim, M., A remark on fundamental groups and effective Diophantine methods for hyperbolic curves, in: Number theory, analysis and geometry – In memory of Serge Lang, eds: Goldfeld, Jorgenson, Jones, Ramakrishnan, Ribet, Tate; Springer-Verlag 2010.Google Scholar
[Ko1] Koenigsmann, J., From p-rigid elements to valuations (with a Galoischaracterization of p-adic fields). With an appendix by Florian Pop, J. Reine Angew. Math. 465 (1995), 165–182.Google Scholar
[Ko2] Koenigsmann, J., Solvable absolute Galois groups are metabelian, Invent. Math. 144 (2001), no. 1, 1–22.CrossRefGoogle Scholar
[Ko3] Koenigsmann, J., On the ‘section conjecture’ in anabelian geometry, J. reine angew. Math. 588 (2005), 221–235.CrossRefGoogle Scholar
[Ko] Koch, H., Die Galoissche Theorie der p-Erweiterungen, Math. Monographien 10, Berlin 1970.
[La] Lang, S., Algebra, Springer-Verlag 2001.
[L–T] Lang, S. and Tate, J., Principal homogeneous spaces over Abelian varieties, Am. J. Math. 80 (1958), 659–684.CrossRefGoogle Scholar
[LS1] The Grothendieck Theory of Dessins d'Enfants, ed. Leila, Schneps, LMS LNS 200, Cambridge Univ Press, 1994.
[LS2] Around Grothendieck's Esquisse d'un Programme, eds. Schneps, & Lochak, , LMS LNS 242, Cambridge University Press, 1997.
[L–Sch] Lochak, P. and Schneps, L., A cohomological interpretation of the Grothendieck-Teichmüller group. Appendix by C. Scheiderer, Invent. Math. 127 (1997), 571–600.CrossRefGoogle Scholar
[Ma] Matsumoto, M., Galois representations on profinite braid groups on curves, J. reine angew. Math. 474 (1996), 169–219.Google Scholar
[Mzk1] Mochizuki, Sh., The profinite Grothendieck conjecture for closed hyperbolic curves over number fields, J. Math. Sci. Univ Tokyo 3 (1966), 571–627.Google Scholar
[Mzk2] Mochizuki, Sh., A version of the Grothendieck conjecture for p-adic local fields, Internat. J. Math. no. 4, 8 (1997), 499–506.CrossRefGoogle Scholar
[Mzk3] Mochizuki, Sh., The local pro-p Grothendieck conjecture for hyperbolic curves, Invent. Math. 138 (1999), 319–423.CrossRefGoogle Scholar
[Mzk4] Mochizuki, Sh., The absolute anabelian geometry of hyperbolic curves, Galois theory and modular forms, 77–122, Dev. Math. 11, Kluwer Acad. Publ., Boston, MA, 2004.Google Scholar
[Mzk5] Mochizuki, Sh., Absolute anabelian cuspidalizations of proper hyperbolic curves., J. Math. Kyoto Univ. 47 (2007), 451–539.CrossRefGoogle Scholar
[Mzk6] Mochizuki, Sh., Topics in absolute anabelian geometry II: Decomposition groups and endomorphisms, RIMS Preprint 1625, March 2008.
