Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T12:08:02.822Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 September 2010

Yitzhak Frishman
Affiliation:
Weizmann Institute of Science, Israel
Jacob Sonnenschein
Affiliation:
Tel-Aviv University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Non-Perturbative Field Theory
From Two Dimensional Conformal Field Theory to QCD in Four Dimensions
, pp. 423 - 432
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

E., Abdalla and M. C. B., Abdalla, “Updating QCD in two-dimensions,” Phys. Rept. 265, 253 (1996) [arXiv:hep-th/9503002].Google Scholar
E., Abdalla, M. C. B., Abdalla and K. D., Rothe, Nonperturbative Methods in Two-Dimensional Quantum Field Theory, Singapore: World Scientific (2001).Google Scholar
A., Abrashkin, Y., Frishman and J., Sonnenschein, “The spectrum of states with one current acting on the adjoint vacuum of massless QCD2,” Nucl. Phys. B 703, 320 (2004) [arXiv:hep-th/0405165].Google Scholar
C., Adam, “Charge screening and confinement in the massive Schwinger model,” Phys. Lett. B 394, 161 (1997) [arXiv:hep-th/9609155].Google Scholar
G. S., Adkins, C. R., Nappi and E., Witten, “Static properties of nucleons in the Skyrme model,” Nucl. Phys. B 228, 552 (1983).Google Scholar
S. L., Adler, J. C., Collins and A., Duncan, “Energy momentum tensor trace anomaly in spin ½ quantum electrodynamics'Phys. Rev. D 15, 1712 (1977).Google Scholar
I., Affleck, “On the realization of chiral symmetry in (1+1)-dimensions,” Nucl. Phys. B 265, 448 (1986).Google Scholar
O., Aharony, O., Ganor, J., Sonnenschein and S., Yankielowicz, “On the twisted G/H topological models,” Nucl. Phys. B 399, 560 (1993) [arXiv:hep-th/9208040].Google Scholar
O., Aharony, O., Ganor, J., Sonnenschein, S., Yankielowicz and N., Sochen, “Physical states in G/G models and 2-d gravity,” Nucl. Phys. B 399, 527 (1993) [arXiv:hep-th/9204095].Google Scholar
O., Aharony, S. S., Gubser, J. M., Maldacena, H., Ooguri and Y., Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-th/9905111].Google Scholar
A. Y., Alekseev and V., Schomerus, “D-branes in the WZW model,” Phys. Rev. D 60, 061901 (1999) [arXiv:hep-th/9812193].Google Scholar
D., Altschuler, K., Bardakci and E., Rabinovici, “A construction of the c < 1 modular invariant partition function,” Commun. Math. Phys. 118, 241 (1988).Google Scholar
L., Alvarez-Gaume, G., Sierra and C., Gomez, “Topics in conformal field theory,” contribution to the Knizhnik Memorial Volume, L., Brink, et al., World Scientific. In Brink, L. (ed.) et al.: Physics and Mathematics of Strings16–184 (1989). Singapore.Google Scholar
F., Antonuccio and S., Dalley, “Glueballs from (1+1)-dimensional gauge theories with transverse degrees of freedom,” Nucl. Phys. B 461, 275 (1996) [arXiv:hep-ph/9506456].Google Scholar
A., Armoni, Y., Frishman and J., Sonnenschein, “The string tension in massive QCD(2),” Phys. Rev. Lett. 80, 430 (1998) [arXiv:hep-th/9709097].Google Scholar
A., Armoni, Y., Frishman and J., Sonnenschein, “The string tension in two dimensional gauge theories,” Int. J. Mod. Phys. A 14, 2475 (1999) [arXiv:hep-th/9903153].Google Scholar
A., Armoni, Y., Frishman and J., Sonnenschein, “Massless QCD(2) from current constituents,” Nucl. Phys. B 596, 459 (2001) [arXiv:hep-th/0011043].Google Scholar
A., Armoni and J., Sonnenschein, “Mesonic spectra of bosonized QCD in two-dimensions models,” Nucl. Phys. B 457, 81 (1995) [arXiv:hep-th/9508006].Google Scholar
M. F., Atiyah and N. J., Hitchin, “The geometry and dynamics of magnetic monopole. M.B. Porter lecturesPrinceton, USA: Princeton University Press (1988) 133p.Google Scholar
M. F., Atiyah, N. J., Hitchin, V. G., Drinfeld and Yu. I., Manin, “Construction of instantons,” Phys. Lett. A 65, 185 (1978).Google Scholar
F. A., Bais, “To be or not to be? Magnetic monopoles in non-abelian gauge theories,” in 't Hooft, Hackensack, G. ed. Fifty years of Yang–Mills Theory, New JerseyWorld Scientific, C 2005.Google Scholar
A. P., Balachandran, “Solitons in nuclear and elementary physics. Proceedings of the Lewes workshop,” World Scientific, 1984.Google Scholar
I. I., Balitsky and L. N., Lipatov, “The Pomeranchuk singularity in quantum chromodynamics,” Sov. J. Nucl. Phys. 28, 822 (1978) [Yad. Fiz.28, 1597 (1978)].Google Scholar
V., Baluni, “The Bose form of two-dimensional quantum chromodynamics,” Phys. Lett. B 90, 407 (1980).Google Scholar
T., Banks, “Lectures on conformal field theory,” presented at the Theoretical Advanced Studies Institute, St. John's College, Santa Fe, N. Mex., Jul 5 – Aug 1, 1987. Published in Santa Fe: TASI 87:572.
