Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T10:03:10.691Z Has data issue: false hasContentIssue false

Section 4 - Special Topics

Published online by Cambridge University Press:  02 April 2019

Robert T. Means Jr
Affiliation:
East Tennessee State University
Get access
Type
Chapter
Information
Nutritional Anemia
Scientific Principles, Clinical Practice, and Public Health
, pp. 143 - 196
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

de Leeuw, N. K., Lowenstein, L., Hsieh, Y. S. Iron deficiency and hydremia in normal pregnancy. Medicine (Baltimore). 1966;45(4):291315.CrossRefGoogle ScholarPubMed
Levy, A., Fraser, D., Katz, M., Mazor, M., Sheiner, E. Maternal anemia during pregnancy is an independent risk factor for low birthweight and preterm delivery. Eur J Obstet Gynecol Reprod Biol. 2005;122(2):182–6.CrossRefGoogle ScholarPubMed
Adebisi, O. Y., Strayhorn, G. Anemia in pregnancy and race in the United States: blacks at risk. Fam Med. 2005;37(9):655–62.Google ScholarPubMed
Xiong, X., Buekens, P., Fraser, W. D., Guo, Z. Anemia during pregnancy in a Chinese population. Int J Gynaecol Obstet. 2003;83(2):159–64.CrossRefGoogle ScholarPubMed
Brabin, B. J., Hakimi, M., Pelletier, D. An analysis of anemia and pregnancy-related maternal mortality. J Nutr. 2001;131(2S-2):604S–14S.Google ScholarPubMed
Xiong, X., Buekens, P., Alexander, S., Demianczuk, N., Wollast, E. Anemia during pregnancy and birth outcome: a meta-analysis. Am J Perinatol. 2000;17(3):137–46.CrossRefGoogle ScholarPubMed
Lund, C. J., Donovan, J. C. Blood volume during pregnancy. Significance of plasma and red cell volumes. Am J Obstet Gynecol. 1967;98(3):394403.CrossRefGoogle ScholarPubMed
Mani, S., Duffy, T. P. Anemia of pregnancy. Clin Perinatol. 1995;22(3):593607.CrossRefGoogle ScholarPubMed
Low, J. A., Johnston, E. E., McBride, R. L. Blood volume adjustments in the normal obstetric patient with particular reference to the third trimester of pregnancy. Am J Obstet Gynecol. 1965;91:356–63.CrossRefGoogle ScholarPubMed
Pritchard, J. A. Changes in the blood volume during pregnancy and delivery. Anesthesiology. 1965;26:393–9.CrossRefGoogle ScholarPubMed
Milman, N., Byg, K. E., Agger, A. O. Hemoglobin and erythrocyte indices during normal pregnancy and postpartum in 206 women with and without iron supplementation. Acta Obstet Gynecol Scand. 2000;79(2):8998.CrossRefGoogle ScholarPubMed
Shen, C., Jiang, Y. M., Shi, H., et al. A prospective, sequential and longitudinal study of haematological profile during normal pregnancy in Chinese women. J Obstet Gynaecol. 2010;30(4):357–61.CrossRefGoogle ScholarPubMed
James, T. R., Reid, H. L., Mullings, A. M. Are published standards for haematological indices in pregnancy applicable across populations: an evaluation in healthy pregnant Jamaican women. BMC Pregnancy Childbirth. 2008;8:8.CrossRefGoogle ScholarPubMed
Akingbola, T. S., Adewole, I. F., Adesina, O. A, et al. Haematological profile of healthy pregnant women in Ibadan, south-western Nigeria. J Obstet Gynaecol. 2006;26(8):763–9.CrossRefGoogle ScholarPubMed
Milman, N., Graudal, N., Nielsen, O. J., Agger, A. O. Serum erythropoietin during normal pregnancy: relationship to hemoglobin and iron status markers and impact of iron supplementation in a longitudinal, placebo-controlled study on 118 women. Int J Hematol. 1997;66(2):159–68.CrossRefGoogle Scholar
Choi, J. W., Pai, S. H. Change in erythropoiesis with gestational age during pregnancy. Ann Hematol. 2001;80(1):2631.CrossRefGoogle ScholarPubMed
de Haas, S., Ghossein-Doha, C., van Kuijk, S. M., van Drongelen, J., Spaanderman, M. E. Physiological adaptation of maternal plasma volume during pregnancy: a systematic review and meta-analysis. Ultras Obstet Gynecol. 2017;49(2):177–87.CrossRefGoogle ScholarPubMed
Wirth, J. P., Woodruff, B. A., Engle-Stone, R., et al. Predictors of anemia in women of reproductive age: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr. 2017;106(suppl 1):416S–427S.Google ScholarPubMed
Schwartz, W. J. III, Thurnau, G. R. Iron deficiency anemia in pregnancy. Clin Obstet Gynecol. 1995;38(3):443–54.CrossRefGoogle ScholarPubMed
Milman, N. Iron and pregnancy—a delicate balance. Ann Hematol. 2006;85(9):559–65.CrossRefGoogle ScholarPubMed
Milman, N., Bergholt, T., Byg, K. E., Eriksen, L., Graudal, N. Iron status and iron balance during pregnancy. A critical reappraisal of iron supplementation. Acta Obstet Gynecol Scand. 1999;78(9):749–57.CrossRefGoogle ScholarPubMed
Milman, N. Prepartum anaemia: prevention and treatment. Ann Hematol. 2008;87(12):949–59.CrossRefGoogle ScholarPubMed
Marti, A., Pena-Marti, G., Munoz, S., Lanas, F., Comunian, G. Association between prematurity and maternal anemia in Venezuelan pregnant women during third trimester at labor. Arch Latinoam Nutr. 2001;51(1):44–8.Google ScholarPubMed
Yakoob, M. Y., Bhutta, Z. A. Effect of routine iron supplementation with or without folic acid on anemia during pregnancy. BMC Public Health. 2011;11 Suppl 3:S21.CrossRefGoogle ScholarPubMed
Mahomed, K. Iron supplementation in pregnancy. Cochrane Database Syst Rev. 2000(2):CD000117.CrossRefGoogle ScholarPubMed
Turgeon O'Brien, H., Santure, M., Maziade, J. The association of low and high ferritin levels and anemia with pregnancy outcome. Can J Diet Pract Res. 2000;61(3):121–7.Google ScholarPubMed
Mwangi, M. N., Roth, J. M., Smit, M. R., et al. Effect of daily antenatal iron supplementation on plasmodium infection in Kenyan women: a randomized clinical trial. JAMA. 2015;314(10):1009–20.CrossRefGoogle ScholarPubMed
Uijterschout, L., Vloemans, J., Rovekamp-Abels, L., et al. The influences of factors associated with decreased iron supply to the fetus during pregnancy on iron status in healthy children aged 0.5 to 3 years. J Perinatol. 2014;34(3):229–33.CrossRefGoogle Scholar
Harthoorn-Lasthuizen, E. J., Lindemans, J., Langenhuijsen, M. M. Does iron-deficient erythropoiesis in pregnancy influence fetal iron supply? Acta Obstet Gynecol Scand. 2001;80(5):392–6.CrossRefGoogle ScholarPubMed
Siu, A. L. Screening for iron deficiency anemia and iron supplementation in pregnant women to improve maternal health and birth outcomes: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2015;163(7):529–36.CrossRefGoogle ScholarPubMed
Rukuni, R., Knight, M., Murphy, M. F., Roberts, D., Stanworth, S. J. Screening for iron deficiency and iron deficiency anaemia in pregnancy: a structured review and gap analysis against UK national screening criteria. BMC Pregnancy Childbirth. 2015;15:269.CrossRefGoogle ScholarPubMed
