Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T21:48:36.246Z Has data issue: false hasContentIssue false

20 - Capsules and Slimes

from Part II - Single Bacteria

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Introduces capsules and slimes with physiological examples, elasticity calculations and dynamics.

Keywords

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 216 - 226
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

King, J. S.; Roberts, I. S. Bacterial surfaces: Front lines in host-pathogen cell-surface interactions. In the Biophysics of infection, Leake, M. C., Ed., 2016; pp. 129156. Considers capsular E. coli in urinary tract infections.CrossRefGoogle Scholar
Muthukumar, M., Polymer Translocation. CRC Press: 2016. It is an interesting challenge to understand the translocation of lipopolysaccharides through the membranes of bacterial cells. This book describes some theoretical progress, predominantly from the perspective of driven translocation of DNA through apertures during electrophoresis.CrossRefGoogle Scholar
Palyulin, V. V.; Aln-Nissila, T.; Metzler, R., Polymer translocation: The first two decades and the recent diversification. Soft Matter 2014, 10 (45), 90169037. Considers anomalous transport during translocation.CrossRefGoogle ScholarPubMed
Pincus, P., Colloid stabilization with grafted polyelectrolyte. Macromolecules 1991, 24 (10), 29122919. Scaling calculations of polyelectrolyte brushes.CrossRefGoogle Scholar
Richards, D. M.; Endres, R. G., How cells engulf: A review of theoretical approaches to phagocytosis. Reports on Progress in Physics 2017, 80 (12), 126601.CrossRefGoogle ScholarPubMed
Rubinstein, M.; Colby, R., Polymer Physics. Oxford University Press: 2003. Excellent modern introduction to polymer scaling theories.CrossRefGoogle Scholar
Zhulina, E. B.; Borisov, O. V., Polyelectrolytes grafted to curved surfaces. Macromolecules 1996, 29, 26182626. Scaling calculations of polyelectrolyte brushes on curved surfaces.CrossRefGoogle Scholar