T. I., Banks and C. M., Bender, “Anharmonic oscillator with polynomial self-interaction,” J. Math. Phys. 13, 1320 (1972).Google Scholar
K., Bardakci and M. B., Halpern, “New dual quark models,” Phys. Rev. D 3, 2493 (1971).Google Scholar
A., Bassetto, G., Nardelli and R., Soldati, Yang-Mills Theories in Algebraic Noncovariant Gauges: Canonical Quantization and Renormalization, SingaporeWorld Scientific (1991).Google Scholar
R. J., Baxter, Exactly Solved Models in Statistical Mechanics, London: Academic press (1989).Google Scholar
K., Becker, M., Becker and J. H., Schwarz, String Theory and M-Theory: A modern introduction, Cambridge, UK: Cambridge University Press (2007).Google Scholar
N., Beisert, “The dilatation operator of N = 4 super Yang-Mills theoryPhys. Rept. 405, 1 (2005) [arXiv:hep-th/0407277].Google Scholar
A. A., Belavin, A. M., Polyakov, A. S., Shvarts and Yu. S., Tyupkin, “Pseudoparticle solutions of the Yang-Mills equations,” Phys. Lett. B 59, 85 (1975).Google Scholar
A. A., Belavin, A. M., Polyakov and A. B., Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory,” Nucl. Phys. B 241, 333 (1984).Google Scholar
A. V., Belitsky, V. M., Braun, A. S., Gorsky and G. P., Korchemsky, “Integrability in QCD and beyond,” Int. J. Mod. Phys. A 19, 4715 (2004) [arXiv:hep-th/0407232].Google Scholar
D. E., Berenstein, J. M., Maldacena and H. S., Nastase, “Strings in flat space and pp waves from N = 4 super Yang Mills,” JHEP 0204, 013 (2002) [arXiv:hep-th/0202021].Google Scholar
M., Bernstein and J., Sonnenschein, “A comment on the quantization of the chiral bosonsPhys. Rev. Lett. 60, 1772 (1988).Google Scholar
J. D., Bjorken and S. D., Drell, Relativistic Quantum Field Theory, New York: McGraw-Hill (1965), ISBN 0-07-005494-0.Google Scholar
G., Bhanot, K., Demeterfi and I. R., Klebanov, “(1+1)-dimensional large N QCD coupled to adjoint fermions,” Phys. Rev. D 48, 4980 (1993) [arXiv:hep-th/9307111].Google Scholar
D., Bernard and A., Leclair, “Quantum group symmetries and nonlocal currents in 2-D QFT,” Commun. Math. Phys. 142, 99 (1991).Google Scholar
K. M., Bitar and S. J., Chang, “Vacuum tunneling of gauge theory in minkowski space,” Phys. Rev. D 17, 486 (1978).Google Scholar
E. B., Bogomolny, “Stability of classical solutions,” Sov. J. Nucl. Phys. 24, 449 (1976) [Yad. Fiz.24, 861 (1976)].Google Scholar
V. M., Braun, S. E., Derkachov, G. P., Korchemsky and A. N., Manashov, “Baryon distribution amplitudes in QCD,” Nucl. Phys. B 553, 355 (1999) [arXiv:hep-ph/9902375].Google Scholar
V. M., Braun, G. P., Korchemsky and D., Mueller, “The uses of conformal symmetry in QCD,” Prog. Part. Nucl. Phys. 51, 311 (2003) [arXiv:hep-ph/0306057].Google Scholar
E., Brezin and J. L., Gervais, “Nonperturbative aspects in quantum field theory. Proceedings of Les Houches Winter Advanced Study Institute, March 1978,” Phys. Rept. 49, 91 (1979).Google Scholar
E., Brezin, C., Itzykson, J., Zinn-Justin and J. B., Zuber, “Remarks about the existence of nonlocal charges in two-dimensional models,” Phys. Lett. B 82, 442 (1979).Google Scholar
E., Brezin and S. R., Wadia, “The large N expansion in quantum field theory and statistical physics: From spin systems to two-dimensional gravity,” Singapore, Singapore: World Scientific (1993) 1130 pGoogle Scholar
S. J., Brodsky, “Gauge theories on the light-front,” Braz. J. Phys. 34, 157 (2004) [arXiv:hep-th/0302121].Google Scholar
S. J., Brodsky, H. C., Pauli and S. S., Pinsky, “Quantum chromodynamics and other field theories on the light cone,” Phys. Rept. 301, 299 (1998) [arXiv:hep-ph/9705477].Google Scholar
S. J., Brodsky, Y., Frishman, G. P., Lepage and C. T., Sachrajda, “Hadronic wave functions at short distances and the operator product expansion,” Phys. Lett. B 91, 239 (1980).Google Scholar
S. J., Brodsky, Y., Frishman and G. P., Lepage, “On the application of conformal symmetry to quantum field theory,” Phys. Lett. B 167, 347 (1986).Google Scholar
S. J., Brodsky, P., Damgaard, Y., Frishman and G. P., Lepage, “Conformal symmetry: exclusive processes beyond leading order,” Phys. Rev. D 33, 1881 (1986).Google Scholar
R. C., Brower, W. L., Spence and J. H., Weis, “Effects of confinement on analyticity in two-dimensional QCD,” Phys. Rev. D 18, 499 (1978).Google Scholar
G. E., Brown, “Selected papers, with commentary, of Tony Hilton Royle Skyrme,” Singapore: World Scientific (1994) 438 p. (World Scientific series in 20th century physics, 3).Google Scholar
R. N., Cahn, Semisimple Lie Algebras and their Representations, Menlo Park, USA: Benjamin/Cummings (1984) 158 p. (Frontiers In Physics, 59)Google Scholar
C. G., Callan, “Broken scale invariance in scalar field theory,” Phys. Rev. D 2, 1541 (1970).Google Scholar
C. G., Callan, N., Coote and D. J., Gross, “Two-dimensional Yang-Mills theory: a model of quark confinement,” Phys. Rev. D 13, 1649 (1976).Google Scholar
C. G., Callan, R. F., Dashen and D. J., Gross, “Toward a theory of the strong interactions,” Phys. Rev. D 17, 2717 (1978).Google Scholar