Pavord, S., Myers, B., Robinson, S., et al. UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol. 2012;156(5):588600.CrossRefGoogle ScholarPubMed
Gerritsen, T., Walker, A. R. The effect of habitually high iron intake on certain blood values in pregnant Bantu women. J Clin Invest. 1954;33(1):23–6.CrossRefGoogle ScholarPubMed
Milman, N. Iron prophylaxis in pregnancy – general or individual and in which dose? Ann Hematol. 2006;85(12):821–8.CrossRefGoogle ScholarPubMed
Milman, N. Oral iron prophylaxis in pregnancy: not too little and not too much! J Pregnancy. 2012;2012:514345.CrossRefGoogle Scholar
Gynecology ACoO. ACOG Practice Bulletin No. 95: anemia in pregnancy. Obstet Gynecol. 2008;112(1):201–7.Google Scholar
Organization WH. Guideline: Intermittent Iron and Folic Acid Supplementation in Non-Anaemic Pregnant Women. Geneva: World Health Organization Copyright (c) World Health Organization 2012.; 2012.Google Scholar
Sen, A., Kanani, S. Intermittent iron folate supplementation: impact on hematinic status and growth of school girls. ISRN Hematol. 2012;2012:482153.CrossRefGoogle ScholarPubMed
Mumtaz, Z., Shahab, S., Butt, N., Rab, M. A., DeMuynck, A. Daily iron supplementation is more effective than twice weekly iron supplementation in pregnant women in Pakistan in a randomized double-blind clinical trial. J Nutr. 2000;130(11):2697–702.CrossRefGoogle Scholar
Moretti, D., Goede, J. S., Zeder, C., et al. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood. 2015;126(17):1981–9.CrossRefGoogle ScholarPubMed
Mayson, E., Ampt, A. J., Shand, A. W., Ford, JB. Intravenous iron: barriers and facilitators to its use at nine maternity hospitals in New South Wales, Australia. Austr NZ J Obstet Gynaecol. 2016;56(2):162–72.CrossRefGoogle ScholarPubMed
Giles, C. An account of 335 cases of megaloblastic anaemia of pregnancy and the puerperium. J Clin Pathol. 1966;19(1):111.CrossRefGoogle ScholarPubMed
Chanarin, I. Folate and cobalamin. Clin Haematol. 1985;14(3):629–41.CrossRefGoogle ScholarPubMed
Streiff, R. R., Little, A. B. Folic acid deficiency in pregnancy. N Engl J Med. 1967;276(14):776–9.CrossRefGoogle ScholarPubMed
Rae, P. G., Robb, P. M. Megaloblastic anaemia of pregnancy: a clinical and laboratory study with particular reference to the total and labile serum folate levels. J Clin Pathol. 1970;23(5):379–91.CrossRefGoogle Scholar
Allen, L. H. Vitamin B12 metabolism and status during pregnancy, lactation and infancy. Adv Exp Med Biol. 1994;352:173–86.CrossRefGoogle ScholarPubMed
Pawlak, R., Lester, S. E., Babatunde, T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: a review of literature. Eur J Clin Nutr. 2014;68(5):541–8.CrossRefGoogle ScholarPubMed
Carter, M. F., Powell, T. L., Li, C., et al. Fetal serum folate concentrations and placental folate transport in obese women. Am J Obstet Gynecol. 2011;205(1):83.e1725.CrossRefGoogle ScholarPubMed
Jain, R., Singh, A., Mittal, M., Talukdar, B. Vitamin B12 deficiency in children: a treatable cause of neurodevelopmental delay. J Child Neurol. 2015;30(5):641–3.CrossRefGoogle ScholarPubMed
Iyengar, L., Babu, S. Folic acid absorption in pregnancy. Br J Obstet Gynaecol. 1975;82(1):20–3.CrossRefGoogle ScholarPubMed
Lundqvist, A., Johansson, I., Wennberg, A., et al. Reported dietary intake in early pregnant compared to non-pregnant women – a cross-sectional study. BMC Pregnancy Childbirth. 2014;14:373.CrossRefGoogle ScholarPubMed
Milman, N., Byg, K. E., Hvas, A. M., Bergholt, T., Eriksen, L. Erythrocyte folate, plasma folate and plasma homocysteine during normal pregnancy and postpartum: a longitudinal study comprising 404 Danish women. Eur J Haematol. 2006;76(3):200–5.Google ScholarPubMed
Cooper, B. A., Cantlie, G. S., Brunton, L. The case for folic acid supplements during pregnancy. Am J Clin Nutr. 1970;23(6):848–54.CrossRefGoogle ScholarPubMed
Lowenstein, L., Cantlie, G., Ramos, O., Brunton, L. The incidence and prevention of folate deficiency in a pregnant clinic population. Can Med Assoc J. 1966;95(16):797806.Google Scholar
Cikot, R. J., Steegers-Theunissen, R. P., Thomas, C. M., et al. Longitudinal vitamin and homocysteine levels in normal pregnancy. BrJ Nutr. 2001;85(1):4958.CrossRefGoogle ScholarPubMed
Maffoni, S., De Giuseppe, R., Stanford, F. C., Cena, H. Folate status in women of childbearing age with obesity: a review. Nutr Res Rev. 2017:17.Google ScholarPubMed
Milman, N., Byg, K. E., Bergholt, T., Eriksen, L., Hvas, A. M. Cobalamin status during normal pregnancy and postpartum: a longitudinal study comprising 406 Danish women. Eur J Haematol. 2006;76(6):521–5.Google ScholarPubMed
Bibbins-Domingo, K., Grossman, D. C., Curry, S. J., et al. Folic acid supplementation for the prevention of neural tube defects: US Preventive Services Task Force recommendation statement. JAMA. 2017;317(2):183–9.Google ScholarPubMed
Campbell, B. A. Megaloblastic anemia in pregnancy. Clin Obstet Gynecol. 1995;38(3):455–62.CrossRefGoogle ScholarPubMed
Lumley, J., Watson, L., Watson, M., Bower, C. Periconceptional supplementation with folate and/or multivitamins for preventing neural tube defects. Cochrane Database SystRev. 2001(3):CD001056.CrossRefGoogle ScholarPubMed
Moussa, H. N., Hosseini Nasab, S., Haidar, Z. A., Blackwell, S. C., Sibai, B. M. Folic acid supplementation: what is new? Fetal, obstetric, long-term benefits and risks. Future Science OA. 2016;2(2):Fso116.CrossRefGoogle ScholarPubMed
Obeid, R., Schon, C., Wilhelm, M., Pietrzik, K., Pilz, S. The effectiveness of daily supplementation with 400 or 800 microg/day folate in reaching protective red blood folate concentrations in non-pregnant women: a randomized trial. Eur J Nutr. 2017.Google ScholarPubMed
Lassi, Z. S., Salam, R. A., Haider, B. A., Bhutta, Z. A. Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochr Database Syst Rev. 2013(3):Cd006896.CrossRefGoogle ScholarPubMed
Bailey, L. B. New standard for dietary folate intake in pregnant women. Am J Clin Nutr. 2000;71(5):1304s–7s.CrossRefGoogle ScholarPubMed
Green, R. Vitamin B12 deficiency from the perspective of a practicing hematologist. Blood. 2017;129(19):9.CrossRefGoogle ScholarPubMed
Obeid, R., Herrmann, W. Homocysteine, folic acid and vitamin B12 in relation to pre- and postnatal health aspects. Clin Chem Lab Med. 2005;43(10):1052–7.CrossRefGoogle ScholarPubMed
Bonnette, R. E., Caudill, M. A., Boddie, A. M., et al. Plasma homocyst(e)ine concentrations in pregnant and nonpregnant women with controlled folate intake. Obstet Gynecol. 1998;92(2):167–70.Google ScholarPubMed
