Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T09:55:39.352Z Has data issue: false hasContentIssue false

Section 2 - Iron Deficiency

Published online by Cambridge University Press:  02 April 2019

Robert T. Means Jr
Affiliation:
East Tennessee State University
Get access
Type
Chapter
Information
Nutritional Anemia
Scientific Principles, Clinical Practice, and Public Health
, pp. 51 - 102
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Cook, J. D., Flowers, C. H., Skikne, B. S. The quantitative assessment of body iron. Blood. 2003;101(9):3359–63.CrossRefGoogle ScholarPubMed
Cook, J. D., Boy, E., Flowers, C., Daroca Mdel, C. The influence of high-altitude living on body iron. Blood. 2005;106(4):1441–6.CrossRefGoogle ScholarPubMed
Ganz, T., Olbina, G., Girelli, D., Nemeth, E., Westerman, M. Immunoassay for human serum hepcidin. Blood. 2008.CrossRefGoogle ScholarPubMed
Brugnara, C. A hematologic “gold standard” for iron-deficient states? Clin Chem. 2002;48(7):981–2.CrossRefGoogle ScholarPubMed
Brugnara, C. Iron deficiency and erythropoiesis: new diagnostic approaches. Clin Chem. 2003;49(10):1573–8.CrossRefGoogle ScholarPubMed
Finch, C. A. Erythropoiesis, erythropoietin, and iron. Blood. 1982;60(6):1241–6.CrossRefGoogle ScholarPubMed
Goodnough, L. T., Nemeth, E., Ganz, T. Detection, evaluation, and management of iron-restricted erythropoiesis. Blood. 2010;116(23):4754–61.CrossRefGoogle ScholarPubMed
Harris, E. L., McLaren, C. E., Reboussin, D. M., et al. Serum ferritin and transferrin saturation in Asians and Pacific Islanders. Arch Int Med. 2007;167(7):722–6.CrossRefGoogle ScholarPubMed
Mast, A. E., Blinder, M. A., Gronowski, A. M., Chumley, C., Scott, M. G. Clinical utility of the soluble transferrin receptor and comparison with serum ferritin in several populations. Clin Chem. 1998;44:4551.CrossRefGoogle ScholarPubMed
Leggett, B. A., Brown, N. N., Bryant, S. J., et al. Factors affecting the concentrations of ferritin in serum in a healthy Australian population. Clin Chem. 1990;36:1350–5.CrossRefGoogle Scholar
Girelli, D., Corrocher, R., Bisceglia, L., et al. Molecular basis for the recently described hereditary hyperferritinemia-cataract syndrome: a mutation in the iron-responsive element of ferritin L-subunit gene (the “Verona mutation”) [see comments]. Blood. 1995;86(11):4050–3.CrossRefGoogle Scholar
Brugnara, C., Zurakowski, D., DiCanzio, J., Boyd, T., Platt, O. Reticulocyte hemoglobin content to diagnose iron deficiency in children. JAMA. 1999;281(23):2225–30.CrossRefGoogle ScholarPubMed
Ullrich, C., Wu, A., Armsby, C., et al. Screening healthy infants for iron deficiency using reticulocyte hemoglobin content. JAMA. 2005;294(8):924–30.CrossRefGoogle ScholarPubMed
KDOQI Clinical Practice Guideline and Clinical Practice Recommendations for anemia in chronic kidney disease: 2007 update of hemoglobin target. Am J Kid Dis. 2007;50(3):471530.CrossRefGoogle Scholar
Locatelli, F., Aljama, P. A., Barany, P., et al. Revised European best practice guidelines for the management of anaemia in patients with chronic renal failure. Nephrol Dial Transplant. 2004;19:147.Google ScholarPubMed
Fishbane, S., Kowalski, E. A., Imbriano, L. J., Maesaka, J. K. The evaluation of iron status in hemodialysis patients. J Am Soc Nephrol. 1996;7(12):2654–7.CrossRefGoogle ScholarPubMed
Lippi, G., Luca Salvagno, G., Montagnana, M., Brocco, G., Cesare Guidi, G. Influence of hemolysis on routine clinical chemistry testing. Clin Chem Lab Med. 2006;44(3):311–6.CrossRefGoogle ScholarPubMed
Nadkarni, S., Allen, L. C. Comparison of the Ames, Randox and Roche methods with the synermed method for the determination of serum iron concentrations on nondialysis and dialysis specimens. Clin Biochem. 1998;31(2):8994.CrossRefGoogle ScholarPubMed
Hentze, M. W., Muckenthaler, M. U., Galy, B., Camaschella, C. Two to tango: regulation of mammalian iron metabolism. Cell. 2010;142(1):2438.CrossRefGoogle ScholarPubMed
Pichler, I., Minelli, C., Sanna, S., et al. Identification of a common variant in the TFR2 gene implicated in the physiological regulation of serum iron levels. Hum Mol Genet. 2011;20(6):1232–40.CrossRefGoogle ScholarPubMed
Kasvosve, I., Delanghe, J. R., Gomo, Z. A. R., et al. Transferrin polymorphism influences iron status in Blacks. Clin Chem. 2000;46(10):1535–9.CrossRefGoogle ScholarPubMed
Forni, G. L., Pinto, V., Musso, M., et al. Transferrin-immune complex disease: a potentially overlooked gammopathy mediated by IgM and IgG. Am J Hematol. 2013;88(12):1045–9.CrossRefGoogle ScholarPubMed
Bainton, D. F, Finch, C. A. The diagnosis of iron deficiency anemia. Am J Med. 1964;37:6270.CrossRefGoogle ScholarPubMed
Kalantar-Zadeh, K., McAllister, C. J., Lehn, R. S., Kopple, J. D. A low serum iron level is a predictor of poor outcome in hemodialysis patients. Am J Kid Dis. 2004;43(4):671–84.CrossRefGoogle ScholarPubMed
Kovesdy, C. P., Estrada, W., Ahmadzadeh, S., Kalantar-Zadeh, K. Association of markers of iron stores with outcomes in patients with nondialysis-dependent chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(2):435–41.Google ScholarPubMed
Fishbane, S., Pollack, S., Feldman, H. I., Joffe, M. M. Iron indices in chronic kidney disease in the National Health and Nutritional Examination Survey 1988–2004. Clin J Am Soc Nephrol 2009;4(1):5761.CrossRefGoogle ScholarPubMed
Skikne, B. S. Serum transferrin receptor. Am J Hematol. 2008;83(11):872–4.CrossRefGoogle ScholarPubMed
Skikne, B. S., Flowers, C. H., Cook, J. D. Serum transferrin receptor: a quantitative measure of tissue iron deficiency. Blood. 1990;75:1870–6.CrossRefGoogle ScholarPubMed
Khumalo, H., Gomo, Z. A. R., Moyo, V. M., et al. Serum transferrin receptors are decreased in the presence of iron overload. Clin Chem. 1998;44(1):40–4.CrossRefGoogle ScholarPubMed
Ferguson, B. J., Skikne, B. S., Simpson, K. M., Baynes, R. D., Cook, J. D. Serum transferrin receptor distinguishes the anemia of chronic disease from iron deficiency anemia. J Lab Clin Med. 1992;19:385–90.Google Scholar
Punnonen, K., Irjala, K., Rajamaki, A. Iron-deficiency anemia is associated with high concentrations of transferrin receptor in serum. Clin Chem. 1994;40(5):774–6.CrossRefGoogle ScholarPubMed
Punnonen, K., Irjala, K., Rajamaki, A. Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood. 1997;89(3):1052–7.CrossRefGoogle ScholarPubMed
Vikstedt, R., von Lode, P., Takala, T., et al. Rapid one-step immunofluorometric assay for measuring soluble transferrin receptor in whole blood. Clin Chem. 2004;50(10):1831–3.CrossRefGoogle ScholarPubMed