J. L., Cardy, “Boundary conditions, fusion rules and the Verlinde formula,” Nucl. Phys. B 324, 581 (1989).Google Scholar
J. L., Cardy, “Conformal invariance and statistical mechanics,” Les Houches Summer School 1988:0169-246.
A., Casher, H., Neuberger and S., Nussinov, “Chromoelectric flux tube model of particle production,” Phys. Rev. D 20, 179 (1979).Google Scholar
A., Chodos, “Simple connection between conservation laws in the Korteweg-De Vries and sine-Gordon systems,” Phys. Rev. D 21, 2818 (1980).Google Scholar
E., Cohen, Y., Frishman and D., Gepner, “Bosonization of two-dimensional QCD with flavor,” Phys. Lett. B 121, 180 (1983).Google Scholar
S. R., Coleman, “Quantum sine-Gordon equation as the massive Thirring model,” Phys. Rev. D 11, 2088 (1975).Google Scholar
S. R., Coleman, “More about the massive Schwinger model,” Annals Phys. 101, 239 (1976).Google Scholar
S. R., Coleman, “The uses of instantons,” Subnucl. Ser. 15, 805 (1979).Google Scholar
S., Coleman, Aspects of Symmetry, selected Erice lectures of Sidney Coleman, Cambridge, UK, Cambridge Univ. Press (1985).Google Scholar
S. R., Coleman, The magnetic monopole fifty years later, In the Unity of Fundamental Interactions, ed. A., Zichichi: New York, Plenum (1983).Google Scholar
S. R., Coleman, R., Jackiw and L., Susskind, “Charge shielding and quark confinement in the massive Schwinger model,” Annals Phys. 93, 267 (1975).Google Scholar
S., Cordes, G. W., Moore and S., Ramgoolam, “Large N 2-D Yang-Mills theory and topological string theory,” Commun. Math. Phys. 185, 543 (1997) [arXiv:hep-th/9402107].Google Scholar
E., Corrigan, D. B., Fairlie, S., Templeton and P., Goddard, “A Green's function for the general selfdual gauge field,” Nucl. Phys. B 140, 31 (1978).Google Scholar
E., Corrigan and P., Goddard, “Construction of instanton and monopole solutions and reciprocity,” Annals Phys. 154, 253 (1984).Google Scholar
S., Dalley and I. R., Klebanov, “String spectrum of (1+1)-dimensional large N QCD with adjoint matter,” Phys. Rev. D 47, 2517 (1993) [arXiv:hep-th/9209049].Google Scholar
R. F., Dashen and Y., Frishman, “Four fermion interactions and scale invariance,” Phys. Rev. D 11, 2781 (1975).Google Scholar
R. F., Dashen, B., Hasslacher and A., Neveu, “Nonperturbative methods and extended hadron models in field theory. 2. Two-dimensional models and extended hadrons,” Phys. Rev. D 10, 4130 (1974).Google Scholar
G., Date, Y., Frishman and J., Sonnenschein, “The spectrum of multiflavor QCD in two-dimensions'Nucl. Phys. B 283, 365 (1987).Google Scholar
G. F., Dell-Antonio, Y., Frishman and D., Zwanziger, “Thirring model in terms of currents: solution and light cone expansions,” Phys. Rev. D 6, 988 (1972).Google Scholar
P., Di Francesco, P., Mathieu, D., SenechalConformal Field Theory, Series: Graduate Texts in Contemporary Physics. New York: Springer-Verlag (1997).Google Scholar
P. A. M., Dirac, “Theory Of Magnetic Monopoles,” In *Coral Gables 1976, Proceedings, New Pathways In High-energy Physics, Vol. I*, New York: Plenum Press, 1976, 1–14.Google Scholar
F. M., Dittes and A. V., Radyushkin, “Two loop contribution to the evolution of the pion wave function,” Phys. Lett. B 134, 359 (1984); M. H. Sarmadi, Phys. Lett. B 143, 471 (1984); S. V. Mikhailov and A. V. Radyushkin, Nucl. Phys. B 254, 89 (1985); G. R. Katz, Phys. Rev. D 31, 652 (1985).Google Scholar
N., Dorey, T. J., Hollowood, V. V., Khoze, M. P., Mattis and S., Vandoren, “Multi-instanton calculus and the AdS/CFT correspondence in N = 4Nucl. Phys. B 552, 88 (1999) [arXiv:hep-th/9901128].Google Scholar
N., Dorey, T. J., Hollowood, V. V., Khoze and M. P., Mattis, “The calculus of many instantons,” Phys. Rept. 371, 231 (2002) [arXiv:hep-th/0206063].Google Scholar
M. R., Douglas, K., Li and M., Staudacher, “Generalized two-dimensional QCD,” Nucl. Phys. B 420, 118 (1994) [arXiv:hep-th/9401062].Google Scholar
A. V., Efremov and A. V., Radyushkin, “Factorization and asymptotical behavior of pion form-factor in QCD,” Phys. Lett. B 94, 245 (1980).Google Scholar
T., Eguchi and H., Ooguri, “Chiral bosonization on a Riemann surface,” Phys. Lett. B 187, 127 (1987).Google Scholar
S., Elitzur and G., Sarkissian, “D-branes on a gauged WZW model,” Nucl. Phys. B 625, 166 (2002) [arXiv:hep-th/0108142].Google Scholar
J. R., Ellis, Y., Frishman, A., Hanany and M., Karliner, “Quark solitons as constituents of hadrons,” Nucl. Phys. B 382, 189 (1992) [arXiv:hep-ph/9204212].Google Scholar
J. R., Ellis, Y., Frishman and M., Karliner, “Meson baryon scattering in QCD(2) for any coupling,” Phys. Lett. B 566, (2003) 201 [arXiv:hep-ph/0305292].Google Scholar