Malinow, M. R., Duell, P. B., Williams, M. A., et al. Short-term folic acid supplementation induces variable and paradoxical changes in plasma homocyst(e)ine concentrations. Lipids. 2001;36 Suppl:S2732.CrossRefGoogle ScholarPubMed
Black, R. E. Micronutrients in pregnancy. BrJ Nutr. 2001;85 Suppl 2:S193–S7.Google ScholarPubMed
Semba, R. D., Kumwenda, N., Taha, T. E., et al. Impact of vitamin A supplementation on anaemia and plasma erythropoietin concentrations in pregnant women: a controlled clinical trial. Eur J Haematol. 2001;66(6):389–95.CrossRefGoogle ScholarPubMed
McCauley, M. E., van den Broek, N., Dou, L., Othman, M. Vitamin A supplementation during pregnancy for maternal and newborn outcomes. Cochr Database Syst Rev. 2015(10):Cd008666.CrossRefGoogle ScholarPubMed
Canete, A., Cano, E., Munoz-Chapuli, R., Carmona, R. Role of vitamin A/retinoic acid in regulation of embryonic and adult hematopoiesis. Nutrients. 2017;9(2).CrossRefGoogle ScholarPubMed

References

Antony, A. C. Vegetarianism and vitamin B-12 (cobalamin) deficiency. Am J Clin Nutr. 2003;78(1):36.CrossRefGoogle ScholarPubMed
Collins, R., Kerr, D. The etymology of the word Macrobiotic:s [sic] and its use in modern Chinese scholarship Sino-Platonic Papers. 2001;112:118.Google Scholar
Antony, A. C. Prevalence of cobalamin (vitamin B-12) and folate deficiency in India--audi alteram partem. Am J Clin Nutr. 2001;74(2):157–9.CrossRefGoogle ScholarPubMed
Herbert, V. The 1986 Herman award lecture. Nutrition science as a continually unfolding story: the folate and vitamin B-12 paradigm. Am J Clin Nutr. 1987;46(3):387402.CrossRefGoogle ScholarPubMed
Antony, A. C. In: Hoffman, R., Benz, Jr. , E. J., Shattil, S. J., Furie, B., Cohen, H. J. eds. Hematology: Basic Principles and Practice. New York: Churchill-Livingstone; 1991:392422.Google Scholar
Torheim, L. E., Ferguson, E. L., Penrose, K., Arimond, M. Women in resource-poor settings are at risk of inadequate intakes of multiple micronutrients. J Nutr. 2010;140(11):2051S–8S.CrossRefGoogle ScholarPubMed
Craig, W. J., Mangels, A. R. Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc. 2009;109(7):1266–82.Google ScholarPubMed
Carmel, R., Mallidi, P. V., Vinarskiy, S., Brar, S., Frouhar, Z. Hyperhomocysteinemia and cobalamin deficiency in young Asian Indians in the United States. Am J Hematol. 2002;70(2):107–14.CrossRefGoogle ScholarPubMed
Herrmann, W., Schorr, H., Obeid, R., Geisel, J. Vitamin B-12 status, particularly holotranscobalamin II and methylmalonic acid concentrations, and hyperhomocysteinemia in vegetarians. Am J Clin Nutr. 2003;78(1):131–6.CrossRefGoogle ScholarPubMed
Antony, A. C. Megaloblastic Anemias. In: Hoffman, R., Benz, E. J. Jr., Silberstein, L. E., et al., eds. Hematology: Basic Principles and Practice. Seventh Edition. Philadelphia: Elsevier; 2018:Chapter 39; pp. 514–45.Google Scholar
Kroger-Ohlsen, M., Trugvason, T., Skibsted, L., Michaelsen, K. Release of iron into foods cooked in an iron pot: effect of pH, salt, and organic acids. J Food Sci. 2002;67:3301–3.CrossRefGoogle Scholar
Nnam, N. Moringa Oleifera leaf improves iron status of infants 6–12 months in Nigeria. Int J Food Saf Nutr Public Health. 2009;2(2):158–64.Google Scholar
Tuntipopipat, S., Zeder, C., Siriprapa, P., Charoenkiatkul, S. Inhibitory effects of spices and herbs on iron availability. Int J Food Sci Nutr. 2009;60(Suppl 1):4355.CrossRefGoogle ScholarPubMed
Trumbo, P., Yates, A. A., Schlicker, S., Poos, M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc. 2001;101(3):294301.CrossRefGoogle ScholarPubMed
Hettiarachchi, M., Liyanage, C., Wickremasinghe, R., Hilmers, D. C., Abrahams, S. A. Prevalence and severity of micronutrient deficiency: a cross-sectional study among adolescents in Sri Lanka. Asia Pac J Clin Nutr. 2006;15(1):5663.Google ScholarPubMed
Stabler, S. P., Allen, R. H. Vitamin B12 deficiency as a worldwide problem. Annu Rev Nutr. 2004;24:299326.CrossRefGoogle ScholarPubMed
Stabler, S. P. Clinical practice. Vitamin B12 deficiency. N Engl J Med. 2013;368(2):149–60.CrossRefGoogle ScholarPubMed
Bjorke-Monsen, A. L., Torsvik, I., Saetran, H., Markestad, T., Ueland, P. M. Common metabolic profile in infants indicating impaired cobalamin status responds to cobalamin supplementation. Pediatrics. 2008;122(1):8391.CrossRefGoogle ScholarPubMed
Bor, M. V., von Castel-Roberts, K. M., Kauwell, G. P., et al. Daily intake of 4 to 7 microg dietary vitamin B-12 is associated with steady concentrations of vitamin B-12-related biomarkers in a healthy young population. Am J Clin Nutr. 2010;91(3):571–7.CrossRefGoogle Scholar
Howard, J. M., Azen, C., Jacobsen, D. W., Green, R., Carmel, R. Dietary intake of cobalamin in elderly people who have abnormal serum cobalamin, methylmalonic acid and homocysteine levels. Eur J Clin Nutr. 1998;52(8):582–7.CrossRefGoogle ScholarPubMed
van Asselt, D. Z., de Groot, L. C., van Staveren, W. A., et al. Role of cobalamin intake and atrophic gastritis in mild cobalamin deficiency in older Dutch subjects. Am J Clin Nutr. 1998;68(2):328–34.CrossRefGoogle ScholarPubMed
Bor, M. V., Lydeking-Olsen, E., Moller, J., Nexo, E. A daily intake of approximately 6 microg vitamin B-12 appears to saturate all the vitamin B-12-related variables in Danish postmenopausal women. Am J Clin Nutr. 2006;83(1):52–8.CrossRefGoogle ScholarPubMed
Pawlak, R., Parrott, S. J., Raj, S., Cullum-Dugan, D., Lucus, D. How prevalent is vitamin B(12) deficiency among vegetarians? Nutr Rev. 2013;71(2):110–7.CrossRefGoogle ScholarPubMed
Bondevik, G. T., Schneede, J., Refsum, H., et al. Homocysteine and methylmalonic acid levels in pregnant Nepali women. Should cobalamin supplementation be considered? Eur J Clin Nutr. 2001;55(10):856–64.CrossRefGoogle ScholarPubMed
Refsum, H., Yajnik, C. S., Gadkari, M., et al. Hyperhomocysteinemia and elevated methylmalonic acid indicate a high prevalence of cobalamin deficiency in Asian Indians. Am J Clin Nutr. 2001;74(2):233–41.CrossRefGoogle ScholarPubMed
Misra, A., Vikram, N. K., Pandey, R. M., et al. Hyperhomocysteinemia, and low intakes of folic acid and vitamin B12 in urban North India. Eur J Nutr. 2002;41(2):6877.CrossRefGoogle ScholarPubMed
Chakravarty, I., Sinha, R. K. Prevalence of micronutrient deficiency based on results obtained from the national pilot program on control of micronutrient malnutrition. Nutr Rev. 2002;60(5 Pt 2):S53–8.CrossRefGoogle ScholarPubMed