[N] Nagata, M., A theorem on valuation rings and its applications, Nagoya Math. J. 29 (1967), 85–91.CrossRefGoogle Scholar
[Na1] Nakamura, H., Galois rigidity of the étale fundamental groups of punctured projective lines, J. reine angew. Math. 411 (1990) 205–216.Google Scholar
[Na2] Nakamura, H., Galois rigidity of algebraic mappings into some hyperbolic varieties, Int. J. Math. 4 (1993), 421–438.CrossRefGoogle Scholar
[N–Sch] Nakamura, H. and Schneps, L., On a subgroup of the Grothendieck–Teichmüller group acting on the profinite Teichmüller modular group, Invent. Math. 141 (2000), 503–560.CrossRefGoogle Scholar
[N1] Neukirch, J., Über eine algebraische Kennzeichnung der Henselkörper, J. reine angew. Math. 231 (1968), 75–81.Google Scholar
[N2] Neukirch, J., Kennzeichnung der p-adischen und endlichen algebraischen Zahlkörper, Inventiones math. 6 (1969), 269–314.CrossRefGoogle Scholar
[N3] Neukirch, J., Kennzeichnung der endlich-algebraischen Zahlkörper durch die Galoisgruppe der maximal auflösbaren, Erweiterungen, J. für Math. 238 (1969), 135–147.Google Scholar
[O] Oda, T., A note on ramification of the Galois representation of the fundamental group of an algebraic curve I, J. Number Theory (1990) 225–228.CrossRefGoogle Scholar
[Pa] Parshin, A. N., Finiteness Theorems and Hyperbolic Manifolds, in: The Grothendieck Festschrift III, ed P., Cartier et al., PM Series vol. 88, Birkhäuser, Boston Basel Berlin 1990.Google Scholar
[Po] Pop, F., Étale Galois covers of affine, smooth curves, Invent. Math. 120 (1995), 555–578.CrossRefGoogle Scholar
[P1] Pop, F., On Grothendieck's conjecture of birational anabelian geometry, Ann. of Math. 139 (1994), 145–182.CrossRefGoogle Scholar
[P2] Pop, F., On Grothendieck's conjecture of birational anabelian geometry II, preprint, 1995
[P3] Pop, F., MSRI talk notes, fall 1999. See http://www.msri.org/publications/ln/msri/1999/gactions/pop/1/index.html,
[P4] Pop, F., Pro-ℓ birational anabelian geometry over alg. closed fields I, manuscript, Bonn 2003. See http://arxiv.org/PS_cache/math/pdf/∅3∅7/∅3∅7∅76
[P5] Pop, F., Recovering fields from their decomposition graphs, in: Number theory, analysis and geometry – In memory of Serge Lang, Springer special volume 2010; eds: Goldfeld, Jorgenson, Jones, Ramakrishnan, Ribet, Tate.Google Scholar
[P6] Pop, F., On the birational anabelian program initiated by Bogomolov I, (to appear).
[P7] Pop, F., On I/OM, Manuscript 2010.
[P8] Pop, F., Galoissche Kennzeichnung p-adisch abgeschlossener Körper, dissertation, Heidelberg 1986.Google Scholar
[P9] Pop, F., On the birational p-adic section conjecture, Compositio Math. 146 (2010), 621–637.CrossRefGoogle Scholar
[P10] Pop, F., Inertia elements versus Frobenius elements, Math. Annalen 348 (2010), 1005–1017.CrossRefGoogle Scholar
[P–S] Pop, F., and Saidi, M.On the specialization homomorphism of fundamental groups of curves in positive characteristic, in: Galois groups and fundamental groups (ed. L., Schneps), MSRI Pub. Series 41, 2003, pp.107–118.Google Scholar
[P–St] Pop, F., and Stix, J., Arithmetic in the fundamental group of a p-adic curve, manuscript, Cambridge–Heidelberg 2009.Google Scholar
[R1] Raynaud, M., Revêtements des courbes en caractéristique p > 0 et ordinarité, Compositio Math. 123 (2000), no. 1, 73–88.CrossRefGoogle Scholar
[R2] Raynaud, M., Sur le groupe fondamental d'une courbe complète en caractéristique p > 0, in: Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), 335–351, Proc. Sympos. Pure Math., 70, AMS, Providence, RI, 2002.Google Scholar
[Ro] Roquette, P., Some tendencies in contemporary algebra, in: Perspectives in Math. Anniversary of Oberwolfach 1984, Basel 1984, 393–422.
[Sa1] Saidi, M., Revêtements modérés et groupe fondamental de graphes de groupes, Compositio Math. 107 (1997), 319–338.CrossRefGoogle Scholar
[Sa2] Saidi, M., Good sections of arithmetic fundamental groups, manuscript 2009.
