Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T10:25:37.990Z Has data issue: false hasContentIssue false

Chapter 5 - Persistent Perioperative Neurocognitive Disorder

Does Surgery Accelerate Dementia?

from Section 1 - Cognitive Function in Perioperative Care

Published online by Cambridge University Press:  11 April 2019

Roderic G. Eckenhoff
Affiliation:
University of Pennsylvania
Niccolò Terrando
Affiliation:
Duke University, North Carolina
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Silbert, B, Evered, L, Scott, DA, McMahon, S, Choong, P, Ames, D, et al. Preexisting cognitive impairment is associated with postoperative cognitive dysfunction after hip joint replacement surgery. Anesthesiology 2015;122(6):12241234.CrossRefGoogle ScholarPubMed
Beydoun, MA, Beydoun, HA, Gamaldo, AA, Teel, A, Zonderman, AB, Wang, Y. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health 2014;14:643.Google Scholar
Kapila, AK, Watts, HR, Wang, T, Ma, D. The impact of surgery and anesthesia on post-operative cognitive decline and Alzheimer’s disease development: biomarkers and preventive strategies. J Alzheimers Dis 2014;41:113.Google Scholar
Arora, SS, Gooch, JL, Garcia, PS. Postoperative cognitive dysfunction, Alzheimer’s disease, and anesthesia. Int J Neurosci 2014;124(4):236242.Google Scholar
Berger, M, Burke, J, Eckenhoff, R, Mathew, J. Alzheimer’s disease, anesthesia, and surgery: a clinically focused review. J Cardiothorac Vasc Anesth 2014;28(6):16091623.CrossRefGoogle ScholarPubMed
Hussain, M, Berger, M, Eckenhoff, RG, Seitz, DP. General anesthetic and the risk of dementia in elderly patients: current insights. Clin Interv Aging 2014;9:16191628.Google ScholarPubMed
Jiang, J, Jiang, H. Effect of the inhaled anesthetics isoflurane, sevoflurane and desflurane on the neuropathogenesis of Alzheimer’s disease (review). Mol Med Rep 2015;12(1):312.CrossRefGoogle ScholarPubMed
Silverstein, JH. Influence of anesthetics on Alzheimer’s disease: biophysical, animal model, and clinical reports. J Alzheimers Dis 2014;40(4):839848.CrossRefGoogle ScholarPubMed
Evered, LA, Silbert, B, Scott, DA. The impact of the peri-operative period on cognition in older individuals. J Pharm Pract Res 2015;45(1):9399.Google Scholar
Knopman, DS, Petersen, RC. Mild cognitive impairment and mild dementia: a clinical perspective. Mayo Clin Proc 2014;89(10):14521459.Google Scholar
McKhann, GM, Knopman, DS, Chertkow, H, Hyman, BT, Jack, CR Jr, Kawas, CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7(3):263269.CrossRefGoogle ScholarPubMed
Jack, CR, Knopman, DS, Jagust, WJ, Petersen, RC, Weiner, MW, Aisen, PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013;12(2):207216.CrossRefGoogle ScholarPubMed
Shua-Haim, JR, Gross, JS. Alzheimer’s syndrome, not Alzheimer’s disease. J Am Geriatr Soc 1996;44(1):9697.Google Scholar
Morris, JK, Honea, RA, Vidoni, ED, Swerdlow, RH, Burns, JM. Is Alzheimer’s disease a systemic disease? Biochim Biophys Acta 2014;1842(9):13401349.CrossRefGoogle ScholarPubMed
Van Cauwenberghe, C, Van Broeckhoven, C, Sleegers, K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 2015;18:421430.CrossRefGoogle Scholar
Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 2015;18(6):794799.CrossRefGoogle ScholarPubMed
Caroli, A, Prestia, A, Galluzzi, S, Ferrari, C, van der Flier, WM, Ossenkoppele, R, et al. Mild cognitive impairment with suspected nonamyloid pathology (SNAP): prediction of progression. Neurology 2015;84(5):508515.Google Scholar
Liu, Y, Pan, N, Ma, Y, Zhang, S, Guo, W, Li, H, et al. Inhaled sevoflurane may promote progression of amnestic mild cognitive impairment. Am J Med Sci 2013;345(5):355360.Google Scholar
Seitz, DP, Reimer, CL, Siddiqui, N. A review of epidemiological evidence for general anesthesia as a risk factor for Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2013;47:122127.CrossRefGoogle ScholarPubMed