Antony, A. C. In: Hoffman, R., Benz, E. J. J., Shattil, S. J., et al., eds. Hematology: Basic Principles and Practice. Philadelphia: Churchill Livingstone Elsevier; 2009:491524.Google Scholar
Halsted, J. A., Carroll, J., Dehghani, A., Loghmani, M., Prasad, A. S. Serum vitamin B12 concentration in dietary deficiency. Am J Clin Nutr. 1960;8:374–6.CrossRefGoogle ScholarPubMed
Sato, K., Kudo, Y., Muramatsu, K. Incorporation of a high level of vitamin B12 into a vegetable, kaiware daikon (Japanese radish sprout), by the absorption from its seeds. Biochim Biophys Acta. 2004;1672(3):135–7.Google ScholarPubMed
Lester, G. E., Makus, D. J., Hodges, D. M. Relationship between fresh-packaged spinach leaves exposed to continuous light or dark and bioactive contents: effects of cultivar, leaf size, and storage duration. J Agric Food Chem. 2010;58(5):2980–7.CrossRefGoogle ScholarPubMed
Hunt, J. R. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr. 2003;78(3 Suppl):633S–9S.CrossRefGoogle ScholarPubMed
Bothwell, T. H. Iron requirements in pregnancy and strategies to meet them. Am J Clin Nutr. 2000;72(1 Suppl):257S–64S.CrossRefGoogle Scholar
National Institutes of Health, Office of Dietary Supplements. Nutrient Recommendations: Dietary Reference Intakes. https://ods.od.nih.gov/Health_Information/Dietary_Reference_Intakes.aspx (Accessed on October 8, 2018).Google Scholar
Schlotz, W., Jones, A., Phillips, D. I., et al. Lower maternal folate status in early pregnancy is associated with childhood hyperactivity and peer problems in offspring. J Child Psychol Psychiatry. 2010;51:594602.CrossRefGoogle ScholarPubMed
World Health Organization. The World Health Report 2002 – Reducing Risks, Promoting Healthy Life. www.who.int/whr/2002/en/. (Accessed on October 8, 2018).Google Scholar
World Health Organization. Micronutrient deficiencies: Iron deficiency anaemia. www.who.int/nutrition/topics/ida/en/index.html and http://www.who.int/nutrition/publications/en/ida_assessment_prevention_control.pdf (Accessed on October 8, 2018).Google Scholar
Bruner, A. B., Joffe, A., Duggan, A. K., Casella, J. F., Brandt, J. Randomised study of cognitive effects of iron supplementation in non-anaemic iron-deficient adolescent girls. Lancet. 1996;348(9033):992–6.CrossRefGoogle ScholarPubMed
Lieberman, E., Ryan, K. J., Monson, R. R., Schoenbaum, S. C. Association of maternal hematocrit with premature labor. Am J Obstet Gynecol. 1988;159(1):107–14.CrossRefGoogle ScholarPubMed
Zeng, L., Dibley, M. J., Cheng, Y., et al. Impact of micronutrient supplementation during pregnancy on birth weight, duration of gestation, and perinatal mortality in rural western China: double blind cluster randomised controlled trial. BMJ. 2008;337:a2001.CrossRefGoogle ScholarPubMed
Cogswell, M. E., Parvanta, I., Ickes, L., Yip, R., Brittenham, G. M. Iron supplementation during pregnancy, anemia, and birth weight: a randomized controlled trial. Am J Clin Nutr. 2003;78(4):773–81.CrossRefGoogle ScholarPubMed
Siega-Riz, A. M., Hartzema, A. G., Turnbull, C., et al. The effects of prophylactic iron given in prenatal supplements on iron status and birth outcomes: a randomized controlled trial. Am J Obstet Gynecol. 2006;194(2):512–9.CrossRefGoogle ScholarPubMed
Christian, P., Murray-Kolb, L. E., Khatry, S. K., et al. Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. JAMA. 2010;304(24):2716–23.CrossRefGoogle ScholarPubMed
Lozoff, B., Jimenez, E., Hagen, J., Mollen, E., Wolf, A. W. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics. 2000;105(4):E51.CrossRefGoogle ScholarPubMed
Chang, S., Wang, L., Wang, Y., et al. Iron-deficiency anemia in infancy and social emotional development in preschool-aged Chinese children. Pediatrics. 2011;127(4):e927–33.CrossRefGoogle ScholarPubMed
Antony, A. C., Ernst, J., Neumann, C. G. Re: Iron-deficiency anemia in infancy and social emotional development in preschool-aged Chinese children (letter to the editor). Pediatrics. 2011:May 20, 2011. http://pediatrics.aappublications.org/content/127/4/e927.comments#re-irondeficiency-anemia-in-infancy-and-socialemotional-development-in-preschoolaged-chinese-children (Accessed on October 8, 2018).Google Scholar
Oski, F. A., Honig, A. S., Helu, B., Howanitz, P. Effect of iron therapy on behavior performance in nonanemic, iron-deficient infants. Pediatrics. 1983;71(6):877–80.CrossRefGoogle Scholar
Friel, J. K., Aziz, K., Andrews, W. L., et al. A double-masked, randomized control trial of iron supplementation in early infancy in healthy term breast-fed infants. J Pediatr. 2003;143(5):582–6.CrossRefGoogle ScholarPubMed
Lozoff, B. Do breast-fed babies benefit from iron before 6 months? J Pediatr. 2003;143(5):554–6.CrossRefGoogle ScholarPubMed
Baker, R. D., Greer, F. R. In reply to letters to the editor Re: diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics. 2011;127(pp. e1101e4 April 1, 2011).CrossRefGoogle Scholar
Baker, R. D., Greer, F. R. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics. 2010;126(5):1040–50.CrossRefGoogle ScholarPubMed
Gleason, G., Scrimshaw, N. In: Kraeme, K., Zimmermann, M. eds. Nutritional Anemia. Basel, Switzerland: Sight and Life Press; 2007:4558.Google Scholar
Pollitt, E., Hathirat, P., Kotchabhakdi, N. J., Missell, L., Valyasevi, A. Iron deficiency and educational achievement in Thailand. Am J Clin Nutr. 1989;50(3 Suppl):687–96; discussion 96–7.CrossRefGoogle ScholarPubMed
Lozoff, B., Jimenez, E., Wolf, A. W. Long-term developmental outcome of infants with iron deficiency. N Engl J Med. 1991;325(10):687–94.CrossRefGoogle ScholarPubMed
Bencaiova, G., von Mandach, U., Zimmermann, R. Iron prophylaxis in pregnancy: intravenous route versus oral route. Eur J Obstet Gynecol Reprod Biol. 2009;144(2):135–9.CrossRefGoogle ScholarPubMed
Koebnick, C., Hoffmann, I., Dagnelie, P. C., et al. Long-term ovo-lacto vegetarian diet impairs vitamin B-12 status in pregnant women. J Nutr. 2004;134(12):3319–26.CrossRefGoogle ScholarPubMed
van Eijsden, M., Smits, L. J., van der Wal, M. F., Bonsel, G. J. Association between short interpregnancy intervals and term birth weight: the role of folate depletion. Am J Clin Nutr. 2008;88(1):147–53.CrossRefGoogle ScholarPubMed
Smith, G. C., Pell, J. P., Dobbie, R. Interpregnancy interval and risk of preterm birth and neonatal death: retrospective cohort study. BMJ. 2003;327(7410):313.Google ScholarPubMed
Berry, R. J., Li, Z., Erickson, J. D., et al. Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N Engl J Med. 1999;341(20):1485–90.CrossRefGoogle Scholar