L. D., Faddeev, “How algebraic Bethe ansatz works for integrable model,” arXiv:hep-th/9605187.
B. L., Feigin and D. B., FuchsSkew symmetric differential operators on the line and Verma modules over the Virasoro algebraFunct. Anal. Prilozhen 16, (1982) 47.Google Scholar
S., Ferrara, A. F., Grillo and R., Gatto, “Improved light cone expansion,” Phys. Lett. B 36, 124 (1971) [Phys. Lett. B 38, 188 (1972)].Google Scholar
D., Finkelstein and J., Rubinstein, “Connection between spin, statistics, and kinks,” J. Math. Phys. 9, 1762 (1968).Google Scholar
R., Floreanini and R., Jackiw, “Selfdual fields as charge density solitons,” Phys. Rev. Lett. 59, 1873 (1987).Google Scholar
D., Friedan, “Introduction To Polyakov's string theory,” Published in Les Houches Summer School 1982:0839.
D., Friedan, E. J., Martinec and S. H., Shenker, “Conformal invariance, supersymmetry and string theory,” Nucl. Phys. B 271, 93 (1986).Google Scholar
D., Friedan, Z. a., Qiu and S. H., Shenker, “Conformal invariance, unitarity and two-dimensional critical exponents,” Phys. Rev. Lett. 52, 1575 (1984).Google Scholar
Y., Frishman, A., Hanany and J., Sonnenschein, “Subtleties in QCD theory in two-dimensions,” Nucl. Phys. B 429, 75 (1994) [arXiv:hep-th/9401046].Google Scholar
Y., Frishman and M., Karliner, “Baryon wave functions and strangeness content in QCD in two-dimensions,” Nucl. Phys. B 344, 393 (1990).Google Scholar
Y., Frishman and M., Karliner, “Scattering and resonances in QCD(2),” Phys. Lett. B 541, 273 (2002). Erratum-ibid. B 562, 367, (2003). [arXiv:hep-ph/0206001].Google Scholar
Y., Frishman and J., Sonnenschein, “Bosonization of colored-flavored fermions and QCD in two-dimenstions,” Nucl. Phys. B 294, 801 (1987).Google Scholar
Y., Frishman and J., Sonnenschein, “Gauging of chiral bosonized actions'Nucl. Phys. B 301, 346 (1988).Google Scholar
Y., Frishman and J., Sonnenschein, “Bosonization and QCD in two-dimensions,” Phys. Rept. 223, 309 (1993) [arXiv:hep-th/9207017].Google Scholar
Y., Frishman and W. J., Zakrzewski, “Multibaryons in QCD in two-dimensions,” Nucl. Phys. B 328, 375 (1989).Google Scholar
Y., Frishman and W. J., Zakrzewski, “Explicit expressions for masses and bindings of multibaryons in QCD(2),” Nucl. Phys. B 331, 781 (1990).Google Scholar
S., Fubini, A. J., Hanson and R., Jackiw, “New approach to field theory,” Phys. Rev. D 7, 1732 (1973).Google Scholar
O., Ganor, J., Sonnenschein and S., Yankielowicz, “The string theory approach to generalized 2-d Yang-Mills theory,” Nucl. Phys. B 434, 139 (1995) [arXiv:hep-th/9407114].Google Scholar
E. G., Gimon, L. A., Pando Zayas, J., Sonnenschein and M. J., Strassler, “A soluble string theory of hadrons,” JHEP 0305, 039 (2003) [arXiv:hep-th/0212061].Google Scholar
D., Gepner, “Nonabelian bosonization and multiflavor QED and QCD in two-dimensions,” Nucl. Phys. B 252, 481 (1985).Google Scholar
D., Gepner and E., Witten, “String theory on group manifolds,” Nucl. Phys. B 278, 493 (1986).Google Scholar
P. H., Ginsparg, “Applied conformal field theory,” Published in Les Houches Summer School 1988:1-168, arXiv:hep-th/9108028.