Sprung, J, Jankowski, CJ, Roberts, RO, Weingarten, TN, Aguilar, AL, Runkle, KJ, et al. Anesthesia and incident dementia: a population-based, nested, case-control study. Mayo Clin Proc 2013;88(6):552561.Google Scholar
Chen, PL, Yang, CW, Tseng, YK, Sun, WZ, Wang, JL, Wang, SJ, et al. Risk of dementia after anaesthesia and surgery. Br J Psychiatry 2014;204(3):188193.CrossRefGoogle ScholarPubMed
Chen, CW, Lin, CC, Chen, KB, Kuo, YC, Li, CY, Chung, CJ. Increased risk of dementia in people with previous exposure to general anesthesia: a nationwide population-based case-control study. Alzheimers Dement 2014;10(2):196204.Google Scholar
Kline, RP, Pirraglia, E, Cheng, H, De Santi, S, Li, Y, Haile, M, et al. Surgery and brain atrophy in cognitively normal elderly subjects and subjects diagnosed with mild cognitive impairment. Anesthesiology 2012;116(3):603612.Google Scholar
Avidan, MS, Benzinger, TL. Surgery and the plastic brain. Anesthesiology 2012;116(3):510512.CrossRefGoogle ScholarPubMed
Palotas, A, Reis, HJ, Bogats, G, Babik, B, Racsmany, M, Engvau, L, et al. Coronary artery bypass surgery provokes Alzheimer’s disease-like changes in the cerebrospinal fluid. J Alzheimers Dis 2010;21(4):11531164.Google Scholar
Tang, JX, Mardini, F, Caltagarone, BM, Garrity, ST, Li, RQ, Bianchi, SL, et al. Anesthesia in presymptomatic Alzheimer’s disease: a study using the triple-transgenic mouse model. Alzheimers Dement 2011;7(5):521531.Google Scholar
Xie, Z, Swain, CA, Ward, SA, Zheng, H, Dong, Y, Sunder, N, et al. Preoperative cerebrospinal fluid beta-Amyloid/Tau ratio and postoperative delirium. Ann Clin Transl Neurol 2014;1(5):319328.CrossRefGoogle ScholarPubMed
Hogan, KJ. Hereditary vulnerabilities to post-operative cognitive dysfunction and dementia. Prog Neuropsychopharmacol Biol Psychiatry 2013;47:128134.Google Scholar
Cao, L, Wang, K, Gu, T, Du, B, Song, J. Association between APOE epsilon 4 allele and postoperative cognitive dysfunction: a meta-analysis. Int J Neurosci 2014;124(7):478485.Google Scholar
Veliz-Reissmuller, G, Aguero Torres, H, van der Linden, J, Lindblom, D, Eriksdotter Jonhagen, M. Pre-operative mild cognitive dysfunction predicts risk for post-operative delirium after elective cardiac surgery. Aging Clin Exp Res 2007;19(3):172177.Google Scholar
Britton, ME. Drugs, delirium and older people. J Pharm Pract Res 2011;41(3):233238.Google Scholar
Silverstein, JH, Deiner, SG. Perioperative delirium and its relationship to dementia. Prog Neuropsychopharmacol Biol Psychiatry 2013;43:108115.Google Scholar
Lundström, M, Edlund, A, Bucht, G, Karlsson, S, Gustafson, Y. Dementia after delirium in patients with femoral neck fractures. J Am Geriatr Soc 2003;51(7):10021006.Google Scholar
Steinmetz, J, Siersma, V, Kessing, LV, Rasmussen, LS. Is postoperative cognitive dysfunction a risk factor for dementia? A cohort follow-up study. Br J Anaesth 2012;110(suppl 1):9297.Google Scholar
Nadelson, MR, Sanders, RD, Avidan, MS. Perioperative cognitive trajectory in adults. Br J Anaesth 2014;112(3):440451.Google Scholar
Erten-Lyons, D, Sherbakov, LO, Piccinin, AM, Hofer, SM, Dodge, HH, Quinn, JF, et al. Review of selected databases of longitudinal aging studies. Alzheimers Dement 2012;8(6):584589.Google Scholar
Clark, LR, Koscik, RL, Nicholas, CR, Okonkwo, OC, Engelman, CD, Bratzke, LC, et al. Mild cognitive impairment in late middle age in the Wisconsin Registry for Alzheimer's Prevention study: prevalence and characteristics using robust and standard neuropsychological normative data. Arch Clin Neuropsych 2016;31:675688CrossRefGoogle ScholarPubMed
Adluru, N, Destiche, DJ, Lu, SY, Doran, ST, Birdsill, AC, Melah, KE, et al. White matter microstructure in late middle-age: effects of apolipoprotein E4 and parental family history of Alzheimer’s disease. NeuroImage Clin 2014;4:730742.Google Scholar