Cuskelly, G. J., McNulty, H., Scott, J. M. Effect of increasing dietary folate on red-cell folate: implications for prevention of neural tube defects. Lancet. 1996;347(9002):657–9.CrossRefGoogle ScholarPubMed
Koebnick, C., Heins, U. A., Hoffmann, I., Dagnelie, P. C., Leitzmann, C. Folate status during pregnancy in women is improved by long-term high vegetable intake compared with the average western diet. J Nutr. 2001;131(3):733–9.CrossRefGoogle ScholarPubMed
Bukowski, R., Malone, F. D., Porter, F. T., et al. Preconceptional folate supplementation and the risk of spontaneous preterm birth: a cohort study. PLoS Med. 2009;6(5):e1000061.CrossRefGoogle ScholarPubMed
Antony, A. C. The enigma of spontaneous preterm birth. N Engl J Med. 2010;362(21):2033; author reply 4.Google ScholarPubMed
Yang, Q., Cogswell, M. E., Hamner, H. C., et al. Folic acid source, usual intake, and folate and vitamin B-12 status in US adults: National Health and Nutrition Examination Survey (NHANES) 2003–2006. Am J Clin Nutr. 2010;91(1):6472.CrossRefGoogle ScholarPubMed
Antony, A. C. In utero physiology: role of folic acid in nutrient delivery and fetal development. Am J Clin Nutr. 2007;85(2):598S–603S.CrossRefGoogle ScholarPubMed
Cherian, A., Seena, S., Bullock, R. K., Antony, A. C. Incidence of neural tube defects in the least-developed area of India: a population-based study. Lancet. 2005;366(9489):930–1.CrossRefGoogle ScholarPubMed
Pathak, P., Kapil, U., Kapoor, S. K., et al. Prevalence of multiple micronutrient deficiencies amongst pregnant women in a rural area of Haryana. Indian J Pediatr. 2004;71(11):1007–14.CrossRefGoogle Scholar
Bhandari, N., Bahl, R., Taneja, S., et al. Effect of routine zinc supplementation on pneumonia in children aged 6 months to 3 years: randomised controlled trial in an urban slum. BMJ. 2002;324(7350):1358.CrossRefGoogle Scholar
Ceriani Cernadas, J. M., Carroli, G., Pellegrini, L., et al. The effect of timing of cord clamping on neonatal venous hematocrit values and clinical outcome at term: a randomized, controlled trial. Pediatrics. 2006;117(4):e779–86.CrossRefGoogle ScholarPubMed
Chaparro, C. M., Neufeld, L. M., Tena Alavez, G., Eguia-Liz Cedillo, R., Dewey, K. G. Effect of timing of umbilical cord clamping on iron status in Mexican infants: a randomised controlled trial. Lancet. 2006;367(9527):19972004.CrossRefGoogle ScholarPubMed
Murphy, M. M., Molloy, A. M., Ueland, P. M., et al. Longitudinal study of the effect of pregnancy on maternal and fetal cobalamin status in healthy women and their offspring. J Nutr. 2007;137(8):1863–7.CrossRefGoogle ScholarPubMed
Bjorke-Monsen, A. L., Ueland, P. M. Cobalamin status in children. J Inherit Metab Dis. 2010;34(1):111–9.Google ScholarPubMed
Torsvik, I., Ueland, P. M., Markestad, T., Bjorke-Monsen, A. L. Cobalamin supplementation improves motor development and regurgitations in infants: results from a randomized intervention study. Am J Clin Nutr. 2013;98(5):1233–40.CrossRefGoogle ScholarPubMed
Bae, S., West, A. A., Yan, J., et al. Vitamin B-12 status differs among pregnant, lactating, and control women with equivalent nutrient intakes. J Nutr. 2015;145(7):1507–14.CrossRefGoogle ScholarPubMed
Kenya-Demographic-and-Health-Survey-2014-, and www.dhsprogram.com/pubs/pdf/PR55/PR55.pdf. 2014. (Accessed on October 8, 2018).Google Scholar
Quadros, E. V. Advances in the understanding of cobalamin assimilation and metabolism. Br J Haematol. 2010;148(2):195204.CrossRefGoogle ScholarPubMed
Quadros, E. V., Nakayama, Y., Sequeira, J. M. The protein and the gene encoding the receptor for the cellular uptake of transcobalamin-bound cobalamin. Blood. 2009;113(1):186–92.CrossRefGoogle ScholarPubMed
Dagnelie, P. C., van Staveren, W. A. Macrobiotic nutrition and child health: results of a population-based, mixed-longitudinal cohort study in The Netherlands. Am J Clin Nutr. 1994;59(5 Suppl):1187S–96S.CrossRefGoogle ScholarPubMed
Bjorke Monsen, A. L., Ueland, P. M., Vollset, S. E., et al. Determinants of cobalamin status in newborns. Pediatrics. 2001;108(3):624–30.Google ScholarPubMed
van Dusseldorp, M., Schneede, J., Refsum, H., et al. Risk of persistent cobalamin deficiency in adolescents fed a macrobiotic diet in early life. Am J Clin Nutr. 1999;69(4):664–71.CrossRefGoogle ScholarPubMed
Louwman, M. W., van Dusseldorp, M., van de Vijver, F. J., et al. Signs of impaired cognitive function in adolescents with marginal cobalamin status. Am J Clin Nutr. 2000;72(3):762–9.CrossRefGoogle ScholarPubMed
Amin, N. M., Zeki, J. M. Infantile tremor syndrome in Iraqi Kurdistan. Indian J Pediatr. 2005;72(10):839–42.CrossRefGoogle ScholarPubMed
Rogers, L. M., Boy, E., Miller, J. W., et al. High prevalence of cobalamin deficiency in Guatemalan schoolchildren: associations with low plasma holotranscobalamin II and elevated serum methylmalonic acid and plasma homocysteine concentrations. Am J Clin Nutr. 2003;77(2):433–40.CrossRefGoogle ScholarPubMed
Whaley, S. E., Sigman, M., Neumann, C., et al. The impact of dietary intervention on the cognitive development of Kenyan school children. J Nutr. 2003;133(11Suppl 2):3965S–71S.CrossRefGoogle ScholarPubMed
Neumann, C. G., Bwibo, N. O., Murphy, S. P., et al. Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan school children: background, study design and baseline findings. J Nutr. 2003;133(11 Suppl 2):3941S–9S.CrossRefGoogle ScholarPubMed
Steenweg-de Graaff, J., Roza, S. J., Steegers, E. A., et al. Maternal folate status in early pregnancy and child emotional and behavioral problems: the Generation R Study. Am J Clin Nutr. 2012;95(6):1413–21.CrossRefGoogle ScholarPubMed
Suren, P., Roth, C., Bresnahan, M., et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA. 2013;309(6):570–7.Google ScholarPubMed
Strand, T. A., Taneja, S., Ueland, P. M., et al. Cobalamin and folate status predicts mental development scores in North Indian children 12–18 mo of age. Am J Clin Nutr. 2013;97(2):310–7.CrossRefGoogle ScholarPubMed
Antony, A. C. In: Goldman, L, Schafer, AI. eds. Goldman-Cecil Medicine, (Cecil's Textbook of Medicine) 25th Edition. New York: Elsevier Saunders; 2015:1104–14.Google Scholar
Calis, J. C., Phiri, K. S., Faragher, E. B., et al. Severe anemia in Malawian children. N Engl J Med. 2008;358(9):888–99.CrossRefGoogle ScholarPubMed
Antony, A. C. Severe anemia in Malawian children. N Engl J Med. 2008;358(21):2291; author reply.Google ScholarPubMed