Fertrin, K. Y., Lanaro, C., Franco-Penteado, C. F., et al. Erythropoiesis-driven regulation of hepcidin in human red cell disorders is better reflected through concentrations of soluble transferrin receptor rather than growth differentiation factor 15. Am J Hematol. 2014;89(4):385–90.CrossRefGoogle ScholarPubMed
Ahluwalia, N., Skikne, B. S., Savin, V., Chonko, A. Markers of masked iron deficiency and effectiveness of EPO therapy in chronic renal failure. Am J Kid Dis. 1997;30:532–41.CrossRefGoogle ScholarPubMed
Singh, A. K., Coyne, D. W., Shapiro, W., Rizkala, A. R., Grp, D. S. Predictors of the response to treatment in anemic hemodialysis patients with high serum ferritin and low transferrin saturation. Kid Int. 2007;71(11):1163–71.CrossRefGoogle ScholarPubMed
Fusaro, M., Munaretto, G., Spinello, M., et al. Soluble transferrin receptors and reticulocyte hemoglobin concentration in the assessment of iron deficiency in hemodialysis patients. J Nephrol. 2005;18(1):72–9.Google ScholarPubMed
Tarng, D. C., Hung, S. C., Huang, T. P. Effect of intravenous ascorbic acid medication on serum levels of soluble transferrin receptor in hemodialysis patients. J Am Soc Nephrol. 2004;15(9):2486–93.CrossRefGoogle ScholarPubMed
Cogswell, M. E., Looker, A. C., Pfeiffer, C. M., et al. Assessment of iron deficiency in US preschool children and nonpregnant females of childbearing age: National Health and Nutrition Examination Survey 2003–2006. Am J Clin Nutr. 2009;89(5):1334–42.CrossRefGoogle ScholarPubMed
Yang, Z., Dewey, K. G., Lönnerdal, B., et al. Comparison of plasma ferritin concentration with the ratio of plasma transferrin receptor to ferritin in estimating body iron stores: results of 4 intervention trials. Am J Clin Nutr. 2008;87(6):1892–8.CrossRefGoogle ScholarPubMed
Lee, E. J., Oh, E. J., Park, Y. J., Lee, H. K., Kim, B. K. Soluble transferrin receptor (sTfR), ferritin, and sTfR/log ferritin index in anemic patients with nonhematologic malignancy and chronic inflammation. Clin Chem. 2002;48:1118–21.CrossRefGoogle ScholarPubMed
Chen, Y. C., Hung, S. C., Tarng, D. C. Association between transferrin receptor-ferritin index and conventional measures of iron responsiveness in hemodialysis patients. Am J Kid Dis. 2006;47(6):1036–44.CrossRefGoogle ScholarPubMed
Margetic, S., Topic, E., Tesija-Kuna, A., Vukasovic, I. Soluble serum transferrin receptor and transferrin receptor-ferritin index in anemia of chronic kidney disease. Dial Transplant. 2006;35(8):520−+.CrossRefGoogle Scholar
Suominen, P., Punnonen, K., Rajamaki, A., Irjala, K. Serum transferrin receptor and transferrin receptor-ferritin index identify healthy subjects with subclinical iron deficits. Blood. 1998;92:2934–9.CrossRefGoogle ScholarPubMed
Thomas, C., Thomas, L. Biochemical markers and hematologic indices in the diagnosis of functional iron deficiency. Clin Chem. 2002;48:1066–76.CrossRefGoogle ScholarPubMed
Ganz, T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117(17):4425–33.CrossRefGoogle ScholarPubMed
Butterfield, A. M., Luan, P., Witcher, D. R., et al. A dual-monoclonal sandwich ELISA specific for hepcidin-25. Clin Chem. 2010;56(11):1725–32.CrossRefGoogle ScholarPubMed
Dallalio, G., Fleury, T., Means, R. T. Serum hepcidin in clinical specimens. Br J Haematol. 2003;122(6):9961000.CrossRefGoogle ScholarPubMed
Hershko, C., Camaschella, C. How I treat unexplained refractory iron deficiency anemia. Blood. 2014;123(3):326–33.CrossRefGoogle Scholar
Bregman, D. B., Morris, D., Koch, T. A., He, A., Goodnough, L. T. Hepcidin levels predict nonresponsiveness to oral iron therapy in patients with iron deficiency anemia. Am J Hematol. 2013;88(2):97101.CrossRefGoogle ScholarPubMed
Prentice, A. M., Doherty, C. P., Abrams, S. A., et al. Hepcidin is the major predictor of erythrocyte iron incorporation in anemic African children. Blood. 2012;119(8):1922–8.CrossRefGoogle ScholarPubMed
Steensma, D. P., Sasu, B. J., Sloan, J. A., Tomita, D., Loprinzi, C. L. The relationship between serum hepcidin levels and clinical outcomes in patients with chemotherapy-associated anemia treated in a controlled trial. J Clin Oncol. 2011;29(15):9031.CrossRefGoogle Scholar
Ukarma, L., Johannes, H., Beyer, U., Zaug, M., Osterwalder, B., Scherhag, A. Hepcidin as a predictor of response to epoetin therapy in anemic cancer patients. Clin Chem. 2009;55(7):1354–60.CrossRefGoogle ScholarPubMed
Kautz, L., Jung, G., Valore, E. V., Rivella, S., Nemeth, E., Ganz, T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678–84.CrossRefGoogle ScholarPubMed
Jung, G., Nemeth, E., Ganz, T. The erythroid factor erythroferrone and its role in iron homeostasis. Blood. 2013;122(21):4.Google Scholar
Kautz, L., Jung, G., Nemeth, E., Ganz, T. Erythroferrone contributes to recovery from anemia of inflammation. Blood. 2014;124(16):2569–74.CrossRefGoogle ScholarPubMed
Nai, A., Lidonnici, M. R., Rausa, M., et al. The second transferrin receptor regulates red blood cell production in mice. Blood. 2014;125(7):1170–9.Google ScholarPubMed
Liang, R., Ghaffari, S. Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease. Br J Haematol. 2016;174(5):661–73.CrossRefGoogle ScholarPubMed
Tanno, T., Bhanu, N. V., Oneal, P. A., et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med. 2007;13(9):1096–101.CrossRefGoogle ScholarPubMed
Tamary, H., Shalev, H., Perez-Avraham, G., et al. Elevated growth differentiation factor 15 expression in patients with congenital dyserythropoietic anemia type I. Blood. 2008;112(13):5241–4.Google ScholarPubMed
Du, X., She, E., Gelbart, T., et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science. 2008;320(5879):1088–92.CrossRefGoogle ScholarPubMed
Finberg, K. E., Heeney, M. M., Campagna, D. R., et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet. 2008;40(5):569–71.CrossRefGoogle ScholarPubMed
Benyamin, B., Ferreira, M. A. R., Willemsen, G., et al. Common variants in TMPRSS6 are associated with iron status and erythrocyte volume. Nat Genet. 2009;41(11):1173–5.CrossRefGoogle ScholarPubMed
England, J. M., Ward, S. M., Down, M. C. Microcytosis, anisocytosis and the red cell indices in iron deficiency. Br J Haematol. 1976;34(4):589–97.CrossRefGoogle ScholarPubMed
Mohandas, N., Kim, Y. R., Tycko, D. H., Orlik, J., Wyatt, J., Groner, W. Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering. Blood. 1986;68:506–13.CrossRefGoogle ScholarPubMed
Mohandas, N., Johnson, A., Wyatt, J., et al. Automated quantitation of cell density distribution and hyperdense cell fraction in RBC disorders. Blood. 1989;74:442–7.CrossRefGoogle ScholarPubMed