Dennis, EL, Thompson, PM. Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol Rev 2014;24(1):4962.Google Scholar
Ramani, R. Connectivity. Curr Opin Anaesthesiol 2015;28(5):498504.Google Scholar
Dani, M, Edison, P, Brooks, DJ. Imaging biomarkers in tauopathies. Parkinsonism Relat Disord 2015;22:2628.CrossRefGoogle ScholarPubMed
Zhang, J. Mapping neuroinflammation in frontotemporal dementia with molecular PET imaging. J Neuroinflammation 2015;12:108.Google Scholar
Mapstone, M, Cheema, AK, Fiandaca, MS, Zhong, X, Mhyre, TR, MacArthur, LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 2014;20(4):415418.Google Scholar
Muenchhoff, J, Poljak, A, Song, F, Raftery, M, Brodaty, H, Duncan, M, et al. Plasma protein profiling of mild cognitive impairment and Alzheimer’s disease across two independent cohorts. J Alzheimers Dis 2015;43(4):13551373.CrossRefGoogle ScholarPubMed
Perneczky, R, Guo, LH. Plasma proteomics biomarkers in Alzheimer’s disease: latest advances and challenges. Methods Mol Biol 2016;1303:521529.Google Scholar
Land, WG. The role of damage-associated molecular patterns (DAMPs) in human diseases: Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos Univ Med J 2015;15(2):157170.Google Scholar
Mann, M, Kulak, NA, Nagaraj, N, Cox, J. The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 2013;49(4):583590.CrossRefGoogle ScholarPubMed
Marioni, RE, Shah, S, McRae, AF, Chen, BH, Colicino, E, Harris, SE, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 2015;16:25.Google Scholar
Goetzl, EJ, Boxer, A, Schwartz, JB, Abner, EL, Petersen, RC, Miller, BL, et al. Low neural exosomal levels of cellular survival factors in Alzheimer’s disease. Ann Clin Transl Neurol 2015;2(7):769773.CrossRefGoogle ScholarPubMed
Lee, H, Morin, P, Wells, J, Hanlon, EB, Xia, W. Induced pluripotent stem cells (iPSCs) derived from frontotemporal dementia patient’s peripheral blood mononuclear cells. Stem Cell Res 2015;15(2):325327.Google Scholar
Bárrios, H, Narciso, S, Guerreiro, M, Maroco, J, Logsdon, R, de Mendonça, A. Quality of life in patients with mild cognitive impairment. Aging Mental Health 2013;17(3):287292.Google Scholar
Wells, GA, O’Connell, D, Peterson, J, Welch, V, Losos, M, Tugwell, P. The Newcastle Scale for assessing the quality of nonrandomised studies in meta-analyses. Available at: www.medicine.mcgill.ca/rtamblyn/Readings/The Newcastle - Scale for assessing the quality of nonrandomised studies in meta-analyses.pdf.Google Scholar
Littlejohns, TJ, Henley, WE, Lang, IA, Annweiler, C, Beauchet, O, Chaves, PH, et al. Vitamin D and the risk of dementia and Alzheimer disease. Neurology 2014;83(10):920928.Google Scholar
Cooper, C, Sommerlad, A, Lyketsos, CG, Livingston, G. Modifiable predictors of dementia in mild cognitive impairment: a systematic review and meta-analysis. Am J Psychiatry 2015;172(4):323334.Google Scholar
Keeney, JT, Butterfield, DA. Vitamin D deficiency and Alzheimer disease: common links. Neurobiol Dis 2015;84:8498.Google Scholar
Madsen, SK, Rajagopalan, P, Joshi, SH, Toga, AW, Thompson, PM. Higher homocysteine associated with thinner cortical gray matter in 803 participants from the Alzheimer’s Disease Neuroimaging Initiative. Neurobiol Aging 2015;36:S203S210.Google Scholar
Douaud, G, Refsum, H, de Jager, CA, Jacoby, R, Nichols, T, Smith, SM, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Nat Acad Sci USA 2013;110(23):95239528.Google Scholar
Iglar, PJ, Hogan, KJ. Vitamin D status and surgical outcomes: a systematic review. Patient Safety Surg 2015;9(1):14.Google Scholar
Jerneren, F, Elshorbagy, AK, Oulhaj, A, Smith, SM, Refsum, H, Smith, AD. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr 2015;102(1):215221.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×