Perry, C. L., McGuire, M. T., Neumark-Sztainer, D, Story, M. Adolescent vegetarians: how well do their dietary patterns meet the healthy people 2010 objectives? Arch Pediatr Adolesc Med. 2002;156(5):431–7.CrossRefGoogle ScholarPubMed
Larsson, C. L., Johansson, G. K. Young Swedish vegans have different sources of nutrients than young omnivores. J Am Diet Assoc. 2005;105(9):1438–41.CrossRefGoogle ScholarPubMed
Agarwal, K. N., Saxena, A., Bansal, A. K., Agarwal, D. K. Physical growth assessment in adolescence. Indian Pediatr. 2001;38(11):1217–35.Google ScholarPubMed
Rao, D. R., Vijayapushpam, T., Subba Rao, G. M., Antony, G. M., Sarma, K. V. Dietary habits and effect of two different educational tools on nutrition knowledge of school going adolescent girls in Hyderabad, India. Eur J Clin Nutr. 2007;61(9):1081–5.Google ScholarPubMed
Vereecken, C. A., De Henauw, S, Maes, L. Adolescents' food habits: results of the Health Behaviour in School-aged Children survey. Br J Nutr. 2005;94(3):423–31.CrossRefGoogle ScholarPubMed
Cooper, B. A., Lowenstein, L. Relative folate deficiency of erythrocytes in pernicious anemia and its correction with cyanocobalamin. Blood. 1964;24(502–21.CrossRefGoogle ScholarPubMed
Nixon, P. F., Bertino, J. R. Impaired utilization of serum folate in pernicious anemia. A study with radiolabeled 5-methyltetrahydrofolate. J Clin Invest. 1972;51(6):1431–9.CrossRefGoogle ScholarPubMed
Bailey, L. B., Stover, P. J., McNulty, H., et al. Biomarkers of nutrition for development-folate review. J Nutr. 2015;145(7):1636S–80S.CrossRefGoogle ScholarPubMed
Antony, A. C. Evidence for potential underestimation of clinical folate deficiency in resource-limited countries using blood tests. Nutr Rev. 2017; 75(8):600–15.CrossRefGoogle ScholarPubMed
Samuel, T. M., Duggan, C., Thomas, T., et al. Vitamin B(12) intake and status in early pregnancy among urban South Indian women. Ann Nutr Metab. 2013;62(2):113–22.CrossRefGoogle ScholarPubMed
Berkram, P., Bedano, P. M., Kahi, C. J., et al. A landlubber with an ancient mariner's leaky vessels. Gastrointest Endosc. 2007;66(5):1065–6.CrossRefGoogle ScholarPubMed
Chu, M., Seltzer, T. F. Myxedema coma induced by ingestion of raw bok choy. N Engl J Med. 2010;362(20):1945–6.CrossRefGoogle ScholarPubMed
Yokoi, K., Alcock, N. W., Sandstead, H. H. Iron and zinc nutriture of premenopausal women: associations of diet with serum ferritin and plasma zinc disappearance and of serum ferritin with plasma zinc and plasma zinc disappearance. J Lab Clin Med. 1994;124(6):852–61.Google ScholarPubMed
Zimmermann, M. B., Biebinger, R., Rohner, F., et al. Vitamin A supplementation in children with poor vitamin A and iron status increases erythropoietin and hemoglobin concentrations without changing total body iron. Am J Clin Nutr. 2006;84(3):580–6.CrossRefGoogle ScholarPubMed
Food and Agriculture Organization. The State of Food Insecurity in the World 2015. http://www.fao.org/3/a-i4646e.pdf (Accessed on October 8, 2018).Google Scholar
World Health Organization. Sixty-Third World Health Assembly, Geneva, May 17–21, 2010. http://www.who.int/nutrition/topics/WHA63.23_iycn_en.pdf (Accessed on October 8, 2018).Google Scholar

References

Nutt, D. J., King, L. A., Phillips, L. D. Drug harms in the UK: a multicriteria decision analysis. Lancet 2010; 376: 1558–65.CrossRefGoogle Scholar
Saitz, R. Unhealthy alcohol use. N Engl J Med 2005; 352: 596607.CrossRefGoogle ScholarPubMed
Hasin, D. S., Stinson, F. S., Ogburn, E., Grant, B. F. Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch Gen Psychiatry 2007; 64: 830–42.CrossRefGoogle ScholarPubMed
Zhang, Y., Guo, X., Saitz, R., et al. Secular trends in alcohol consumption over 50 years: the Framingham Study. Am J Med 2008; 121: 695701.CrossRefGoogle ScholarPubMed
O'Connell, H., Chin, A.-V., Cunningham, C., Lawlor, B. Alcohol use disorders in elderly people – redefining an age old problem in old age. Br Med J 2003; 327: 664–7.CrossRefGoogle ScholarPubMed
Johnston, L. D., O'Malley, P. M., Bachman, J. G., Schulenberg, J. E. Monitoring the Future national results on adolescent drug use: overview of key findings, 2008 (NIH Publication No. 09–7401). Bethesda, MD: National Institute on Drug Abuse. 2009.Google Scholar
Sokol, R. J., Miller, S. I., Reed, G. Alcohol abuse during pregnancy: an epidemiologic study. Alcoholism: Clin Exp Res 1980; 4: 135–45.CrossRefGoogle ScholarPubMed
Lieber, C. S. Medical disorders of alcoholism. N Engl J Med 1995; 333: 1058–65.CrossRefGoogle ScholarPubMed
Savage, D., Lindenbaum, J. Anemia in alcoholics. Medicine 1986; 65: 322–38.CrossRefGoogle ScholarPubMed
Ballard, H. S. Alcohol-associated pancytopenia with hypocellular bone marrow. Am J Clin Pathol 1980; 73: 830–4.CrossRefGoogle ScholarPubMed
McCurdy, P. R., Rath, C. E. Vacuolated nucleated bone marrow cells in alcoholism. Semin Hematol 1980; 17: 100102.Google ScholarPubMed
Sullivan, L. W., Herbert, V. Suppression of hematopoiesis by ethanol. J Clin Invest 1964; 43: 2048–62.CrossRefGoogle ScholarPubMed
Jarrold, T., Will, J. J., Davies, A. R, et al. Bone marrow-erythroid morphology in alcoholic patients. Am J Clin Nutr 1967; 20: 716–22.CrossRefGoogle ScholarPubMed
Yeung, K. Y., Klug, P. P., Lessin, L. S. Alcohol-induced vacuolization in bone marrow cells: ultrastructure and mechanism of formation. Blood Cells 1988; 13: 483502.Google ScholarPubMed
Meagher, R. C., Sieber, F., Spivak, J. L. Suppression of hematopoietic-progenitor-cell proliferation by ethanol and acetaldehyde. N Engl J Med 1982; 307: 845–9.CrossRefGoogle ScholarPubMed
Nogard, M. J., Carpenter, J. T. Jr., Conrad, M. E. Bone marrow necrosis and degeneration. Arch Int Med 1979; 139: 905–11.Google Scholar
Latvala, J., Parkkila, S., Melkko, J., Niemela, O. Acetaldehyde adducts in blood and bone marrow of patients with ethanol-induced erythrocyte abnormalities. Mol Med 2001; 7: 401–5.CrossRefGoogle ScholarPubMed
Liu, Y. K. Effects of alcohol on granulocytes and lymphocytes. Semin Hematol 1980; 17: 130–6.Google ScholarPubMed
Cowan, D. H. Effects of alcoholism on hemostasis. Semin Hematol 1980; 17: 137–47.Google ScholarPubMed
Wu, A., Chanarin, I., Levi, A. J. Macrocytosis of chronic alcoholism. Lancet 1974; 1: 829–31.Google ScholarPubMed
Unger, K. W., Johnson, D. Red blood cell mean corpuscular volume: a potential indicator of alcohol usage in a working population. Am J Med Sci 1974; 267: 281–9.CrossRefGoogle Scholar
Stibler, H., Beauge, F., Leguicher, A., Borg, S. Biophysical and biochemical alterations in erythrocyte membranes from chronic alcoholics. Scand J Clin Lab Invest 1991; 51: 309–19.CrossRefGoogle ScholarPubMed