Urrechaga, E. The new mature red cell parameter, low haemoglobin density of the Beckman-Coulter LH750: clinical utility in the diagnosis of iron deficiency. IntJ Labor Hematol. 2010;32(1):E144–50.Google ScholarPubMed
Maconi, M., Cavalca, L., Danise, P., Cardarelli, F., Brini, M. Erythrocyte and reticulocyte indices in iron deficiency in chronic kidney disease: comparison of two methods. Scand J Clin Lab Invest. 2009;69(3):365–70.CrossRefGoogle ScholarPubMed
Urrechaga, E., Borque, L., Escanero, J. F. Clinical value of hypochromia markers in the detection of latent iron deficiency in nonanemic premenopausal women. J Clin Labor Anal. 2016;30(5):623–7.Google ScholarPubMed
Urrechaga, E., Boveda, O., Aguayo, F. J., et al. Percentage of hypochromic erythrocytes and reticulocyte hemoglobin equivalent predictors of response to intravenous iron in hemodialysis patients. Int J Labor Hematol. 2016;38(4):360–5.Google ScholarPubMed
Schaefer, R. M., Schaefer, L. The hypochromic red cell: a new parameter for monitoring of iron supplementation during rhEPO therapy. J Perin Med. 1995;23(1–2):83–8.Google ScholarPubMed
Braun, J., Lindner, K., Schreiber, M., Heidler, R. A., Horl, W. H. Percentage of hypochromic red blood cells as predictor of erythropoietic and iron response after i.v. iron supplementation in maintenance haemodialysis patients. Nephrol Dial Transplant. 1997;12(6):1173–81.CrossRefGoogle ScholarPubMed
Bovy, C., Tsobo, C., Crapanzano, L., et al. Factors determining the percentage of hypochromic red blood cells in hemodialysis patients. Kid Int. 1999;56(3):1113–9.CrossRefGoogle ScholarPubMed
Schaefer, R. M., Schaefer, L. Hypochromic red blood cells and reticulocytes. Kid Int Suppl. 1999;69:S44–8.Google ScholarPubMed
Tessitore, N., Solero, G. P., Lippi, G., et al. The role of iron status markers in predicting response to intravenous iron in haemodialysis patients on maintenance erythropoietin. Nephrol Dial. Transplant. 2001;16(7):1416–23.CrossRefGoogle ScholarPubMed
Richardson, D., Bartlett, C., Will, E. J. Optimizing erythropoietin therapy in hemodialysis patients. Am J Kid Dis. 2001;38(1):109–17.CrossRefGoogle ScholarPubMed
Macdougall, I. C., Cavill, I., Hulme, B., et al. Detection of functional iron-deficiency during erythropoietin treatment – a new approach. Br Med J. 1992;304(6821):225–6.CrossRefGoogle ScholarPubMed
Brugnara, C., Chambers, L. A., Malynn, E., Goldberg, M. A., Kruskall, M. S. Red-blood-cell regeneration induced by subcutaneous recombinant erythropoietin – iron-deficient erythropoiesis in iron-replete subjects. Blood. 1993;81(4):956–64.CrossRefGoogle ScholarPubMed
Brugnara, C., Colella, G. M., Cremins, J., et al. Effects of subcutaneous recombinant-human-erythropoietin in normal subjects – development of decreased reticulocyte hemoglobin content and iron-deficient erythropoiesis. J Labor Clin Med. 1994;123(5):660–7.Google ScholarPubMed
Winkelmayer, W. C., Lorenz, M., Kramar, R., Horl, W. H., Sunder-Plassmann, G. Percentage of hypochromic red blood cells is an independent risk factor for mortality in kidney transplant recipients. Am J Transplant. 2004;4(12):2075–81.CrossRefGoogle ScholarPubMed
Bhandari, S., Norfolk, D., Brownjohn, A., Turney, J. Evaluation of RBC ferritin and reticulocyte measurements in monitoring response to intravenous iron therapy. Am J Kid Dis. 1997;30(6):814–21.CrossRefGoogle ScholarPubMed
Fishbane, S., Galgano, C., Langley, R. C., Jr., Canfield, W., Maesaka, J. K. Reticulocyte hemoglobin content in the evaluation of iron status of hemodialysis patients. Kid Int. 1997;52(1):217–22.CrossRefGoogle ScholarPubMed
Buttarello, M., Pajola, R., Novello, E., Mezzapelle, G., Plebani, M. Evaluation of the hypochromic erythrocyte and reticulocyte hemoglobin content provided by the Sysmex XE-5000 analyzer in diagnosis of iron deficiency erythropoiesis. Clin Chem Lab Med. 2016;54(12):1939–45.CrossRefGoogle ScholarPubMed
Hennek, J. W., Kumar, A. A., Wiltschko, A. B., et al. Diagnosis of iron deficiency anemia using density-based fractionation of red blood cells. Lab on a Chip. 2016;16(20):3929–39.CrossRefGoogle ScholarPubMed
d'Onofrio, G., Zini, G., Ricerca, B. M., Mancini, S., Mango, G. Automated measurement of red blood cell microcytosis and hypochromia in iron deficiency and β-thalassemia trait. Arch Pathol Lab Med. 1992;116:84–9.Google ScholarPubMed
Lafferty, J. D., Crowther, M. A., Ali, M. A., Levine, M. The evaluation of various mathematical RBC indices and their efficacy in discriminating between thalassemic and non-thalassemic microcytosis. Am J Clin Pathol. 1996;106:201–5.CrossRefGoogle ScholarPubMed
Brugnara, C., Hipp, M. J., Irving, P. J., et al. Automated reticulocyte counting and measurement of reticulocyte cellular indexes – evaluation of the miles-h-asterisk-3-blood-analyzer. Am J Clin Pathol. 1994;102(5):623–32.CrossRefGoogle Scholar
Mast, A. E., Blinder, M. A., Dietzen, D. J. Reticulocyte hemoglobin content. Am J Hematol. 2008;83(4):307–9.CrossRefGoogle ScholarPubMed
Brugnara, C., Zelmanovic, D., Sorette, M., Ballas, S. K., Platt, O. Reticulocyte hemoglobin – an integrated parameter for evaluation of erythropoietic activity. Am J Clin Pathol. 1997;108(2):133–42.CrossRefGoogle ScholarPubMed
Mast, A. E., Blinder, M. A., Lu, Q., Flax, S., Dietzen, D. J. Clinical utility of the reticulocyte hemoglobin content in the diagnosis of iron deficiency. Blood. 2002;99:1489–91.CrossRefGoogle ScholarPubMed
Major, A., MathezLoic, F., Gautschi, K., Gehrig, S., Haller, U., Brugnara, C. The effect of intravenous iron on the reticulocyte response to recombinant human erythropoietin. Br J Haematol. 1997;98:292294.CrossRefGoogle ScholarPubMed
Ervasti, M., Kotisaari, S., Heinonen, S., Punnonen, K. Use of advanced red blood cell and reticulocyte indices improves the accuracy in diagnosing iron deficiency in pregnant women at term. Eur J Haematol. 2007;79(6):539–45.CrossRefGoogle ScholarPubMed
Cullen, P., Soffker, J., Hopfl, M., et al. Hypochromic red cells and reticulocyte haemoglobin content as markers of iron-deficient erythropoiesis in patients undergoing chronic haemodialysis. Nephrol Dial Transplant. 1999;14(3):659–65.CrossRefGoogle ScholarPubMed
Mittman, N., Sreedhara, R., Mushnick, R., et al. Reticulocyte hemoglobin content predicts functional iron deficiency in hemodialysis patients receiving rHuEPO. Am J Kid Dis. 1997;30(6):912–22.CrossRefGoogle ScholarPubMed
Fishbane, S., Shapiro, W., Dutka, P., Valenzuela, O. F., Faubert, J. A randomized trial of iron deficiency testing strategies in hemodialysis patients. Kid Int. 2001;60:2406–11.Google ScholarPubMed
