Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T10:11:35.574Z Has data issue: false hasContentIssue false

Chapter 13 - Vegetarianism and Other Restricted Diets

from Section 4 - Special Topics

Published online by Cambridge University Press:  02 April 2019

Robert T. Means Jr
Affiliation:
East Tennessee State University
Get access
Type
Chapter
Information
Nutritional Anemia
Scientific Principles, Clinical Practice, and Public Health
, pp. 153 - 174
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antony, A. C. Vegetarianism and vitamin B-12 (cobalamin) deficiency. Am J Clin Nutr. 2003;78(1):36.CrossRefGoogle ScholarPubMed
Collins, R., Kerr, D. The etymology of the word Macrobiotic:s [sic] and its use in modern Chinese scholarship Sino-Platonic Papers. 2001;112:118.Google Scholar
Antony, A. C. Prevalence of cobalamin (vitamin B-12) and folate deficiency in India--audi alteram partem. Am J Clin Nutr. 2001;74(2):157–9.CrossRefGoogle ScholarPubMed
Herbert, V. The 1986 Herman award lecture. Nutrition science as a continually unfolding story: the folate and vitamin B-12 paradigm. Am J Clin Nutr. 1987;46(3):387402.CrossRefGoogle ScholarPubMed
Antony, A. C. In: Hoffman, R., Benz, Jr. , E. J., Shattil, S. J., Furie, B., Cohen, H. J. eds. Hematology: Basic Principles and Practice. New York: Churchill-Livingstone; 1991:392422.Google Scholar
Torheim, L. E., Ferguson, E. L., Penrose, K., Arimond, M. Women in resource-poor settings are at risk of inadequate intakes of multiple micronutrients. J Nutr. 2010;140(11):2051S–8S.CrossRefGoogle ScholarPubMed
Craig, W. J., Mangels, A. R. Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc. 2009;109(7):1266–82.Google ScholarPubMed
Carmel, R., Mallidi, P. V., Vinarskiy, S., Brar, S., Frouhar, Z. Hyperhomocysteinemia and cobalamin deficiency in young Asian Indians in the United States. Am J Hematol. 2002;70(2):107–14.CrossRefGoogle ScholarPubMed
Herrmann, W., Schorr, H., Obeid, R., Geisel, J. Vitamin B-12 status, particularly holotranscobalamin II and methylmalonic acid concentrations, and hyperhomocysteinemia in vegetarians. Am J Clin Nutr. 2003;78(1):131–6.CrossRefGoogle ScholarPubMed
Antony, A. C. Megaloblastic Anemias. In: Hoffman, R., Benz, E. J. Jr., Silberstein, L. E., et al., eds. Hematology: Basic Principles and Practice. Seventh Edition. Philadelphia: Elsevier; 2018:Chapter 39; pp. 514–45.Google Scholar
Kroger-Ohlsen, M., Trugvason, T., Skibsted, L., Michaelsen, K. Release of iron into foods cooked in an iron pot: effect of pH, salt, and organic acids. J Food Sci. 2002;67:3301–3.CrossRefGoogle Scholar
Nnam, N. Moringa Oleifera leaf improves iron status of infants 6–12 months in Nigeria. Int J Food Saf Nutr Public Health. 2009;2(2):158–64.Google Scholar
Tuntipopipat, S., Zeder, C., Siriprapa, P., Charoenkiatkul, S. Inhibitory effects of spices and herbs on iron availability. Int J Food Sci Nutr. 2009;60(Suppl 1):4355.CrossRefGoogle ScholarPubMed
Trumbo, P., Yates, A. A., Schlicker, S., Poos, M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc. 2001;101(3):294301.CrossRefGoogle ScholarPubMed
Hettiarachchi, M., Liyanage, C., Wickremasinghe, R., Hilmers, D. C., Abrahams, S. A. Prevalence and severity of micronutrient deficiency: a cross-sectional study among adolescents in Sri Lanka. Asia Pac J Clin Nutr. 2006;15(1):5663.Google ScholarPubMed
Stabler, S. P., Allen, R. H. Vitamin B12 deficiency as a worldwide problem. Annu Rev Nutr. 2004;24:299326.CrossRefGoogle ScholarPubMed
Stabler, S. P. Clinical practice. Vitamin B12 deficiency. N Engl J Med. 2013;368(2):149–60.CrossRefGoogle ScholarPubMed