Hernandez-Munoz, R., Baraona, E., Blacksberg, I., Lieber, C. S. Characterization of the increased binding of acetaldehyde to red blood cells in alcoholism. Alcoholism: Clin Exp Res 1989; 13: 654–9.CrossRefGoogle Scholar
Koivisto, H., Hietala, J., Anttila, P., et al. Long-term ethanol consumption and macrocytosis: diagnostic and pathogenic implications. J Lab Clin Med 2006; 147: 191–6.CrossRefGoogle ScholarPubMed
Niemela, O. Biomarkers in alcoholism. Clin Chim Acta 2007; 377: 3949.CrossRefGoogle ScholarPubMed
Eichner, E. R. The hematologic disorders of alcoholism. Am J Med 1973; 54: 621–30.CrossRefGoogle ScholarPubMed
Hines, J. D. Reversible megaloblastic and sideroblastic marrow abnormalities in alcoholic patients. Br J Haematol 1969; 16: 87101.CrossRefGoogle ScholarPubMed
Eichner, E. R., Hillman, R. S. The evolution of anemia in alcoholic patients. Am J Med 1971; 50: 218–32.CrossRefGoogle ScholarPubMed
Eichner, E. R., Buchanan, B., Smith, J. W., Hillman, R. S. Variations in the hematologic and medical status of alcoholics. Am J Med Sci 1972; 263: 3542.CrossRefGoogle ScholarPubMed
Eichner, E. R., Pierce, H. I., Hillman, R. S. Folate balance in dietary-induced megaloblastic anemia. N Engl J Med 1971; 281: 933–8.Google Scholar
Lindenbaum, J., Lieber, C. S. Hematologic effects of alcohol in man in the absence of nutritional deficiency. N Engl J Med 1969; 284: 333–8.Google Scholar
Halsted, C. H., Villanueva, J. A., Devlin, A. M., Chandler, C. J. Metabolic interactions of alcohol and folate. J Nutr 2002; 132: 2367S–72S.CrossRefGoogle ScholarPubMed
Halsted, C. H., Robles, E. A., Mezey, E. Intestinal malabsorption in folate-deficient alcoholics. Gastroenterology 1973; 64: 526–32.CrossRefGoogle ScholarPubMed
Eichner, E. R., Hillman, R. S. Effect of alcohol on serum folate level. J Clin Invest 1973; 52: 584–91.CrossRefGoogle ScholarPubMed
Weir, D. G., McGing, P. G., Scott, J. M. Folate metabolism, the enterohepatic circulation and alcohol. Biochem Pharmacol 1985; 34: 17.CrossRefGoogle Scholar
Cherrick, G. R., Baker, H., Frank, O., et al. Observations on hepatic avidity for folate in Laennec's cirrhosis. J Lab Clin Med 1965; 66: 446–51.Google Scholar
Chanarin, I. The Megaloblalstic Anemias, 3nd ed. Oxford, Blackwell Scientific Publications, 1990.Google Scholar
Hoffbrand, A. V., Newcombe, F. A., Mollin, D. L. Method of assay of red cell folate activity and the value of the assay as a test for folate deficiency. J Clin Pathol 1966; 19: 1728.CrossRefGoogle ScholarPubMed
Wu, A., Chanarin, I., Slavin, G., Levi, A. J. Folate deficiency in the alcoholic – its relationship to clinical and haematologic abnormalities, liver disease and folate stores. Br J Haematol 1975; 29: 469–78.CrossRefGoogle ScholarPubMed
Carmel, R., James, S. J. Alcohol abuse: an important cause of severe hyperhomocysteinemia. Nutr Rev 2002; 60: 215–21.CrossRefGoogle ScholarPubMed
Stark, K. D., Pawlosky, R. J., Beblo, S., et al. Status of plasma folate after folic acid fortification of the food supply in pregnant African American women and the influences of diet, smoking, and alcohol consumption. Am J Clin Nutr 2005; 81: 669–77.CrossRefGoogle ScholarPubMed
Charlton, R. W., Jacobs, P., Sheftel, H., et al. Effect of alcohol on iron absorption. Br Med J 1964; 2: 1427–29.CrossRefGoogle ScholarPubMed
Chapman, R. W., Morgan, M. Y., Laulicht, M., et al. Hepatic iron stores and markers of iron overload in alcoholics and patients with idiopathic hemochromatosis. Dig Dis Sci 1982; 27: 909–16.CrossRefGoogle ScholarPubMed
Bottomley, S. S., Fleming, M. D. Sideroblastic anemias. In: Greer, J. P., Appelbaum, F., Arber, D. A., et al, eds. Wintrobe's Clinical Hematology, 14th ed. Philadelphia, Wolters Kluwer / Lippincott Williams & Wilkins. 2018; 644–64.Google Scholar
Pierce, H. I., McGuffin, R. G., Hillman, R. S. Clinical studies in alcoholic sideroblastosis. Arch Int Med 1976; 136: 283–9.CrossRefGoogle ScholarPubMed
Hines, J. D., Cowan, D. H. Studies on the pathogenesis of alcohol-induced sideroblastic bone marrow abnormalities. N Engl J Med 1970; 283: 441–6.CrossRefGoogle ScholarPubMed
Lumeng, L. The role of acetaldehyde in mediating the deleterious effect of ethanol on pyridoxal 5’-phosphate metabolism. J Clin Invest 1978; 62: 286–93.CrossRefGoogle ScholarPubMed
Bottomley, S. S. Sideroblastic anemia. In: Jacobs, A., Worwood, M., eds. Iron in Biochemistry and Medicine, II. London, Academic Press. 1980; 363–92.Google Scholar
Lisman, T., Caldwell, S. H., Burroughs, A. K., et al. Hemostasis and thrombosis in patients with liver disease: the ups and downs. J Hepatol 2010; 53: 362–71.CrossRefGoogle ScholarPubMed
Cooper, R. A. Hemolytic syndromes and red cell membrane abnormalities in liver disease. Semin Hematol 1980; 17: 103112.Google ScholarPubMed
Douglass, C. C., Twomey, J. J. Transient stomatocytosis with hemolysis: a previously unrecognized complication of alcoholism. Ann Int Med 1970; 72: 159–64.CrossRefGoogle ScholarPubMed
Gaines, K. C., Salhany, J. M., Tuma, D. J., Sorrell, M. F. Reaction of acetaldehyde with human erythrocyte membrane proteins. FEBS Letters 1977; 75: 115–19.CrossRefGoogle ScholarPubMed
Zieve, L. Jaundice, hyperlipemia and hemolytic anemia: a heretofore unrecognized syndrome associated with alcoholic fatty liver and cirrhosis. Ann Int Med 1958; 48: 471–96.Google ScholarPubMed
Goebel, K. M., Goebel, F. D., Schubotz, R., Schneider, J. Red cell metabolic and membrane features of haemolytic anaemia of alcoholic liver disease (Zieve's Syndrome). Br J Haematol 1977; 35: 573–85.CrossRefGoogle ScholarPubMed
Jacob, H. S., Amsden, T. Acute hemolytic anemia with rigid red cells in hypophosphatemia. N Engl J Med 1971; 285: 1446–50.CrossRefGoogle ScholarPubMed
DeMarchi, S., Cecchin, E., Basile, A, et al. Renal tubular dysfunction in chronic alcohol abuse – effects of abstinence. N Engl J Med 1993; 329: 1927–34.Google Scholar
Marinella, M. A. Refeeding syndrome and hypophosphatemia. J Intensive Care Med 2005; 20: 155–9.CrossRefGoogle ScholarPubMed
Lieberman, F. L., Reynolds, T. B. Plasma volume in cirrhosis of the liver: its relation of portal hypertension, ascites and renal failure. J Clin Invest 1967; 46: 1297–308.CrossRefGoogle ScholarPubMed
Sternbach, G. L. Infections in alcoholic patients. Emerg Med Clin North Am 1990; 8: 793803.CrossRefGoogle ScholarPubMed
Nelson, S., Kolls, J. K. Alcohol, host defence and society. Nat Rev 2002; 2: 205–09.Google ScholarPubMed