P., Goddard, A., Kent and D. I., Olive, “Virasoro algebras and coset space models,” Phys. Lett. B 152, 88 (1985).Google Scholar
P., Goddard and D. I., Olive, “Kac-Moody and Virasoro algebras in relation to quantum physics,” Int. J. Mod. Phys. A 1, 303 (1986).Google Scholar
D., Gonzales and A. N., Redlich, “The low-energy effective dynamics of two-dimensional gauge theories,” Nucl. Phys. B 256, 621 (1985).Google Scholar
M. B., Green, J. H., Schwarz and E., Witten, “Superstring theory. Vol. 2: Loop amplitudes, anomalies and phenomenology,” Cambridge, UK: Univ. Pr. (1987) 596 P. (Cambridge Monographs On Mathematical Physics)Google Scholar
C., Gomez, G., Sierra and M., Ruiz-Altaba, “Quantum groups in two-dimensional physics,” Cambridge, UK: Univ. Pr. (1996) 457 pGoogle Scholar
D. J., Gross, “Two-dimensional QCD as a string theory,” Nucl. Phys. B 400, 161 (1993) [arXiv:hep-th/9212149].Google Scholar
D. J., Gross, I. R., Klebanov, A. V., Matytsin and A. V., Smilga, “Screening vs. Confinement in 1+1 Dimensions,” Nucl. Phys. B 461, 109 (1996) [arXiv:hep-th/9511104].Google Scholar
D. J., Gross and A., Neveu, “Dynamical symmetry breaking in asymptotically free field theories,” Phys. Rev. D 10, 3235 (1974).Google Scholar
D. J., Gross and W., Taylor, “Two-dimensional QCD is a string theory,” Nucl. Phys. B 400, 181 (1993) [arXiv:hep-th/9301068].Google Scholar
D. J., Gross and W., Taylor, “Twists and Wilson loops in the string theory of two-dimensional QCD,” Nucl. Phys. B 403, 395 (1993) [arXiv:hep-th/9303046].Google Scholar
I. G., Halliday, E., Rabinovici, A., Schwimmer and M. S., Chanowitz, “Quantization of anomalous two-dimensional models,” Nucl. Phys. B 268, 413 (1986).Google Scholar
M. B., Halpern, “Quantum solitons which are SU(N) fermions,” Phys. Rev. 12, 1684 (1975).Google Scholar
G., 't Hooft, “A planar diagram theory for strong interactions,” Nucl. Phys. B 72, 461 (1974).Google Scholar
G., 't Hooft, “Magnetic monopoles in unified gauge theoriesNucl. Phys. B 79, 276 (1974).Google Scholar
G., 't Hooft, “A two-dimensional model for mesons,” Nucl. Phys. B 75, 461 (1974).Google Scholar
G., 't Hooft, “Computation of the quantum effects due to a four-dimensional pseudoparticle,” Phys. Rev. D 14, 3432 (1976) [Erratum-ibid. D 18, 2199 (1978)].Google Scholar
P., Horava, “Topological strings and QCD in two-dimensions,” hep-th/9311156, talk given at NATO Advanced Research Workshop on New Developments in String Theory, Conformal Models and Topological Field Theory, Cargese, France, 12–21 May 1993.Google Scholar
K., Hornbostel, “The application of light cone quantization to quantum chromodynamics in (1+1)-dimensions,” Ph.D. thesis, SLAC-R-333, Dec 1988.
K., Hornbostel, S. J., Brodsky and H. C., Pauli, “Light cone quantized QCD in (1+1)-dimensions,” Phys. Rev. D 41, 3814 (1990).Google Scholar
C., Imbimbo and A., Schwimmer, “The Lagrangian formulation of chiral scalars,” Phys. Lett. B 193, 455 (1987).Google Scholar
C., Itzykson and J. B., Zuber, Quantum Field Theory, New York, USA: McGraw-Hill (1980) 705 P.(International Series In Pure and Applied Physics)Google Scholar
R., Jackiw and C., Rebbi, “Vacuum periodicity in a Yang-Mills quantum theory,” Phys. Rev. Lett. 37, 172 (1976).Google Scholar
R., Jackiw, C., Nohl and C., Rebbi, “Conformal properties of pseudoparticle configurations”, Phys. Rev. D 15, 1642 (1977).Google Scholar
A. D., Jackson and M., Rho, “Baryons as chiral solitons,” Phys. Rev. Lett. 51, 751 (1983).Google Scholar
B., Julia and A., Zee, “Poles with both magnetic and electric charges in nonabelian gauge theory,” Phys. Rev. D 11, 2227 (1975).Google Scholar
N., Ishibashi, “The boundary and crosscap states in conformal field theories,” Mod. Phys. Lett. A 4, 251 (1989).Google Scholar
V. G., Kac, “Simple graded algebras of finite growth,” Funct. Anal. Appl. 1, 328 (1967).Google Scholar
L. P., Kadanoff, “Correlators along the line of two dimensional Ising model,” Phys. Rev. 188, 859 (1969).Google Scholar
M., Kaku, Strings, Conformal Fields, and M-Theory, New York, USA: Springer (2000) 531 p.Google Scholar
V. A., Kazakov, “Wilson loop average for an arbitrary contour in two-dimensional U(N) gauge theory,” Nucl. Phys. B 179, 283 (1981).Google Scholar
S. V., Ketov, Conformal Field Theory, Singapore, Singapore: World Scientific (1995) 486 p.Google Scholar
V. V., Khoze, M. P., Mattis and M. J., Slater, “The instanton hunter's guide to supersymmetric SU(N) gauge theory,” Nucl. Phys. B 536, 69 (1998) [arXiv:hep-th/9804009].Google Scholar