Chuang, C.-L., Liu, R.-S., Wei, Y.-H., Huang, T.-P., Tarng, D.-C. Early prediction of response to intravenous iron supplementation by reticulocyte haemoglobin content and high-fluorescence reticulocyte count in haemodialysis patients. Nephrol Dial Transplant. 2003;18(2):370–7.CrossRefGoogle ScholarPubMed
Kim, J. M., Ihm, C. H., Kim, H. J. Evaluation of reticulocyte haemoglobin content as marker of iron deficiency and predictor of response to intravenous iron in haemodialysis patients. Int J Labor Hematol. 2008;30(1):4652.CrossRefGoogle ScholarPubMed
Kaneko, Y., Miyazaki, S., Hirasawa, Y., Gejyo, F., Suzuki, M. Transferrin saturation versus reticulocyte hemoglobin content for iron deficiency in Japanese hemodialysis patients. Kid Int. 2003;63(3):1086–93.CrossRefGoogle ScholarPubMed
Tsuchiya, K., Okano, H., Teramura, M., et al. Content of reticulocyte hemoglobin is a reliable tool for determining iron deficiency in dialysis patients. Clin Nephrol. 2003;59(2):115–23.CrossRefGoogle ScholarPubMed
Brugnara, C., Schiller, B., Moran, J. Reticulocyte hemoglobin equivalent (Ret He) and assessment of iron-deficient states. Clin Lab Haematol. 2006;28(5):303–8.CrossRefGoogle Scholar
Ng, H. Y., Chen, H. C., Pan, L. L., et al. Clinical interpretation of reticulocyte hemoglobin content, RET-Y, in chronic hemodialysis patients. Nephron Clin Pract. 2009;111(4):C247–52.CrossRefGoogle ScholarPubMed
Miwa, N., Akiba, T., Kimata, N., et al. Usefulness of measuring reticulocyte hemoglobin equivalent in the management of hemodialysis patients with iron deficiency. Int J Labor Hematol. 2010;32(2):248–55.Google ScholarPubMed
van Wyck, D., Alcorn, H., Gupta, R. Analytical and biological variation in measures of anemia and iron status in patients treated with maintenance hemodialysis. Am J Kid Dis. 2010;56:540546.CrossRefGoogle ScholarPubMed
Novembrino, C., Porcella, A., Conte, D., et al. Erythrocyte ferritin concentration: analytical performance of the immunoenzymatic IMx-ferritin (Abbott) assay. Clin Chem Lab Med. 2005;43(4):449–53.CrossRefGoogle ScholarPubMed
Galan, P., Sangare, N., Preziosi, P., Roudier, M., Hercberg, S. Is basic red cell ferritin a more specific indicator than serum ferritin in the assessment of iron stores in the elderly? Clin Chim Acta. 1990;189:156–62.CrossRefGoogle ScholarPubMed
Labbe, R. F., Dewanji, A., McLaughlin, K. Observations on the zinc protoporphyrin/heme ratio in whole blood. Clin Chem. 1999;45(1):146–8.CrossRefGoogle ScholarPubMed
Fishbane, S., Lynn, R. The utility of zinc protoporphyrin for predicting the need for intravenous iron therapy in hemodialysis-patients. Am J Kid Dis. 1995;25(3):426–32.CrossRefGoogle ScholarPubMed
Braun, J., Hammerschmidt, M., Schreiber, M., Heidler, R., Horl, W. H. Is zinc protoporphyria an indicator of iron-deficient erythropoiesis in maintenance haemodialysis patients? Nephr Dial Transplant. 1996;11(3):492–7.CrossRefGoogle Scholar
Baldus, M., Salopek, S., Moller, M., et al. Experience with zinc protoporphyrin as a marker of endogenous iron availability in chronic haemodialysis patients. Nephrol Dialys Transplant. 1996;11(3):486–91.CrossRefGoogle ScholarPubMed
Baldus, M., Walter, H., Thies, K., et al. Transferrin receptor assay and zinc protoporphyrin as markers of iron-deficient erythropoiesis in end-stage renal disease patients. Clin Nephrol. 1998;49(3):186–92.Google ScholarPubMed
Hastka, J., Lasserre, J. J., Schwarzbeck, A., Strauch, M., Hehlmann, R. Washing erythrocytes to remove interferents in measurements of zinc protoporphyrin by front-face hematofluorometry. Clin Chem. 1992;38:2184–9.CrossRefGoogle ScholarPubMed
Garrett, S., Worwood, M. Zinc protoporphyrin and iron-deficient erythropoiesis. Acta Haematol. 1994;91(1):21–5.CrossRefGoogle ScholarPubMed
Besarab, A., Amin, N., Ahsan, M., et al. Optimization of epoetin therapy with intravenous iron therapy in hemodialysis patients. J Am Soc Nephrol. 2000;11(3):530–8.CrossRefGoogle ScholarPubMed
Hennig, G., Homann, C., Teksan, I., et al. Non-invasive detection of iron deficiency by fluorescence measurement of erythrocyte zinc protoporphyrin in the lip. Nat Commun. 2016;7:8.CrossRefGoogle ScholarPubMed
Harrington, A. M., Kroft, S. H. Pencil cells and prekeratocytes in iron deficiency anemia. Am J Hematol. 2008;83(12):927.CrossRefGoogle ScholarPubMed
Ford, J. Red blood cell morphology. Int J Labor Hematol. 2013;35(3):351–7.Google ScholarPubMed
Harrington, A. M., Ward, P. C. J., Kroft, S. H. Iron deficiency anemia, beta-thalassemia minor, and anemia of chronic disease. Am J Clin Pathol. 2008;129(3):466–71.CrossRefGoogle ScholarPubMed
Fernandez-Rodriguez, A. M., Guindeo-Casasus, M. C., Molero-Labarta, T., et al. Diagnosis of iron deficiency in chronic renal failure. Am J Kid Dis. 1999;34(3):508–13.CrossRefGoogle ScholarPubMed
Kalantarzadeh, K., Hoffken, B., Wunsch, H., Fink, H., Kleiner, M., Luft, F. C. Diagnosis of iron-deficiency anemia in renal-failure patients during the post-erythropoietin era. Am J Kid Dis. 1995;26(2):292–9.Google ScholarPubMed
Domrongkitchaiporn, S., Jirakranont, B., Atamasrikul, K., Ungkanont, A., Bunyaratvej, A. Indices of iron status in continuous ambulatory peritoneal dialysis patients. Am Kid Dis [computer file]. 1999;34(1):2935.CrossRefGoogle ScholarPubMed
Gotloib, L., Silverberg, D., Fudin, R., Shostak, A. Iron deficiency is a common cause of anemia in chronic kidney disease and can often be corrected with intravenous iron. J Nephrol. 2006;19(2):161–7.Google ScholarPubMed
Martin-Cabrera, P., Hung, M., Ortmann, E., et al. Clinical use of low haemoglobin density, transferrin saturation, bone marrow morphology, Perl's stain and other plasma markers in the identification of treatable anaemia presenting for cardiac surgery in a prospective cohort study. J Clin Pathol. 2015;68(11):923–30.CrossRefGoogle ScholarPubMed
Stancu, S., Barsan, L., Stanciu, A., Mircescu, G. Can the response to iron therapy be predicted in anemic nondialysis patients with chronic kidney disease? Clin J Am Soc Nephrol. 2010;5(3):409–16.CrossRefGoogle ScholarPubMed
Brugnara, C., Laufer, M. R., Friedman, A. J., Bridges, K., Platt, O. Reticulocyte hemoglobin content (CHr): early indicator of iron deficiency and response to therapy [letter]. Blood. 1994;83(10):3100–1.CrossRefGoogle ScholarPubMed
Hoppe, M., HulthÈn, L., Hallberg, L. The validation of using serum iron increase to measure iron absorption in human subjects. Br J Nutr. 2004;92(03):485–8.CrossRefGoogle ScholarPubMed