References

Rubinstein, M.; Colby, R. H., Polymer Physics. Oxford University Press: 2003.CrossRefGoogle Scholar
Wen, Z.; Zhang, J. R., Bacterial capsules. In Molecular Medical Microbiology, Tang, Y. W., Sussman, M., et al., Eds., Academic Press: 2015; Vol. 1, pp. 3353.Google Scholar
King, J. E.; Owaif, H. A. A.; Jia, J.; Roberts, I. S., Phenotypic heterogeneity in expression of the K1 polysaccharide capsule of uropathogenic Escherichia coli and downregulation of the capsule genes during growth in urine. Infection and Immunity 2015, 83 (7), 26052613.CrossRefGoogle ScholarPubMed
Jakubovics, N. S.; Goodman, S. D.; Mashburn-Warren, L.; Stafford, G. P.; Cieplik, F., The dental plaque biofilm matrix. Periodontology 2000 2021, 86 (1), 3256.CrossRefGoogle ScholarPubMed
Milner, S. S., Polymer brushes. Science (New York, N.Y.) 1991, 251 (4996), 905914.CrossRefGoogle ScholarPubMed
Wang, H.; Wilksch, J. J.; Lithgow, T.; Strugnell, R. A.; Gee, M. L., Nanomechanics measurements of live bacteria reveal a mechanism for bacterial cell protection: The polysaccharide capsule in Klebsiella is a responsive polymer hydrogel that adapts to osmotic stress. Soft Matter 2013, 9 (31), 75607567.CrossRefGoogle Scholar
Phanphak, S.; Georgiades, P.; Li, R.; King, J.; Roberts, I. S.; Waigh, T. A., Super-resolution fluorescence microscopy study of the production of K1 capsules by Escherichia coli: Evidence for the differential distribution of the capsule at the poles and the equator of the cell. Langmuir: The ACS Journal of Surfaces and Colloids 2019, 35 (16), 56355646.CrossRefGoogle ScholarPubMed
Gladwin, M. T.; Trattler, W.; Mahan, C. S., Clinical Microbiology Made Ridiculously Simple, 7th ed. MedMaster: 2019.Google Scholar
Limoli, D. H.; Jones, C. J.; Wozniak, D. J., Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology Spectrum 2015, 3 (3), 10.1128.CrossRefGoogle ScholarPubMed
Wang, H.; Wilksch, J. J.; Strugnell, R. A.; Gee, M. L., Role of capsular polysaccharides in biofilm formation: An AFM nanomechanics study. ACS Applied Materials & Interfaces 2015, 7 (23), 1300713013.CrossRefGoogle ScholarPubMed
Hogan, L. H.; Klein, B. S.; Levitz, S. M., Virulence factors of medically important fungi. Clinical Microbiology Reviews 1996, 9 (4), 469488.CrossRefGoogle ScholarPubMed
Whitfield, C., Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annual Review of Biochemistry 2006, 75, 3968.CrossRefGoogle ScholarPubMed
Bramkamp, M.; Lopez, D., Exploring the existence of lipid rafts in bacteria. Microbiology and Molecular Biology Reviews: MMBR 2015, 79 (1), 81100.CrossRefGoogle ScholarPubMed
Hyman, P.; Abedon, S. T., Bacteriophage host range and bacterial resistance. Advances in Applied Microbiology 2010, 70, 217248.CrossRefGoogle ScholarPubMed
Lins, R. D.; Straatsma, T. P., Computer simulation of the rough lipopolysaccharide membrane of Pseudomonas aeruginosa. Biophysical Journal 2001, 81 (2), 10371046.CrossRefGoogle ScholarPubMed
Dobrynin, A. V.; Rubinstein, M., Theory of polyelectrolytes in solutions and at surfaces. Progress in Polymer Science 2005, 30 (11), 10491118.CrossRefGoogle Scholar
Mularski, A.; Wilksch, J. J.; Wang, H.; Hossain, M. A.; Wade, J. D.; Separovic, F.; Strugnell, R. A.; Gee, M. L., Atomic force microscopy reveals the mechanobiology of lytic peptide action on bacteria. Langmuir: The ACS Journal of Surfaces and Colloids 2015, 31 (22), 61646171.CrossRefGoogle ScholarPubMed
Mularski, A.; Wilksch, J. J.; Hanssen, E.; Strugnell, R. A.; Separovic, F., Atomic force microscopy of bacteria reveals the mechanobiology of pore forming peptide action. Biochimica et Biophysica Acta 2016, 1858 (6), 10911098.CrossRefGoogle ScholarPubMed
Prince, J. L.; Dickinson, R. B., Kinetics and forces of adhesion for a pair of capsular/unencapsulated Staphylococcus mutant strains. Langmuir: The ACS Journal of Surfaces and Colloids 2003, 19 (1), 154159.CrossRefGoogle Scholar
Campos, M. A.; Vargas, M. A.; Regueiro, V.; Llompart, C. M.; Alberti, S.; Bengoechea, J. A., Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infection and Immunity 2004, 72 (12), 71077114.CrossRefGoogle ScholarPubMed
Phanphak, S. Investigation of K1 bacterial capsular morphology and single molecules in capsular biosynthesis using super-resolution fluorescence microscopy (dSTORM), PhD Thesis. University of Manchester: 2019.Google Scholar
Muthukumar, M., Polymer Translocation. CRC Press: 2019.Google Scholar
Woodward, L.; Naismith, J. H., Bacterial polysaccharide synthesis and export. Current Opinion in Structural Biology 2016, 40, 8188.CrossRefGoogle ScholarPubMed
King, J. D.; Berry, S.; Clarke, B. R.; Morris, R. J.; Whitfield, C., Lipopolysaccharide O antigen size distribution is determined by a chain extension complex of variable stoichiometry in Escherichia coli O9a. Proceedings of the National Academy of Sciences of the United States of America 2014, 111 (17), 64076412.CrossRefGoogle ScholarPubMed
Dague, E.; Duval, J.; Jorand, F.; Thomas, F.; Gaboriaud, F., Probing surface structures of Shewanella spp. by microelectrophoresis. Biophysical Journal 2006, 90 (7), 26122621.CrossRefGoogle ScholarPubMed
Gaboriaud, F.; Gee, M. L.; Strugnell, R. A.; Duval, J. F. L., Coupled electrostatic, hydrodynamic and mechanical properties of bacterial interfaces in aqueous media. Langmuir: The ACS Journal of Surfaces and Colloids 2008, 24 (19), 1098810995.CrossRefGoogle ScholarPubMed
Palyulin, V. V.; Ala-Nissila, T.; Metzler, R., Polymer translocation: The first two decades and the recent diversification. Soft Matter 2014, 10 (45), 90169037.CrossRefGoogle ScholarPubMed
Dong, C.; Beis, K.; Nesper, J.; Brunkan-LaMontagne, A. L.; Clarke, B. R.; Whitfield, C.; Naismith, J. H., Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 2006, 444 (7116), 226229.CrossRefGoogle ScholarPubMed
Schar-Zammaretti, P.; Ubbink, J., The cell wall of lactic acid bacteria: Surface constituents and macromolecular conformations. Biophysical Journal 2003, 85 (6), 40764092.CrossRefGoogle ScholarPubMed
Richards, D. M.; Endres, R. G., How cells engulf: A review of theoretical approaches to phagocytosis. Reports on Progress in Physics 2017, 80 (12), 126601.CrossRefGoogle ScholarPubMed
Audoly, B.; Pomeau, Y., Elasticity and Geometry. Oxford University Press: 2010.Google Scholar
Munglani, G.; Wittel, F. K.; Vetter, R.; Bianchi, F.; Herrmann, H. J., Collapse of orthotropic spherical shells. Physical Review Letters 2019, 123 (5), 058002.CrossRefGoogle ScholarPubMed
Vella, D.; Ajdari, A.; Vaziri, A.; Boudaoud, A., Indentation of ellipsoidal and cylindrical elastic shells. Physical Review Letters 2012, 109 (14), 144302.CrossRefGoogle ScholarPubMed
Arnoldi, M.; Fitz, M.; Bauerlein, E.; Fritz, M.; Radmacher, M.; Sackmann, E.; Boulbitch, A., Bacterial turgor pressure can be measured by atomic force microscopy. Physical Review E 2000, 62 (1 Pt B), 10341044.CrossRefGoogle ScholarPubMed
Deng, Y.; Sun, M.; Shaevitz, J. W., Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Physical Review Letters 2011, 107 (15), 158101.CrossRefGoogle ScholarPubMed
Lipowsky, R., In Physics of Biological Membranes. Bassereau, P.; Sens, P., Eds. Springer: 2019; pp. 344.Google Scholar
Torok, E.; Moran, E.; Cooke, F., Oxford Handbook of Infectious Diseases and Microbiology. Oxford University Press: 2016.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×