Bjorke-Monsen, A. L., Torsvik, I., Saetran, H., Markestad, T., Ueland, P. M. Common metabolic profile in infants indicating impaired cobalamin status responds to cobalamin supplementation. Pediatrics. 2008;122(1):8391.CrossRefGoogle ScholarPubMed
Bor, M. V., von Castel-Roberts, K. M., Kauwell, G. P., et al. Daily intake of 4 to 7 microg dietary vitamin B-12 is associated with steady concentrations of vitamin B-12-related biomarkers in a healthy young population. Am J Clin Nutr. 2010;91(3):571–7.CrossRefGoogle Scholar
Howard, J. M., Azen, C., Jacobsen, D. W., Green, R., Carmel, R. Dietary intake of cobalamin in elderly people who have abnormal serum cobalamin, methylmalonic acid and homocysteine levels. Eur J Clin Nutr. 1998;52(8):582–7.CrossRefGoogle ScholarPubMed
van Asselt, D. Z., de Groot, L. C., van Staveren, W. A., et al. Role of cobalamin intake and atrophic gastritis in mild cobalamin deficiency in older Dutch subjects. Am J Clin Nutr. 1998;68(2):328–34.CrossRefGoogle ScholarPubMed
Bor, M. V., Lydeking-Olsen, E., Moller, J., Nexo, E. A daily intake of approximately 6 microg vitamin B-12 appears to saturate all the vitamin B-12-related variables in Danish postmenopausal women. Am J Clin Nutr. 2006;83(1):52–8.CrossRefGoogle ScholarPubMed
Pawlak, R., Parrott, S. J., Raj, S., Cullum-Dugan, D., Lucus, D. How prevalent is vitamin B(12) deficiency among vegetarians? Nutr Rev. 2013;71(2):110–7.CrossRefGoogle ScholarPubMed
Bondevik, G. T., Schneede, J., Refsum, H., et al. Homocysteine and methylmalonic acid levels in pregnant Nepali women. Should cobalamin supplementation be considered? Eur J Clin Nutr. 2001;55(10):856–64.CrossRefGoogle ScholarPubMed
Refsum, H., Yajnik, C. S., Gadkari, M., et al. Hyperhomocysteinemia and elevated methylmalonic acid indicate a high prevalence of cobalamin deficiency in Asian Indians. Am J Clin Nutr. 2001;74(2):233–41.CrossRefGoogle ScholarPubMed
Misra, A., Vikram, N. K., Pandey, R. M., et al. Hyperhomocysteinemia, and low intakes of folic acid and vitamin B12 in urban North India. Eur J Nutr. 2002;41(2):6877.CrossRefGoogle ScholarPubMed
Chakravarty, I., Sinha, R. K. Prevalence of micronutrient deficiency based on results obtained from the national pilot program on control of micronutrient malnutrition. Nutr Rev. 2002;60(5 Pt 2):S53–8.CrossRefGoogle ScholarPubMed
Antony, A. C. In: Hoffman, R., Benz, E. J. J., Shattil, S. J., et al., eds. Hematology: Basic Principles and Practice. Philadelphia: Churchill Livingstone Elsevier; 2009:491524.Google Scholar
Halsted, J. A., Carroll, J., Dehghani, A., Loghmani, M., Prasad, A. S. Serum vitamin B12 concentration in dietary deficiency. Am J Clin Nutr. 1960;8:374–6.CrossRefGoogle ScholarPubMed
Sato, K., Kudo, Y., Muramatsu, K. Incorporation of a high level of vitamin B12 into a vegetable, kaiware daikon (Japanese radish sprout), by the absorption from its seeds. Biochim Biophys Acta. 2004;1672(3):135–7.Google ScholarPubMed
Lester, G. E., Makus, D. J., Hodges, D. M. Relationship between fresh-packaged spinach leaves exposed to continuous light or dark and bioactive contents: effects of cultivar, leaf size, and storage duration. J Agric Food Chem. 2010;58(5):2980–7.CrossRefGoogle ScholarPubMed
Hunt, J. R. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr. 2003;78(3 Suppl):633S–9S.CrossRefGoogle ScholarPubMed
Bothwell, T. H. Iron requirements in pregnancy and strategies to meet them. Am J Clin Nutr. 2000;72(1 Suppl):257S–64S.CrossRefGoogle Scholar
National Institutes of Health, Office of Dietary Supplements. Nutrient Recommendations: Dietary Reference Intakes. https://ods.od.nih.gov/Health_Information/Dietary_Reference_Intakes.aspx (Accessed on October 8, 2018).Google Scholar