E., Kiritsis, String Theory in a Nutshell, Princeton, USA: Univ. Pr. (2007) 588 p.Google Scholar
V. G., Knizhnik and A. B., Zamolodchikov, “Current algebra and Wess-Zumino model in two dimensions,” Nucl. Phys. B 247, 83 (1984).Google Scholar
W., Krauth and M., Staudacher, “Non-integrability of two-dimensional QCD,” Phys. Lett. B 388, 808 (1996) [arXiv:hep-th/9608122].Google Scholar
E. A., Kuraev, L. N., Lipatov and V. S., Fadin, “The Pomeranchuk singularity in non-abelian gauge theories,” Sov. Phys. JETP 45, 199 (1977) [Zh. Eksp. Teor. Fiz. 72, 377 (1977)]. “Multi-reggeon processes in the Yang-Mills theory,” Sov. Phys. JETP44, 443 (1976) [Zh. Eksp. Teor. Fiz.71, 840 (1976)].Google Scholar
D., Kutasov, “Duality off the critical point in two-dimensional systems with nonabelian symmetries,” Phys. Lett. B 233, 369 (1989).Google Scholar
D., Kutasov, “Two-dimensional QCD coupled to adjoint matter and string theory,” Nucl. Phys. B 414, 33 (1994) [arXiv:hep-th/9306013].Google Scholar
D., Kutasov and A., Schwimmer, “Universality in two-dimensional gauge theory,” Nucl. Phys. B 442, 447 (1995) [arXiv:hep-th/9501024].Google Scholar
T. D., Lee and Y., Pang, “Nontopological solitons,” Phys. Rept. 221, 251 (1992).Google Scholar
G. P., Lepage and S. J., Brodsky, “Exclusive processes in quantum chromodynamics: evolution equations for hadronic wave functions and the form-factors of mesons,” Phys. Lett. B 87, 359 (1979).Google Scholar
L. N., Lipatov, The Creation of Quantum Chromodynamics and the Effective Energy, Bologna, Italy: Univ. Bologna (1998) 367 p.Google Scholar
J. H., Lowenstein and J. A., Swieca, “Quantum electrodynamics in two-dimensions,” Annals Phys. 68, 172 (1971).Google Scholar
M., Luscher, “Quantum nonlocal charges and absence of particle production in the two-dimensional nonlinear Sigma model,” Nucl. Phys. B 135, 1 (1978).Google Scholar
D., Lust and S., Theisen, “Lectures on string theory,” Lect. Notes Phys. 346, 1 (1989).Google Scholar
A., Maciocia, “Metrics on the moduli spaces of instantons over Euclidean four space,” Commun. Math. Phys. 135, 467 (1991).Google Scholar
G., Mack and A., Salam, “Finite component field representations of the conformal group,” Annals Phys. 53, 174 (1969).Google Scholar
V. G., Makhankov, Y. P., Rybakov and V. I., Sanyuk, The Skyrme model: Fundamentals, methods, applications, Berlin, Germany: Springer (1993) 265 p. (Springer series in nuclear and particle physics).Google Scholar
J. M., Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys.38, 1113 (1999)] [arXiv:hep-th/9711200].Google Scholar
S., Mandelstam, “Soliton operators for the quantized sine-Gordon equation,” Phys. Rev. D 11, 3026 (1975).Google Scholar
A. V., Manohar, “Large N QCD,” arXiv:hep-ph/9802419, Published in *Les Houches 1997, Probing the standard model of particle interactions, Pt. 2* 1091-1169.
A. A., Migdal, “Recursion equations in gauge field theories,” Sov. Phys. JETP 42, 413 (1975) [Zh. Eksp. Teor. Fiz.69, 810 (1975)].Google Scholar
J. A., Minahan and K., Zarembo, “The Bethe-ansatz for N = 4 super Yang-Mills,” JHEP 0303, 013 (2003) [arXiv:hep-th/0212208].Google Scholar
C., Montonen and D. I., Olive, “Magnetic monopoles as gauge particles?,” Phys. Lett. B 72, 117 (1977).Google Scholar
R. V., Moody, “Lie algebras associated with generalized Cartan matrices,” Bull. Am. Math. Soc. 73, 217 (1967).Google Scholar
M., Moshe and J., Zinn-Justin, “Quantum field theory in the large N limit: A review,” Phys. Rept. 385, 69 (2003) [arXiv:hep-th/0306133].Google Scholar
D., Mueller, “Constraints for anomalous dimensions of local light cone operators in phi**3 in six-dimensions theory,” Z. Phys. C 49, 293 (1991); Phys. Rev. D 49, 2525 (1994).Google Scholar
W., Nahm, “A simple formalism for the BPS monopole,” Phys. Lett. B 90, 413 (1980).Google Scholar
N. K., Nielsen, “Gauge invariance and broken conformal symmetry,” Nucl. Phys. B 97, 527 (1975).Google Scholar
N. K., Nielsen, “The energy momentum tensor in a nonabelian quark gluon theory,” Nucl. Phys. B 120, 212 (1977).Google Scholar
S. P., Novikov, “Multivalued functions and functionals, An analogue to Morse theory,” Sov. Math. Dock. 24, 222 (1981)Google Scholar
T., Ohrndorf, “Constraints from conformal covariance on the mixing of operators of lowest twist,” Nucl. Phys. B 198, 26 (1982).Google Scholar
R. D., Peccei and H. R., Quinn, “Constraints imposed by CP conservation in the presence of instantons,” Phys. Rev. D 16, 1791 (1977).Google Scholar
M. E., Peskin and D. V., Schroeder, An Introduction To Quantum Field Theory, Reading, USA: Addison-Wesley (1995) 842 p.Google Scholar