[Sa3] Saidi, M., Around the Grothendieck anabelian section conjecture. See arXiv:1∅1∅.1314v2[math.AG]
[S–T] Saidi, M. and Tamagawa, A, A prime-to-p version of the Grothendieck anabelian conjecture for hyperbolic curves over finite fields of characteristic p > 0, Publ. Res. Inst. Math. Sci. 45 (2009), 135–186.CrossRefGoogle Scholar
[S1] Serre, J.-P., Cohomologie Galoisienne, 5th ed., LNM 5, Springer Verlag, Berlin, 1994
[S2] Serre, J.-P., Zeta and L functions, in: Arithmetical algebraic geometry (Proc. conf. Purdue Univ., 1963), pp.82–92; Harper & Row, New York 1965.Google Scholar
[S3] Serre, J.-P., Corps locaux, Hermann, Paris 1962.Google Scholar
[Sp] Spiess, M., An arithmetic proof of Pop's theorem concerning Galois groups of function fields over number fields, J. reine angew. Math. 478 (1996), 107–126.Google Scholar
[St1] Stix, J., Affine anabelian curves in positive characteristic, Compositio Math. 134 (2002), no. 1, 75–85CrossRefGoogle Scholar
[St2] Stix, J., Projective anabelian curves in positive characteristic and descent theory for log-étale covers, dissertation, Bonner Mathematische Schriften 354, Universität Bonn, Math. Inst. Bonn, 2002; see www.mathi.uni-heidelberg.de/\∼{}stixGoogle Scholar
[St3] Stix, J., On the period-index problem in light of the section conjecture, American J. Math. 132 (2010), 157–180.CrossRefGoogle Scholar
[St4] Stix, J., The Brauer–Manin obstruction for sections of the fundamental group, preprint, Cambridge–Heidelberg, Oct. 2009; see arXiv:mathAG/∅91∅.5∅∅9v1.Google Scholar
[St5] Stix, J., A general Seifert–Van Kampen theorem for algebraic fundamental groups, Publications of RIMS 42 (2006), 763–786.CrossRefGoogle Scholar
[Sz] Szamuely, T., Groupes de Galois de corpes de type finit [d'après Pop], Astérisque 294 (2004), 403–431.Google Scholar
[T1] Tamagawa, A., The Grothendieck conjecture for affine curves, Compositio Math. 109 (1997), 135–194.CrossRefGoogle Scholar
[T2] Tamagawa, A., On the fundamental groups of curves over algebraically closed fields of characteristic > 0, Internat. Math. Res. Notices 1999, no. 16, 853–873.CrossRefGoogle Scholar
[T3] Tamagawa, A., On the tame fundamental groups of curves over algebraically closed fields of characteristic > 0, in: Galois groups and fundamental groups, 47–105, MSRI Publ., 41, Cambridge Univ. Press, Cambridge, 2003.Google Scholar
[T4] Tamagawa, A., Fundamental groups and geometry of curves in positive characteristic, in: Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), 297–333, Proc. Sympos. Pure Math., 70, AMS, Providence, RI, 2002.Google Scholar
[T5] Tamagawa, A., Finiteness of isomorphism classes of curves in positive characteristic with prescribed fundamental groups, J. Algebraic Geom. 13 (2004), no. 4, 675–724.CrossRefGoogle Scholar
[T6] Tamagawa, A., Resolution of non-singularities of families of curves, Publ. Res. Inst. Math. Sci. 40 (2004), 1291–1336.CrossRefGoogle Scholar
[U1] Uchida, K., Isomorphisms of Galois groups of algebraic function fields, Ann. of Math. 106 (1977), 589–598.CrossRefGoogle Scholar
[U2] Tamagawa, A., Isomorphisms of Galois groups of solvably closed Galois extensions, Tôhoku Math. J. 31 (1979), 359–362.Google Scholar
[U3] Tamagawa, A., Homomorphisms of Galois groups of solvably closed Galois extensions, Journal Math. Soc. Japan 33, No.4, 1981.Google Scholar
[Ta1] Tate, J., Relations between K2 and Galois cohomology, Invent. Math. 36 (1976), 257–274.CrossRefGoogle Scholar
[Ta2] Tate, J., p-divisible groups, Proceeding of a conference on local fields, Driebergen, Springer Verlag 1969, 158–183.Google Scholar
[W] Ware, R., Valuation rings and rigid elements in fields, Can. J. Math. 33 (1981), 1338–1355.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×