Schlotz, W., Jones, A., Phillips, D. I., et al. Lower maternal folate status in early pregnancy is associated with childhood hyperactivity and peer problems in offspring. J Child Psychol Psychiatry. 2010;51:594602.CrossRefGoogle ScholarPubMed
World Health Organization. The World Health Report 2002 – Reducing Risks, Promoting Healthy Life. www.who.int/whr/2002/en/. (Accessed on October 8, 2018).Google Scholar
World Health Organization. Micronutrient deficiencies: Iron deficiency anaemia. www.who.int/nutrition/topics/ida/en/index.html and http://www.who.int/nutrition/publications/en/ida_assessment_prevention_control.pdf (Accessed on October 8, 2018).Google Scholar
Bruner, A. B., Joffe, A., Duggan, A. K., Casella, J. F., Brandt, J. Randomised study of cognitive effects of iron supplementation in non-anaemic iron-deficient adolescent girls. Lancet. 1996;348(9033):992–6.CrossRefGoogle ScholarPubMed
Lieberman, E., Ryan, K. J., Monson, R. R., Schoenbaum, S. C. Association of maternal hematocrit with premature labor. Am J Obstet Gynecol. 1988;159(1):107–14.CrossRefGoogle ScholarPubMed
Zeng, L., Dibley, M. J., Cheng, Y., et al. Impact of micronutrient supplementation during pregnancy on birth weight, duration of gestation, and perinatal mortality in rural western China: double blind cluster randomised controlled trial. BMJ. 2008;337:a2001.CrossRefGoogle ScholarPubMed
Cogswell, M. E., Parvanta, I., Ickes, L., Yip, R., Brittenham, G. M. Iron supplementation during pregnancy, anemia, and birth weight: a randomized controlled trial. Am J Clin Nutr. 2003;78(4):773–81.CrossRefGoogle ScholarPubMed
Siega-Riz, A. M., Hartzema, A. G., Turnbull, C., et al. The effects of prophylactic iron given in prenatal supplements on iron status and birth outcomes: a randomized controlled trial. Am J Obstet Gynecol. 2006;194(2):512–9.CrossRefGoogle ScholarPubMed
Christian, P., Murray-Kolb, L. E., Khatry, S. K., et al. Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. JAMA. 2010;304(24):2716–23.CrossRefGoogle ScholarPubMed
Lozoff, B., Jimenez, E., Hagen, J., Mollen, E., Wolf, A. W. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics. 2000;105(4):E51.CrossRefGoogle ScholarPubMed
Chang, S., Wang, L., Wang, Y., et al. Iron-deficiency anemia in infancy and social emotional development in preschool-aged Chinese children. Pediatrics. 2011;127(4):e927–33.CrossRefGoogle ScholarPubMed
Antony, A. C., Ernst, J., Neumann, C. G. Re: Iron-deficiency anemia in infancy and social emotional development in preschool-aged Chinese children (letter to the editor). Pediatrics. 2011:May 20, 2011. http://pediatrics.aappublications.org/content/127/4/e927.comments#re-irondeficiency-anemia-in-infancy-and-socialemotional-development-in-preschoolaged-chinese-children (Accessed on October 8, 2018).Google Scholar
Oski, F. A., Honig, A. S., Helu, B., Howanitz, P. Effect of iron therapy on behavior performance in nonanemic, iron-deficient infants. Pediatrics. 1983;71(6):877–80.CrossRefGoogle Scholar
Friel, J. K., Aziz, K., Andrews, W. L., et al. A double-masked, randomized control trial of iron supplementation in early infancy in healthy term breast-fed infants. J Pediatr. 2003;143(5):582–6.CrossRefGoogle ScholarPubMed
Lozoff, B. Do breast-fed babies benefit from iron before 6 months? J Pediatr. 2003;143(5):554–6.CrossRefGoogle ScholarPubMed
Baker, R. D., Greer, F. R. In reply to letters to the editor Re: diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics. 2011;127(pp. e1101e4 April 1, 2011).CrossRefGoogle Scholar
Baker, R. D., Greer, F. R. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics. 2010;126(5):1040–50.CrossRefGoogle ScholarPubMed
Gleason, G., Scrimshaw, N. In: Kraeme, K., Zimmermann, M. eds. Nutritional Anemia. Basel, Switzerland: Sight and Life Press; 2007:4558.Google Scholar