J., Polchinski, String Theory. Vol. 2: Superstring Theory and Beyond, Cambridge, UK: Univ. Pr. (1998) 531 p.Google Scholar
A. M., Polyakov, “Particle spectrum in quantum field theory,” JETP Lett. 20, 194 (1974) [Pisma Zh. Eksp. Teor. Fiz.20, 430 (1974)].Google Scholar
A. M., Polyakov, “Hidden symmetry of the two-dimensional chiral fields,” Phys. Lett. B 72, 224 (1977).Google Scholar
A. M., Polyakov, “Quantum geometry of bosonic strings,” Phys. Lett. B 103, 207 (1981).Google Scholar
A. M., Polyakov, Gauge Fields and Strings, Chur, Switzerland: Harwood (1987) 301 p. (Contemporary concepts in Physics, 3).Google Scholar
A. M., Polyakov and P. B., Wiegmann, “Goldstone fields in two-dimensions with multivalued actions,” Phys. Lett. B 141, 223 (1984).Google Scholar
M. K., Prasad and C. M., Sommerfield, “An exact classical solution for the 't Hooft monopole and the Julia-Zee dyon,” Phys. Rev. Lett. 35, 760 (1975).Google Scholar
E., Rabinovici, A., Schwimmer and S., Yankielowicz, “Quantization in the presence of Wess-Zumino terms,” Nucl. Phys. B 248, 523 (1984).Google Scholar
R., Rajaraman, An Introduction to Solitons and Instantons in Quantum Field Theory, Amsterdam, Netherlands: North-holland (1982) 409p.Google Scholar
C., Rebbi and G., Soliani, Solitons and particles, World Scientific 1984.Google Scholar
B. E., Rusakov, “Loop averages and partition functions in U(N) gauge theory on two-dimensional manifolds,” Mod. Phys. Lett. A 5, 693 (1990).Google Scholar
T., Schafer and E. V., Shuryak, “Instantons in QCD,” Rev. Mod. Phys. 70, 323 (1998) [arXiv:hep-ph/9610451].Google Scholar
J., Schechter and H., Weigel, “The Skyrme model for baryons,” arXiv:hep-ph/9907554.
T. D., Schultz, D. C., Mattis and E. H., Lieb, “Two-dimensional Ising model as a soluble problem of many fermions,” Rev. Mod. Phys. 36, 856 (1964).Google Scholar
M. A., Shifman, Instantons in Gauge Theories, Singapore, Singapore: World Scientific (1994) 488 p.CrossRefGoogle Scholar
E. V., Shuryak, “The role of instantons in quantum chromodynamics. 1. Physical vacuum,” Nucl. Phys. B 203, 93 (1982).Google Scholar
J. S., Schwinger, “Gauge invariance and mass. 2,” Phys. Rev. 128, 2425 (1962).Google Scholar
N., Seiberg and E., Witten, “Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD,” Nucl. Phys. B 431, 484 (1994) [arXiv:hep-th/9408099].Google Scholar
N., Seiberg and E., Witten, “Monopole condensation, and confinement in N=2 super-symmetric Yang-Mills theory,” Nucl. Phys. B 426, 19 (1994) [Erratum-ibid. B 430, 485 (1994)] [arXiv:hep-th/9407087].Google Scholar
Y. M., Shnir, Magnetic Monopoles, Berlin, Germany: Springer (2005) 532 p.Google Scholar
W., Siegel, “Manifest Lorentz invariance sometimes requires nonlinearity,” Nucl. Phys. B 238, 307 (1984).Google Scholar
T. H. R., Skyrme, “A Nonlinear theory of strong interactions,” Proc. Roy. Soc. Lond. A 247, 260 (1958).Google Scholar
T. H. R., Skyrme, “Particle states of a quantized meson field,” Proc. Roy. Soc. Lond. A 262, 237 (1961).Google Scholar
T. H. R., Skyrme, “A unified field theory of mesons and baryons,” Nucl. Phys. 31, 556 (1962).Google Scholar
Smirnov, F. A.Form factors in completely integrable models of quantum field theory,” Adv. Ser. Math. Phys. 14:1–208 (1992).CrossRefGoogle Scholar
J., Sonnenschein, “Chiral bosonsNucl. Phys. B 309, 752 (1988).Google Scholar
M., Spiegelglas and S., Yankielowicz, “G/G topological field theories by cosetting G(K),” Nucl. Phys. B 393, 301 (1993) [arXiv:hep-th/9201036].Google Scholar
P. J., Steinhardt, “Baryons and baryonium in QCD in two-dimensions,” Nucl. Phys. B 176, 100 (1980).Google Scholar
M., Stone, Bosonization, Singapore: World Scientific (1994) 539 p.Google Scholar
H., Sugawara, “A Field theory of currents,” Phys. Rev. 170, 1659 (1968).Google Scholar
K., Symanzik, “Small distance behavior in field theory and power counting,” Commun. Math. Phys. 18, 227 (1970).Google Scholar
W. E., Thirring, “A soluble relativistic field theory,” Annals Phys. 3, 91 (1958).Google Scholar
C. B., Thorn, “Computing the Kac determinant using dual model techniques and more about the no-ghost theorem,” Nucl. Phys. B 248, 551 (1984).Google Scholar
S. B, Treiman, R., Jackiw and D., GrossCurrent Algebra and its Applications (Princeton, University Press, New Jersey, 1972).Google Scholar
A. I., Vainshtein, V. I., Zakharov, V. A., Novikov and M. A., Shifman, “ABC of instantons,” Sov. Phys. Usp. 25, 195 (1982) [Usp. Fiz. Nauk136, 553 (1982)].Google Scholar
S., Vandoren and P., Nieuwenhuizen, “Lectures on instantons,” arXiv:0802.1862 [hep-th].