Nemeth, E., Ganz, T. Anemia of inflammation. Hematol Oncol Clin N Am 2014; 28: 671–81.CrossRefGoogle ScholarPubMed
Tilg, H., Wilmer, A., Vogel, W., et al. Serum levels of cytokines in chronic liver diseases. Gastroenterology 1992; 103: 264–74.CrossRefGoogle ScholarPubMed

References

United States National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health. Statistics related to overweight and obesity. July 2008. Available at: www.win.niddk.nih.gov/statistics/index.htm#treating. Accessed: January 31, 2017Google Scholar
Adams, T. D., Gress, R. E., Smith, S. C., et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007, 357(8):753–61.CrossRefGoogle ScholarPubMed
Sjöström, L., Narbro, K., Sjöström, C. D., et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007, 357(8):741–52.CrossRefGoogle ScholarPubMed
Alvarez-Leite, J. I. Nutrient deficiencies secondary to bariatric surgery. Curr Opin Clin Nutr Metab Care. 2004;7(5):569–75.CrossRefGoogle ScholarPubMed
Mizón, C., Ruz, M., Csendes, A., et al. Persistent anemia after Roux-en-Y gastric bypass. Nutrition. 2007;23(3):277–80.CrossRefGoogle ScholarPubMed
Buchwald, H., Avidor, Y., Braunwald, E., et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004 292(14):1724–37.CrossRefGoogle ScholarPubMed
Gagner, M., Milone, L., Yung, E., Broseus, A., Gumbs, A. A. Causes of early mortality after laparoscopic adjustable gastric banding. J Am Coll Surg. 2008;206(4):664–9.CrossRefGoogle ScholarPubMed
Coupaye, M., Puchaux, K., Bogard, C., et al. Nutritional consequences of adjustable gastric banding and gastric bypass: a 1-year prospective study. Obes Surg. 2009;19(1):5665.CrossRefGoogle ScholarPubMed
Hess, D. S., Hess, D. W. Biliopancreatic diversion with a duodenal switch. Obes Surg. 1998;8(3):267–82.CrossRefGoogle ScholarPubMed
Regan, J. P., Inabnet, W. B., Gagner, M., Pomp, A. Early experience with two-stage laparoscopic Roux-en-Y gastric bypass as an alternative in the super-super obese patient. Obes Surg. 2003;13(6):861–4.CrossRefGoogle ScholarPubMed
Mognol, P., Chosidow, D., Marmuse, J. P. Laparoscopic sleeve gastrectomy as an initial bariatric operation for high-risk patients: initial results in 10 patients. Obes Surg. 2005;15(7):1030–3.CrossRefGoogle ScholarPubMed
Moon Han, S., Kim, W. W., Oh, J. H. Results of laparoscopic sleeve gastrectomy (LSG) at 1 year in morbidly obese Korean patients. Obes Surg. 2005;15(10):1469–75.CrossRefGoogle ScholarPubMed
Scopinaro, N., Gianetta, E., Pandolfo, N., et al. Bilio-pancreatic bypass. Proposal and preliminary experimental study of a new type of operation for the functional surgical treatment of obesity. Minerva Chir. 1976, 31(10):560–6.Google ScholarPubMed
Brethauer, S. A., Chand, B., Schauer, P. R. Risks and benefits of bariatric surgery: current evidence. Cleve Clin J Med 2006;73:9931007.CrossRefGoogle ScholarPubMed
Schlegel, D. M., Maglinte, D. D. The blind pouch syndrome. Surg Gynecol Obstet. 1982;155(4):541–4.Google ScholarPubMed
Amaral, J. F., Thompson, W. R., Caldwell, M. D., Martin, H. F., Randall, H. T. Prospective hematologic evaluation of gastric exclusion surgery for morbid obesity. Ann Surg. 1985;201(2):186–93.CrossRefGoogle ScholarPubMed
Mason, M. E., Jalagani, H., Vinik, A. I. Metabolic complications of bariatric surgery: diagnosis and management issues. Gastroenterol Clin North Am. 2005;34(1):2533.CrossRefGoogle ScholarPubMed
Clements, R. H., Katasani, V. G., Palepu, R., et al. Incidence of vitamin deficiency after laparoscopic Roux-en-Y gastric bypass in a university hospital setting. Am Surg. 2006;72(12):1196–202.Google Scholar
Simon, S. R., Zemel, R., Betancourt, S., Zidar, B. L. Hematologic complications of gastric bypass for morbid obesity. South Med J. 1989;82(9):1108–10.CrossRefGoogle ScholarPubMed
Kushner, R. F. Micronutrient deficiencies and bariatric surgery. Curr Opin Endocrinol Diabetes Obes 2006;13:405–11.Google Scholar
Parkes, E. Nutritional management of patients after bariatric surgery. Am J Med Sci 2006;331:207–13.CrossRefGoogle ScholarPubMed
Poitou Bernert, C., Ciangura, C., Coupaye, M., et al. Nutritional deficiency after gastric bypass: diagnosis, prevention and treatment. Diabetes Metab 2007;33:1324.CrossRefGoogle ScholarPubMed
Brolin, R. E., Gorman, J. H., Gorman, R. C., et al. Prophylactic iron supplementation after Roux-en-Y gastric bypass: a prospective, double-blind, randomized study. Arch Surg. 1998;133(7):740–4.CrossRefGoogle ScholarPubMed
Rhode, B. M., Shustik, C., Christou, N. V., MacLean, L. D. Iron absorption and therapy after gastric bypass. Obes Surg. 1999;9(1):1721.CrossRefGoogle ScholarPubMed
Rhode, B. M., Arseneau, P., Cooper, B. A., et al. Vitamin B-12 deficiency after gastric surgery for obesity. Am J Clin Nutr. 1996;63(1):103–9.CrossRefGoogle ScholarPubMed
Schilling, R. F., Gohdes, P. N., Hardie, G. H. Vitamin B12 deficiency after gastric bypass surgery for obesity. Ann Intern Med 1984;101:501502.CrossRefGoogle ScholarPubMed
Halverson, J. D., Zuckerman, G. R., Koehler, R. E., et al. Gastric bypass for morbid obesity: a medical-surgical assessment. Ann Surg. 1981;194(2):152–60.CrossRefGoogle ScholarPubMed
Crowley, L. V., Seay, J., Mullin, G. Late effects of gastric bypass for obesity. Am J Gastroenterol 1984;79:850860.Google ScholarPubMed
von Drygalski, A., Andris, D. A., Nuttleman, P. R., et al. Anemia after bariatric surgery cannot be explained by iron deficiency alone: results of a large cohort study. Surg Obes Relat Dis. 2011;7(2):151–6.CrossRefGoogle ScholarPubMed
Tucker, O. N., Szomstein, S., Rosenthal, R. J. Nutritional consequences of weight-loss surgery. Med Clin North Am. 2007;91(3):499514.CrossRefGoogle ScholarPubMed
Mason, E. E. Starvation injury after gastric reduction for obesity. World J Surg 1998;22:10021007.CrossRefGoogle ScholarPubMed
Delmonte, L., Aschkenasy, A., Eyquem, A. Studies on the hemolytic nature of protein-deficiency anemia in the rat. Blood 1964;24:4968.CrossRefGoogle ScholarPubMed
Kaidar-Person, O., Person, B., Rosenthal, R. J. Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Part A: vitamins. Obes Surg. 2008;18(7):870–6.CrossRefGoogle Scholar
Kaidar-Person, O., Person, B., Rosenthal, R. J. Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Part B: minerals. Obes Surg. 2008;18(8):1028–34.CrossRefGoogle ScholarPubMed
Cable, C. T., Colbert, C. Y., Showalter, T., et al. Prevalence of anemia after Roux-en-Y gastric bypass surgery: what is the right number? Surg Obes Relat Dis. 2011;7(2):134–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×