Pollitt, E., Hathirat, P., Kotchabhakdi, N. J., Missell, L., Valyasevi, A. Iron deficiency and educational achievement in Thailand. Am J Clin Nutr. 1989;50(3 Suppl):687–96; discussion 96–7.CrossRefGoogle ScholarPubMed
Lozoff, B., Jimenez, E., Wolf, A. W. Long-term developmental outcome of infants with iron deficiency. N Engl J Med. 1991;325(10):687–94.CrossRefGoogle ScholarPubMed
Bencaiova, G., von Mandach, U., Zimmermann, R. Iron prophylaxis in pregnancy: intravenous route versus oral route. Eur J Obstet Gynecol Reprod Biol. 2009;144(2):135–9.CrossRefGoogle ScholarPubMed
Koebnick, C., Hoffmann, I., Dagnelie, P. C., et al. Long-term ovo-lacto vegetarian diet impairs vitamin B-12 status in pregnant women. J Nutr. 2004;134(12):3319–26.CrossRefGoogle ScholarPubMed
van Eijsden, M., Smits, L. J., van der Wal, M. F., Bonsel, G. J. Association between short interpregnancy intervals and term birth weight: the role of folate depletion. Am J Clin Nutr. 2008;88(1):147–53.CrossRefGoogle ScholarPubMed
Smith, G. C., Pell, J. P., Dobbie, R. Interpregnancy interval and risk of preterm birth and neonatal death: retrospective cohort study. BMJ. 2003;327(7410):313.Google ScholarPubMed
Berry, R. J., Li, Z., Erickson, J. D., et al. Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N Engl J Med. 1999;341(20):1485–90.CrossRefGoogle Scholar
Cuskelly, G. J., McNulty, H., Scott, J. M. Effect of increasing dietary folate on red-cell folate: implications for prevention of neural tube defects. Lancet. 1996;347(9002):657–9.CrossRefGoogle ScholarPubMed
Koebnick, C., Heins, U. A., Hoffmann, I., Dagnelie, P. C., Leitzmann, C. Folate status during pregnancy in women is improved by long-term high vegetable intake compared with the average western diet. J Nutr. 2001;131(3):733–9.CrossRefGoogle ScholarPubMed
Bukowski, R., Malone, F. D., Porter, F. T., et al. Preconceptional folate supplementation and the risk of spontaneous preterm birth: a cohort study. PLoS Med. 2009;6(5):e1000061.CrossRefGoogle ScholarPubMed
Antony, A. C. The enigma of spontaneous preterm birth. N Engl J Med. 2010;362(21):2033; author reply 4.Google ScholarPubMed
Yang, Q., Cogswell, M. E., Hamner, H. C., et al. Folic acid source, usual intake, and folate and vitamin B-12 status in US adults: National Health and Nutrition Examination Survey (NHANES) 2003–2006. Am J Clin Nutr. 2010;91(1):6472.CrossRefGoogle ScholarPubMed
Antony, A. C. In utero physiology: role of folic acid in nutrient delivery and fetal development. Am J Clin Nutr. 2007;85(2):598S–603S.CrossRefGoogle ScholarPubMed
Cherian, A., Seena, S., Bullock, R. K., Antony, A. C. Incidence of neural tube defects in the least-developed area of India: a population-based study. Lancet. 2005;366(9489):930–1.CrossRefGoogle ScholarPubMed
Pathak, P., Kapil, U., Kapoor, S. K., et al. Prevalence of multiple micronutrient deficiencies amongst pregnant women in a rural area of Haryana. Indian J Pediatr. 2004;71(11):1007–14.CrossRefGoogle Scholar
Bhandari, N., Bahl, R., Taneja, S., et al. Effect of routine zinc supplementation on pneumonia in children aged 6 months to 3 years: randomised controlled trial in an urban slum. BMJ. 2002;324(7350):1358.CrossRefGoogle Scholar
Ceriani Cernadas, J. M., Carroli, G., Pellegrini, L., et al. The effect of timing of cord clamping on neonatal venous hematocrit values and clinical outcome at term: a randomized, controlled trial. Pediatrics. 2006;117(4):e779–86.CrossRefGoogle ScholarPubMed
Chaparro, C. M., Neufeld, L. M., Tena Alavez, G., Eguia-Liz Cedillo, R., Dewey, K. G. Effect of timing of umbilical cord clamping on iron status in Mexican infants: a randomised controlled trial. Lancet. 2006;367(9527):19972004.CrossRefGoogle ScholarPubMed