E. P., Verlinde, “Fusion rules and modular transformations in 2d conformal field theory,” Nucl. Phys. B 300, 360 (1988).Google Scholar
E. P., Verlinde and H. L., Verlinde, “Chiral bosonization, determinants and the string partition function,” Nucl. Phys. B 288, 357 (1987).Google Scholar
M. S., Virasoro, “Subsidiary conditions and ghosts in dual resonance models,” Phys. Rev. D 1, 2933 (1970).Google Scholar
M., Wakimoto, “Fock representations of the affine Lie algebra A1(1),” Commun. Math. Phys. 104, 605 (1986).Google Scholar
E. J., Weinberg and P., Yi, “Magnetic monopole dynamics, supersymmetry, and duality,” Phys. Rept. 438, 65 (2007) [arXiv:hep-th/0609055].Google Scholar
S., Weinberg, The Quantum Theory of Fields. Vol. 1: Foundations, Cambridge, UK: Univ. Pr. (1995) 609 p.Google Scholar
G., Veneziano, “U(1) Without instantons,” Nucl. Phys. B 159, 213 (1979).Google Scholar
J., Wess and B., Zumino, “Consequences of anomalous Ward identities,” Phys. Lett. B 37, 95 (1971).Google Scholar
F., Wilczek, “Inequivalent embeddings of SU(2) and instanton interactions,” Phys. Lett. B 65, 160.
K. G., Wilson, “Nonlagrangian models of current algebra,” Phys. Rev. 179, 1499 (1969).Google Scholar
E., Witten, “Some exact multipseudoparticle solutions of classical Yang-Mills theory,” Phys. Rev. Lett. 38, 121 (1977).Google Scholar
E., Witten, “Instantons, the Quark model, and the 1/N expansion,” Nucl. Phys. B 149, 285 (1979).Google Scholar
E., Witten, “Baryons in the 1/N expansion,” Nucl. Phys. B 160, 57 (1979).Google Scholar
E., Witten, “Large N chiral dynamics,” Annals Phys. 128, 363 (1980).Google Scholar
E., Witten, “Nonabelian bosonization in two dimensions,” Commun. Math. Phys. 92, 455 (1984).Google Scholar
E., Witten, “Global aspects of current algebra,” Nucl. Phys. B 223, 422 (1983).Google Scholar
E., Witten, “Current algebra, baryons, and quark confinement,” Nucl. Phys. B 223, 433 (1983).Google Scholar
E., Witten, “On holomorphic factorization of WZW and coset models,” Commun. Math. Phys. 144, 189 (1992).Google Scholar
E., Witten, “Two-dimensional gauge theories revisited,” J. Geom. Phys. 9, 303 (1992) [arXiv:hep-th/9204083].Google Scholar
C. N., Yang and R. L., Mills, “Conservation of isotopic spin and isotopic gauge invariance,” Phys. Rev. 96, 191 (1954).Google Scholar
C. N., Yang, “Some exact results for the many body problems in one dimension with repulsive delta function interaction,” Phys. Rev. Lett. 19, 1312 (1967).Google Scholar
I., Zahed and G. E., Brown, “The Skyrme model,” Phys. Rept. 142, 1 (1986).Google Scholar
A. B., Zamolodchikov, “Renormalization group and perturbation theory near fixed points in two-dimensional field theory,” Sov. J. Nucl. Phys. 46, 1090 (1987) [Yad. Fiz.46, 1819 (1987)].Google Scholar
A. B., Zamolodchikov, “Exact solutions of conformal field theory in two-dimensions and critical phenomena,” Rev. Math. Phys. 1, 197 (1990).Google Scholar
A. B., Zamolodchikov, “Thermodynamic Bethe anzatz in relativistic models, scaling three state Potts and Lee-Yang models,” Nucl. Phys. B 342, 695 (1990).Google Scholar
A. B., Zamolodchikov and A. B., Zamolodchikov, “Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models,” Annals Phys. 120, 253 (1979).Google Scholar
A. B., Zamolodchikov, A. B., Zamolodchikov and I. M., Khalatnikov, “Physics Reviews, Vol. 10, pt. 4: Condormal field theory and critical phenomena in two-dimensional systems,” London, UK: Harwood (1989) 269–433. (Soviet scientific reviews, Section A, 10.4)Google Scholar
B., Zwiebach, A First Course in String Theory, Cambridge, UK: Univ. Pr. (2004) 558 pGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Yitzhak Frishman, Weizmann Institute of Science, Israel, Jacob Sonnenschein, Tel-Aviv University
  • Book: Non-Perturbative Field Theory
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511770838.026
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Yitzhak Frishman, Weizmann Institute of Science, Israel, Jacob Sonnenschein, Tel-Aviv University
  • Book: Non-Perturbative Field Theory
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511770838.026
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Yitzhak Frishman, Weizmann Institute of Science, Israel, Jacob Sonnenschein, Tel-Aviv University
  • Book: Non-Perturbative Field Theory
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511770838.026
Available formats
×