Brugnara, C., Schiller, B., Moran, J. Reticulocyte hemoglobin equivalent (Ret He) and assessment of iron deficient states. Clin Lab Haem. 2006;28:303–8.CrossRefGoogle Scholar
Brugnara, C., Laufer, M. R., Friedman, A. I., Platt, O. Reticulocyte hemoglobin content (Chr) – early indicator of response to iron therapy. Blood. 1993;82(10):A93–A.Google Scholar
Major, A., MathezLoic, F., Rohling, R., Gautschi, K., Brugnara, C. The effect of intravenous iron on the reticulocyte response to recombinant human erythropoietin. Br J Haematol. 1997;98(2):292–4.CrossRefGoogle ScholarPubMed

References

World Health Organization. Turning the tide of malnutrition: responding to the challenge of the 21st century 2000 (WHO/NHD/00.7) May 30, 2012. Available from: http://www.who.int/iris/handle/10665/66505.Google Scholar
Looker, A. C., Dallman, P. R., Carroll, M. D., Gunter, E. W., Johnson, C. L. Prevalence of iron deficiency in the United States. JAMA. 1997;277(12):973–6. Epub 1997/03/26.CrossRefGoogle ScholarPubMed
Skikne, B., Hershko, C. Iron deficiency. In: Anderson, G. J., McLaren, G. D., editors. Iron Physiology and Pathophysiology in Humans. New York: Humana Press; 2012.Google Scholar
Schneider, J. M., Fujii, M. L., Lamp, C. L., et al. Anemia, iron deficiency, and iron deficiency anemia in 12–36-mo-old children from low-income families. Am J Clin Nutr. 2005;82(6):1269–75. Epub 2005/12/08.CrossRefGoogle ScholarPubMed
Garrick, M. D., Garrick, L. M. Cellular iron transport. Biochim Biophys Acta. 2009;1790(5):309–25. Epub 2009/04/07.Google ScholarPubMed
Andrews, N. C. Disorders of iron metabolism. N Engl J Med. 1999;341(26):1986–95. Epub 1999/12/23.CrossRefGoogle ScholarPubMed
Cook, J. D., Dassenko, S., Skikne, B. S. Serum transferrin receptor as an index of iron absorption. Br J Haematol. 1990;75(4):603–9. Epub 1990/08/01.CrossRefGoogle ScholarPubMed
Anderson, G. J., Frazer, D. M., McLaren, G. D. Iron absorption and metabolism. Curr Opin Gastroenterol. 2009;25(2):129–35.CrossRefGoogle ScholarPubMed
Wilkins, S. J., Frazer, D. M., Millard, K. N., McLaren, G. D., Anderson, G. J. Iron metabolism in the hemoglobin-deficit mouse: correlation of diferric transferrin with hepcidin expression. Blood. 2006;107(4):1659–64.CrossRefGoogle ScholarPubMed
Kroot, J. J., Kemna, E. H., Bansal, S. S., et al. Results of the first international round robin for the quantification of urinary and plasma hepcidin assays: need for standardization. Haematologica. 2009;94(12):1748–52. Epub 2009/12/10.CrossRefGoogle ScholarPubMed
Cook, J. D., Skikne, B. S. Iron deficiency: definition and diagnosis. J Intern Med. 1989;226(5):349–55. Epub 1989/11/01.CrossRefGoogle ScholarPubMed
Hershko, C., Camaschella, C. How I treat unexplained refractory iron deficiency anemia. Blood. 2014;123(3):326–33. Epub 2013/11/12.CrossRefGoogle Scholar
Chambers, J. C., Zhang, W., Li, Y., et al. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nat Genet. 2009;41(11):1170–2. Epub 2009/10/13.CrossRefGoogle ScholarPubMed
McLaren, C. E., Garner, C. P., Constantine, C. C., et al. Genome-wide association study identifies genetic loci associated with iron deficiency. PLoS One. 2011;6(3):e17390. Epub2011/04/13.CrossRefGoogle ScholarPubMed
Finch, C. A., Miller, L. R., Inamdar, A. R., et al. Iron deficiency in the rat. Physiological and biochemical studies of muscle dysfunction. J Clin Invest. 1976;58(2):447–53. Epub 1976/08/01.CrossRefGoogle ScholarPubMed
Finch, C. A., Gollnick, P. D., Hlastala, M. P., et al. Lactic acidosis as a result of iron deficiency. J Clin Invest. 1979;64(1):129–37. Epub 1979/07/01.CrossRefGoogle ScholarPubMed
Charlton, R. W., Derman, D., Skikne, B., et al. Anaemia, iron deficiency and exercise: extended studies in human subjects. Clin Sci Mol Med. 1977;53(6):537–41. Epub 1977/12/01.Google ScholarPubMed
Brownlie IV, T., Utermohlen, V., Hinton, P. S., Giordano, C., Haas, J. D. Marginal iron deficiency without anemia impairs aerobic adaptation among previously untrained women. Am J Clin Nutr. 2002;75(4):734–42. Epub 2002/03/28.CrossRefGoogle Scholar
Brownlie IV, T., Utermohlen, V., Hinton, P. S., Haas, J. D. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am J Clin Nutr. 2004;79(3):437–43. Epub 2004/02/27.CrossRefGoogle Scholar
Pitsis, G. C., Fallon, K. E., Fallon, S. K., Fazakerley, R. Response of soluble transferrin receptor and iron-related parameters to iron supplementation in elite, iron-depleted, nonanemic female athletes. Clin J Sport Med. 2004;14(5):300–4. Epub 2004/09/21.CrossRefGoogle ScholarPubMed
Hinton, P. S., Sinclair, L. M. Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. Eur J Clin Nutr. 2007;61(1):30–9. Epub 2006/07/13.CrossRefGoogle ScholarPubMed
Klingshirn, L. A., Pate, R. R., Bourque, S. P., Davis, J. M., Sargent, R. G. Effect of iron supplementation on endurance capacity in iron-depleted female runners. Med Sci Sports Exerc. 1992;24(7):819–24. Epub 1992/07/01.CrossRefGoogle ScholarPubMed
LaManca, J. J., Haymes, E. M. Effects of iron repletion on VO2max, endurance, and blood lactate in women. Med Sci Sports Exerc. 1993;25(12):1386–92. Epub 1993/12/01.CrossRefGoogle ScholarPubMed
Zhu, Y. I., Haas, J. D. Altered metabolic response of iron-depleted nonanemic women during a 15-km time trial. J Appl Physiol. 1998;84(5):1768–75. Epub 1998/06/06.CrossRefGoogle ScholarPubMed
Haas, J. D., Brownlie IV, T. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr. 2001;131(2S-2):676S–88S; discussion 88S-90S. Epub 2001/02/13.CrossRefGoogle ScholarPubMed
Brutsaert, T. D., Hernandez-Cordero, S., Rivera, J., et al. Iron supplementation improves progressive fatigue resistance during dynamic knee extensor exercise in iron-depleted, nonanemic women. Am J Clin Nutr. 2003;77(2):441–8. Epub 2003/01/24.CrossRefGoogle ScholarPubMed
von Haehling, S., Gremmler, U., Krumm, M., et al. Prevalence and clinical impact of iron deficiency and anaemia among outpatients with chronic heart failure: The PrEP Registry. Clin Res Cardiol 2017;106(6):436–43. Epub 2017/02/24.CrossRefGoogle ScholarPubMed
Carson, J. L., Adamson, J. W. Iron deficiency and heart disease: ironclad evidence? Hematol Am Soc Hematol Educ Program. 2010;2010:348–50. Epub 2011/01/18.Google ScholarPubMed
Agarwal, R. Nonhematological benefits of iron. Am J Nephrol. 2007;27(6):565–71. Epub 2007/09/07.CrossRefGoogle Scholar
Pollitt, E., Saco-Pollitt, C., Leibel, R. L., Viteri, F. E. Iron deficiency and behavioral development in infants and preschool children. Am J Clin Nutr. 1986;43(4):555–65. Epub 1986/04/01.CrossRefGoogle ScholarPubMed