Murphy, M. M., Molloy, A. M., Ueland, P. M., et al. Longitudinal study of the effect of pregnancy on maternal and fetal cobalamin status in healthy women and their offspring. J Nutr. 2007;137(8):1863–7.CrossRefGoogle ScholarPubMed
Bjorke-Monsen, A. L., Ueland, P. M. Cobalamin status in children. J Inherit Metab Dis. 2010;34(1):111–9.Google ScholarPubMed
Torsvik, I., Ueland, P. M., Markestad, T., Bjorke-Monsen, A. L. Cobalamin supplementation improves motor development and regurgitations in infants: results from a randomized intervention study. Am J Clin Nutr. 2013;98(5):1233–40.CrossRefGoogle ScholarPubMed
Bae, S., West, A. A., Yan, J., et al. Vitamin B-12 status differs among pregnant, lactating, and control women with equivalent nutrient intakes. J Nutr. 2015;145(7):1507–14.CrossRefGoogle ScholarPubMed
Kenya-Demographic-and-Health-Survey-2014-, and www.dhsprogram.com/pubs/pdf/PR55/PR55.pdf. 2014. (Accessed on October 8, 2018).Google Scholar
Quadros, E. V. Advances in the understanding of cobalamin assimilation and metabolism. Br J Haematol. 2010;148(2):195204.CrossRefGoogle ScholarPubMed
Quadros, E. V., Nakayama, Y., Sequeira, J. M. The protein and the gene encoding the receptor for the cellular uptake of transcobalamin-bound cobalamin. Blood. 2009;113(1):186–92.CrossRefGoogle ScholarPubMed
Dagnelie, P. C., van Staveren, W. A. Macrobiotic nutrition and child health: results of a population-based, mixed-longitudinal cohort study in The Netherlands. Am J Clin Nutr. 1994;59(5 Suppl):1187S–96S.CrossRefGoogle ScholarPubMed
Bjorke Monsen, A. L., Ueland, P. M., Vollset, S. E., et al. Determinants of cobalamin status in newborns. Pediatrics. 2001;108(3):624–30.Google ScholarPubMed
van Dusseldorp, M., Schneede, J., Refsum, H., et al. Risk of persistent cobalamin deficiency in adolescents fed a macrobiotic diet in early life. Am J Clin Nutr. 1999;69(4):664–71.CrossRefGoogle ScholarPubMed
Louwman, M. W., van Dusseldorp, M., van de Vijver, F. J., et al. Signs of impaired cognitive function in adolescents with marginal cobalamin status. Am J Clin Nutr. 2000;72(3):762–9.CrossRefGoogle ScholarPubMed
Amin, N. M., Zeki, J. M. Infantile tremor syndrome in Iraqi Kurdistan. Indian J Pediatr. 2005;72(10):839–42.CrossRefGoogle ScholarPubMed
Rogers, L. M., Boy, E., Miller, J. W., et al. High prevalence of cobalamin deficiency in Guatemalan schoolchildren: associations with low plasma holotranscobalamin II and elevated serum methylmalonic acid and plasma homocysteine concentrations. Am J Clin Nutr. 2003;77(2):433–40.CrossRefGoogle ScholarPubMed
Whaley, S. E., Sigman, M., Neumann, C., et al. The impact of dietary intervention on the cognitive development of Kenyan school children. J Nutr. 2003;133(11Suppl 2):3965S–71S.CrossRefGoogle ScholarPubMed
Neumann, C. G., Bwibo, N. O., Murphy, S. P., et al. Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan school children: background, study design and baseline findings. J Nutr. 2003;133(11 Suppl 2):3941S–9S.CrossRefGoogle ScholarPubMed
Steenweg-de Graaff, J., Roza, S. J., Steegers, E. A., et al. Maternal folate status in early pregnancy and child emotional and behavioral problems: the Generation R Study. Am J Clin Nutr. 2012;95(6):1413–21.CrossRefGoogle ScholarPubMed
Suren, P., Roth, C., Bresnahan, M., et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA. 2013;309(6):570–7.Google ScholarPubMed
Strand, T. A., Taneja, S., Ueland, P. M., et al. Cobalamin and folate status predicts mental development scores in North Indian children 12–18 mo of age. Am J Clin Nutr. 2013;97(2):310–7.CrossRefGoogle ScholarPubMed
Antony, A. C. In: Goldman, L, Schafer, AI. eds. Goldman-Cecil Medicine, (Cecil's Textbook of Medicine) 25th Edition. New York: Elsevier Saunders; 2015:1104–14.Google Scholar
Calis, J. C., Phiri, K. S., Faragher, E. B., et al. Severe anemia in Malawian children. N Engl J Med. 2008;358(9):888–99.CrossRefGoogle ScholarPubMed
Antony, A. C. Severe anemia in Malawian children. N Engl J Med. 2008;358(21):2291; author reply.Google ScholarPubMed
Perry, C. L., McGuire, M. T., Neumark-Sztainer, D, Story, M. Adolescent vegetarians: how well do their dietary patterns meet the healthy people 2010 objectives? Arch Pediatr Adolesc Med. 2002;156(5):431–7.CrossRefGoogle ScholarPubMed
Larsson, C. L., Johansson, G. K. Young Swedish vegans have different sources of nutrients than young omnivores. J Am Diet Assoc. 2005;105(9):1438–41.CrossRefGoogle ScholarPubMed
Agarwal, K. N., Saxena, A., Bansal, A. K., Agarwal, D. K. Physical growth assessment in adolescence. Indian Pediatr. 2001;38(11):1217–35.Google ScholarPubMed
Rao, D. R., Vijayapushpam, T., Subba Rao, G. M., Antony, G. M., Sarma, K. V. Dietary habits and effect of two different educational tools on nutrition knowledge of school going adolescent girls in Hyderabad, India. Eur J Clin Nutr. 2007;61(9):1081–5.Google ScholarPubMed
Vereecken, C. A., De Henauw, S, Maes, L. Adolescents' food habits: results of the Health Behaviour in School-aged Children survey. Br J Nutr. 2005;94(3):423–31.CrossRefGoogle ScholarPubMed
Cooper, B. A., Lowenstein, L. Relative folate deficiency of erythrocytes in pernicious anemia and its correction with cyanocobalamin. Blood. 1964;24(502–21.CrossRefGoogle ScholarPubMed
Nixon, P. F., Bertino, J. R. Impaired utilization of serum folate in pernicious anemia. A study with radiolabeled 5-methyltetrahydrofolate. J Clin Invest. 1972;51(6):1431–9.CrossRefGoogle ScholarPubMed
Bailey, L. B., Stover, P. J., McNulty, H., et al. Biomarkers of nutrition for development-folate review. J Nutr. 2015;145(7):1636S–80S.CrossRefGoogle ScholarPubMed
Antony, A. C. Evidence for potential underestimation of clinical folate deficiency in resource-limited countries using blood tests. Nutr Rev. 2017; 75(8):600–15.CrossRefGoogle ScholarPubMed
Samuel, T. M., Duggan, C., Thomas, T., et al. Vitamin B(12) intake and status in early pregnancy among urban South Indian women. Ann Nutr Metab. 2013;62(2):113–22.CrossRefGoogle ScholarPubMed
Berkram, P., Bedano, P. M., Kahi, C. J., et al. A landlubber with an ancient mariner's leaky vessels. Gastrointest Endosc. 2007;66(5):1065–6.CrossRefGoogle ScholarPubMed
Chu, M., Seltzer, T. F. Myxedema coma induced by ingestion of raw bok choy. N Engl J Med. 2010;362(20):1945–6.CrossRefGoogle ScholarPubMed
Yokoi, K., Alcock, N. W., Sandstead, H. H. Iron and zinc nutriture of premenopausal women: associations of diet with serum ferritin and plasma zinc disappearance and of serum ferritin with plasma zinc and plasma zinc disappearance. J Lab Clin Med. 1994;124(6):852–61.Google ScholarPubMed
Zimmermann, M. B., Biebinger, R., Rohner, F., et al. Vitamin A supplementation in children with poor vitamin A and iron status increases erythropoietin and hemoglobin concentrations without changing total body iron. Am J Clin Nutr. 2006;84(3):580–6.CrossRefGoogle ScholarPubMed
Food and Agriculture Organization. The State of Food Insecurity in the World 2015. http://www.fao.org/3/a-i4646e.pdf (Accessed on October 8, 2018).Google Scholar
World Health Organization. Sixty-Third World Health Assembly, Geneva, May 17–21, 2010. http://www.who.int/nutrition/topics/WHA63.23_iycn_en.pdf (Accessed on October 8, 2018).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×