East, P., Delker, E., Lozoff, B., et al. Associations among infant iron deficiency, childhood emotion and attention regulation, and adolescent problem behaviors. Child Devel. 2017. Epub 2017/02/25.Google ScholarPubMed
Lozoff, B., Clark, K. M., Jing, Y., et al. Dose-response relationships between iron deficiency with or without anemia and infant social-emotional behavior. J Pediatr. 2008;152(5):696702, 31–3. Epub 2008/04/16.CrossRefGoogle ScholarPubMed
Oppenheimer, S. J. Iron and its relation to immunity and infectious disease. J Nutr. 2001;131(2S-2):616S–33S; discussion 33S–35S. Epub 2001/02/13.CrossRefGoogle ScholarPubMed
Jason, J., Archibald, L. K., Nwanyanwu, O. C., et al. The effects of iron deficiency on lymphocyte cytokine production and activation: preservation of hepatic iron but not at all cost. Clin Exp Immunol. 2001;126(3):466–73. Epub 2001/12/12.Google Scholar
Cook, J. D., Alvarado, J., Gutnisky, A., et al. Nutritional deficiency and anemia in Latin America: a collaborative study. Blood. 1971;38(5):591603. Epub 1971/11/01.CrossRefGoogle ScholarPubMed
Cook, J. D., Flowers, C. H., Skikne, B. S. The quantitative assessment of body iron. Blood. 2003;101(9):3359–64. Epub 2003/01/11.CrossRefGoogle ScholarPubMed
Skikne, B. S., Flowers, C. H., Cook, J. D. Serum transferrin receptor: a quantitative measure of tissue iron deficiency. Blood. 1990;75(9):1870–6. Epub 1990/05/01.CrossRefGoogle ScholarPubMed
McLaren, C. E., Kambour, E. L., McLachlan, G. J., et al. Patient-specific analysis of sequential haematological data by multiple linear regression and mixture distribution modelling. Stat Med. 2000;19(1):8398. Epub 2000/01/07.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Ullrich, C., Wu, A., Armsby, C., et al. Screening healthy infants for iron deficiency using reticulocyte hemoglobin content. JAMA. 2005;294(8):924–30. Epub 2005/08/25.CrossRefGoogle ScholarPubMed
Markovic, M., Majkic-Singh, N., Ignjatovic, S., Singh, S. Reticulocyte haemoglobin content vs. soluble transferrin receptor and ferritin index in iron deficiency anaemia accompanied with inflammation. Int J Lab Hematol. 2007;29(5):341–6. Epub 2007/09/11.CrossRefGoogle ScholarPubMed
Fishbane, S., Galgano, C., Langley, R. C., Jr., Canfield, W., Maesaka, J. K. Reticulocyte hemoglobin content in the evaluation of iron status of hemodialysis patients. Kid Int. 1997;52(1):217–22. Epub 1997/07/01.CrossRefGoogle ScholarPubMed
R'Zik, S., Beguin, Y. Serum soluble transferrin receptor concentration is an accurate estimate of the mass of tissue receptors. Exp Hematol. 2001;29(6):677–85. Epub 2001/05/30.CrossRefGoogle ScholarPubMed
Punnonen, K., Irjala, K., Rajamaki, A. Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood. 1997;89(3):1052–7. Epub 1997/02/01.CrossRefGoogle ScholarPubMed
Asobayire, F. S., Adou, P., Davidsson, L., Cook, J. D., Hurrell, R. F. Prevalence of iron deficiency with and without concurrent anemia in population groups with high prevalences of malaria and other infections: a study in Cote d'Ivoire. Am J Clin Nutr. 2001;74(6):776–82. Epub 2001/11/28.CrossRefGoogle ScholarPubMed
Thuy, P. V., Berger, J., Davidsson, L., et al. Regular consumption of NaFeEDTA-fortified fish sauce improves iron status and reduces the prevalence of anemia in anemic Vietnamese women. Am J Clin Nutr. 2003;78(2):284–90. Epub 2003/07/30.CrossRefGoogle ScholarPubMed
Moretti, D., Goede, J. S., Zeder, C., et al. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood. 2015;126(17):1981–9. Epub 2015/08/21.CrossRefGoogle ScholarPubMed
Schrier, S. L. So you know how to treat iron deficiency anemia. Blood. 2015;126(17):1971. Epub 2015/10/24.CrossRefGoogle Scholar
Krayenbuehl, P. A., Battegay, E., Breymann, C., Furrer, J., Schulthess, G. Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood. 2011;118(12):3222–7. Epub 2011/06/28.CrossRefGoogle ScholarPubMed
Gordeuk, V. R., Brittenham, G. M., McLaren, C. E., Hughes, M. A., Keating, L. J. Carbonyl iron therapy for iron deficiency anemia. Blood. 1986;67(3):745–52. Epub 1986/03/01.CrossRefGoogle ScholarPubMed
Skikne, B. S., Punnonen, K., Caldron, P. H., et al. Improved differential diagnosis of anemia of chronic disease and iron deficiency anemia: a prospective multicenter evaluation of soluble transferrin receptor and the sTfR/log ferritin index. Am J Hematol. 2011;86(11):923–7. Epub 2011/08/0.CrossRefGoogle ScholarPubMed

References

Ganz, T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102:783–8.CrossRefGoogle ScholarPubMed
Nemeth, E., Valore, E. V., Territo, M., et al. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute phase protein. Blood. 2003;101:2461–3.CrossRefGoogle Scholar
Means, R. T. Jr. Red blood cell function and disorders of iron metabolism. 2016. In: Scientific American Medicine [Internet]. Hamilton ON: Decker.Google Scholar
Ganz, T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117(17):4425–33.CrossRefGoogle ScholarPubMed
Means, R. T. Jr.. Hepcidin and iron regulation in health and disease. Am J Med Sci. 2013;345(1):5760.CrossRefGoogle ScholarPubMed
Nemeth, E., Tuttle, M. S., Powelson, J., et al. Hepcidin regulates iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.CrossRefGoogle ScholarPubMed
Finberg, K. Iron-refractory iron deficiency anemia. Semin Hematol. 2009;46:378–86.CrossRefGoogle ScholarPubMed
Tanno, T., Bhanu, N. V., Oneal, P. A., et al. Discovery of growth differentiation factor 15 as an erythroblast-secreted regulator of hepcidin with very high level expression in patients with thalassemia. Blood. 2006;108(11):167a-a.CrossRefGoogle Scholar
Tanno, T., Porayette, P., Sripichai, O., et al. Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood. 2009;114(1):181–6.CrossRefGoogle ScholarPubMed
Kautz, L., Jung, G., Valore, E. V., et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678–84.CrossRefGoogle ScholarPubMed
Nai, A., Rubio, A., Campanella, A., et al. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice. Blood. 2016;127(19):2327–36.CrossRefGoogle ScholarPubMed
Celsing, F., Ekblom, B., Sylven, C., Everett, J., Astrand, P. O. Effects of chronic iron deficiency anaemia on myoglobin content, enzyme activity, and capillary density in the human skeletal muscle. Acta Med Scand. 1988;223(5):451–7.CrossRefGoogle ScholarPubMed
Finch, C. A., Miller, L. R., Inamdar, A. R., et al. Iron deficiency in the rat. Physiological and biochemical studies of muscle dysfunction. J Clin Invest. 1976;58(2):447–53.CrossRefGoogle ScholarPubMed
Hegde, N., Rich, M. W., Gayomali, C. The cardiomyopathy of iron deficiency. Tex Heart Inst J. 2006;33(3):340–4.Google ScholarPubMed
Piga, A., Longo, F., Duca, L., et al. High nontransferrin bound iron levels and heart disease in thalassemia major. Am J Hematol. 2009;84(1):2933.CrossRefGoogle ScholarPubMed
Koren, A., Fink, D., Admoni, O., Tennenbaum-Rakover, Y., Levin, C. Non-transferrin-bound labile plasma iron and iron overload in sickle-cell disease: a comparative study between sickle-cell disease and beta-thalassemic patients. Eur J Haematol. 2010;84(1):72–8.CrossRefGoogle ScholarPubMed
Markovic, M., Majkic-Singh, N., Ignjatovic, S., Singh, S. Reticulocyte haemoglobin content vs. soluble transferrin receptor and ferritin index in iron deficiency anaemia accompanied with inflammation. Int J Lab Hematol. 2007;29(5):341–6.CrossRefGoogle ScholarPubMed
Means, R. T. Recent developments in the anemia of chronic disease. Curr Hematol Rep. 2003;2:116–21.Google ScholarPubMed
Brugnara, C., Chambers, L. A., Malynn, E., Goldberg, M. A. Red blood cell regeneration induced by subcutaneous recombinant human erythropoietin: iron-deficient erythropoiesis in iron replete subjects. Blood. 1993;81:956–64.CrossRefGoogle ScholarPubMed
Rector, W. G. Jr., Fortuin, N. J., Conley, C. L. Non-hematologic effects of chronic iron deficiency. A study of patients with polycythemia vera treated solely with venesections. Medicine (Baltimore). 1982;61(6):382–9.CrossRefGoogle ScholarPubMed
Spodaryk, K. The relationship between iron status and received exertion in trained and untrained women. J Physiol Pharmacol. 1993;44:415–23.Google Scholar
Barton, J., Barton, J., Bertoli, L. Pica associated with iron deficiency or depletion: clinical and laboratory correlates in 262 non-pregnant adult outpatients. BMC Blood Disord. 2010;10(1):9.Google ScholarPubMed
Kettaneh, A., Eclache, V., Fain, O., et al. Pica and food craving in patients with iron-deficiency anemia: a case-control study in France. Am J Med. 2005;118(2):185–8.CrossRefGoogle ScholarPubMed
Moore, D. F. Jr., Sears, D. A. Pica, iron deficiency, and the medical history. Am J Med. 1994;97(4):390–3.CrossRefGoogle ScholarPubMed
Borgna-Pignatti, C., Zanella, S. Pica as a manifestation of iron deficiency. Expert Rev Hematol. 2016;9(11):1075–80.CrossRefGoogle ScholarPubMed
Gamaldo, C. E., Benbrook, A. R., Allen, R. P., et al. Childhood and adult factors associated with restless legs syndrome (RLS) diagnosis. Sleep Med. 2007;8(7–8):716–22.CrossRefGoogle ScholarPubMed
Diaz, M., Rosado, J. L., Allen, L. H., Abrams, S., Garcia, O. P. The efficacy of a local ascorbic acid-rich food in improving iron absorption from Mexican diets: a field study using stable isotopes. Am J Clin Nutr. 2003;78(3):436–40.CrossRefGoogle Scholar
Garcia, O. P., Diaz, M., Rosado, J. L., Allen, L. H. Ascorbic acid from lime juice does not improve the iron status of iron-deficient women in rural Mexico. Am J Clin Nutr. 2003;78(2):267–73.CrossRefGoogle Scholar
Moretti, D., Goede, J. S., Zeder, C., et al. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood. 2015;126(17):1981–9.CrossRefGoogle ScholarPubMed
Zhang, X., Ouyang, J., Wieczorek, R., DeSoto, F. Iron medication-induced gastric mucosal injury. Pathol Res Pract. 2009;205(8):579–81.CrossRefGoogle ScholarPubMed
Laine, L. A., Bentley, E., Chandrasoma, P. Effect of oral iron therapy on the upper gastrointestinal tract. A prospective evaluation. Dig Dis Sci. 1988;33(2):172–7.CrossRefGoogle Scholar
Mimura, E. C., Bregano, J. W., Dichi, J. B., Gregorio, E. P., Dichi, I. Comparison of ferrous sulfate and ferrous glycinate chelate for the treatment of iron deficiency anemia in gastrectomized patients. Nutrition. 2008;24(7–8):663–8.CrossRefGoogle ScholarPubMed
Toblli, J. E., Cao, G., Olivieri, L., Angerosa, M. Comparative study of gastrointestinal tract and liver toxicity of ferrous sulfate, iron amino chelate and iron polymaltose complex in normal rats. Pharmacology. 2008;82(2):127–37.CrossRefGoogle ScholarPubMed
McColl, K. E. Effect of proton pump inhibitors on vitamins and iron. Am J Gastroenterol. 2009;104 Suppl 2:S5–S9.Google ScholarPubMed
Teucher, B., Olivares, M., Cori, H. Enhancers of iron absorption: ascorbic acid and other organic acids. Int J Vitam Nutr Res. 2004;74(6):403–19.CrossRefGoogle ScholarPubMed
Rudinskas, L., Paton, T. W., Walker, S. E., Dotten, D. A., Cowan, D. H. Poor clinical response to enteric-coated iron preparations. CMAJ. 1989;141(6):565–6.Google ScholarPubMed
Millman, N., Rosenstock, S., Andersen, L., Jorgensen, T., Bonnevie, O. Serum ferritin, hemoglobin, and Helicobacter pylori infection:a seroepidemiologic survey comprising 2794 Danish adults. Gastroenterology. 1998;115:268–74.Google Scholar
Singh, S., Singh, S., Singh, P. K. A study to compare the efficacy and safety of intravenous iron sucrose and intramuscular iron sorbitol therapy for anemia during pregnancy. J Obstet Gynaecol India. 2013;63(1):1821.CrossRefGoogle ScholarPubMed
Cavill, I., Auerbach, M., Bailie, G. R., et al. Iron and the anaemia of chronic disease: a review and strategic recommendations. Curr Med Res Opin. 2006;22(4):731–7.CrossRefGoogle ScholarPubMed
Weinbren, K., Salm, R., Greenberg, G. Intramuscular injections of iron compounds and oncogenesis in man. Br Med J. 1978;1(6114):683–5.CrossRefGoogle ScholarPubMed
Maher, R., Blake, W., Brown, T. Differential diagnosis of a soft tissue mass following long term parenteral iron injection. J Plast Reconstr Aesthet Surg. 2008;61(5):582.CrossRefGoogle ScholarPubMed
Auerbach, M., Macdougall, I C. Oral iron therapy: after three centuries, it is time for a change. Am J Kid Dis. 2016;68(5):665–6.CrossRefGoogle ScholarPubMed
Shepshelovich, D, Rozen-Zvi, B, Avni, T, Gafter, U, Gafter-Gvili, A. Intravenous versus oral iron supplementation for the treatment of anemia in ckd: an updated systematic review and meta-analysis. Am J Kid Dis. 2016.CrossRefGoogle ScholarPubMed
ten Broeke, R., Bravenboer, B., Smulders, F. J. Iron deficiency before and after bariatric surgery: the need for iron supplementation. Netherlands J Med. 2013;71(8):412–7.Google ScholarPubMed
Auerbach, M., Deloughery, T. Single-dose intravenous iron for iron deficiency: a new paradigm. Hematol/Education Program of the American Society of Hematology. 2016;2016(1):5766.CrossRefGoogle ScholarPubMed
Avni, T., Bieber, A., Grossman, A., et al. The safety of intravenous iron preparations: systematic review and meta-analysis. Mayo Clin. Proceed. 2015;90(1):1223.CrossRefGoogle ScholarPubMed
Okam, M. M., Koch, T. A., Tran, M. H. Iron supplementation, response in iron-deficiency anemia: analysis of five trials. Am J Med. 2017.CrossRefGoogle ScholarPubMed
Okam, M. M., Mandell, E., Hevelone, N., et al. Comparative rates of adverse events with different formulations of intravenous iron. Am J Hematol. 2012;87(11):E123–4.CrossRefGoogle ScholarPubMed
Andrews, N. C. Disorders of iron metabolism. N Engl J Med. 1999;341(26):1986–95.CrossRefGoogle ScholarPubMed
Novey, H. S., Pahl, M., Haydik, I., Vaziri, N. D. Immunologic studies of anaphylaxis to iron dextran in patients on renal dialysis. Annals Allergy. 1994;72(3):224–8.Google ScholarPubMed
Wysowski, D. K., Swartz, L., Borders-Hemphill, B. V., Goulding, M. R., Dormitzer, C. Use of parenteral iron products and serious anaphylactic-type reactions. Am J Hematol. 2010;85(9):650–4.CrossRefGoogle ScholarPubMed
Chertow, G. M., Mason, P. D., Vaage-Nilsen, O., Ahlmen, J. Update on adverse drug events associated with parenteral iron. Nephrol Dial Transplant. 2006;21(2):378–82.CrossRefGoogle ScholarPubMed
Barton, J. C., Barton, E. H., Bertoli, L. F., Gothard, C. H., Sherrer, J. S. Intravenous iron dextran therapy in patients with iron deficiency and normal renal function who failed to respond to or did not tolerate oral iron supplementation. Am J Med. 2000;109(1):2732.CrossRefGoogle Scholar
Hetzel, D., Strauss, W., Bernard, K., et al. A Phase III, randomized, open-label trial of ferumoxytol compared with iron sucrose for the treatment of iron deficiency anemia in patients with a history of unsatisfactory oral iron therapy. Am J Hematol. 2014;89(6):646–50.CrossRefGoogle ScholarPubMed
Fleming, L. W., Stewart, W. K., Parratt, D. Dextran antibodies, complement conversion and circulating immune complexes after intravenous iron dextran therapy in dialysed patients. Nephrol Dial Transplant. 1992;7(1):35–9.Google ScholarPubMed
Lewinter, P. Iron-dextran anaphylaxis: occurrence after a negative test dose. J Med Soc NJ. 1970;67(3):116–7.Google ScholarPubMed
Monaghan, M. S., Glasco, G., St, J. G., Bradsher, R. W., Olsen, K. M. Safe administration of iron dextran to a patient who reacted to the test dose. South Med J. 1994;87(10):1010–2.CrossRefGoogle Scholar
Ganzoni, A. M. Eisen-Dextran intravenos: therapeutische und experimentelle Moglichkeiten. Schweiz Med Wochenschr. 1970;100(7):301–3.Google Scholar
Stoltzfus, R. J., Dreyfuss, M. L., Chwaya, H. M., Albonico, M. Hookworm control as a strategy to prevent iron deficiency. Nutr Rev. 1997;55:223–32.Google ScholarPubMed
Park, D. I., Ryu, S. H., Oh, S. J., et al. Significance of endoscopy in asymptomatic premenopausal women with iron deficiency anemia. Dig Dis Sci. 2006;51(12):2372–6.CrossRefGoogle ScholarPubMed
Cha, J. M., Lee, J. I., Joo, K. R., Jung, S. W., Shin, H. P. Melanosis ilei associated with chronic ingestion of oral iron. Gut Liver. 2009;3(4):315–7.CrossRefGoogle ScholarPubMed
Kibria, R., Barde, C. J. Pseudomelanosis of the stomach. Endoscopy. 2010;42 Suppl 2:E60.CrossRefGoogle ScholarPubMed
Landy, J., Macfarlane, B. Synchronous bidirectional endoscopy for iron deficiency anaemia: is it appropriate for patients under 50? Postgrad Med J. 2010;86(1016):338–40.CrossRefGoogle ScholarPubMed
Riccioni, M. E., Urgesi, R., Spada, C., et al. Unexplained iron deficiency anaemia: Is it worthwhile to perform capsule endoscopy? Digest Liv Dis. 2010.CrossRefGoogle ScholarPubMed
van Mook, W. N., Bourass-Bremers, I. H., Bos, L. P., Verhoeven, H. M., Engels, L. G. The outcome of esophagogastroduodenoscopy (EGD) in asymptomatic outpatients with iron deficiency anemia after a negative colonoscopy. Eur J Intern Med. 2001;12(2):122–6.CrossRefGoogle ScholarPubMed

References

Clark, S. F. Iron deficiency anemia. Nutr Clin Pract. 2008;23(2):128141.CrossRefGoogle ScholarPubMed
Cornah, J. E., Roper, J. M., Pal Singh, D., Smith, A. G. Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.). Biochem J. 2002;362(Pt 2):423432.CrossRefGoogle ScholarPubMed
Gupta, S., Venkateswaran, R., Gorenflo, D. W., Eyler, A. E. Childhood iron deficiency anemia, maternal nutritional knowledge, and maternal feeding practices in a high-risk population. Prev Med. 1999;29(3):152156.CrossRefGoogle ScholarPubMed
Baker, R. D., Greer, F. R. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics. 2010;126(5):10401050.CrossRefGoogle ScholarPubMed
Kazal, L. A. Jr. Prevention of iron deficiency in infants and toddlers. Am Fam Physician. 2002;66(7):12171224.Google ScholarPubMed
Hershko, C., Hoffbrand, A. V., Keret, D., et al. Role of autoimmune gastritis, Helicobacter pylori and celiac disease in refractory or unexplained iron deficiency anemia. Haematologica. 2005;90(5):585595.Google ScholarPubMed
Sarker, S. A., Mahmud, H., Davidsson, L., et al. Causal relationship of Helicobacter pylori with iron-deficiency anemia or failure of iron supplementation in children. Gastroenterology. 2008;135(5):15341542.CrossRefGoogle ScholarPubMed
Borgna-Pignatti, C., Zanella, S. Pica as a manifestation of iron deficiency. Expert Rev Hematol. 2016;9(11):10751080.CrossRefGoogle ScholarPubMed
Grantham-McGregor, S., Ani, C. A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr. 2001;131(2S-2):649S–666S.CrossRefGoogle ScholarPubMed
Lozoff, B., Corapci, F., Burden, M. J., et al. Preschool-aged children with iron deficiency anemia show altered affect and behavior. J Nutr. 2007;137(3):683689.CrossRefGoogle ScholarPubMed
Lozoff, B. Perinatal iron deficiency and the developing brain. Pediatr Res. 2000;48(2):137139.CrossRefGoogle ScholarPubMed
Lozoff, B., Jimenez, E., Hagen, J., Mollen, E., Wolf, A. W. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics. 2000;105(4):E51.CrossRefGoogle ScholarPubMed
Jeng, M. R., Vichinsky, E. Hematologic problems in immigrants from Southeast Asia. Hematol Oncol Clin North Am. 2004;18(6):14051422.CrossRefGoogle ScholarPubMed
Racke, F. K. EPO and TPO sequences do not explain thrombocytosis in iron deficiency anemia. J Pediatr Hematol Oncol. 2003;25(11):919; author reply 920.CrossRefGoogle Scholar
Geddis, A. E., Kaushansky, K. Cross-reactivity between erythropoietin and thrombopoietin at the level of Mpl does not account for the thrombocytosis seen in iron deficiency. J Pediatr Hematol Oncol. 2003;25(11):919920; author reply 920.CrossRefGoogle Scholar
Morris, V. K., Spraker, H. L., Howard, S. C., Ware, R. E., Reiss, U. M. Severe thrombocytopenia with iron deficiency anemia. Pediatr Hematol Oncol. 2010;27(5):413419.CrossRefGoogle ScholarPubMed
Mentzer, W. C. Jr. Differentiation of iron deficiency from thalassaemia trait. Lancet. 1973;1(7808):882.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×