Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T03:12:55.892Z Has data issue: false hasContentIssue false

17 - Motility

from Part II - Single Bacteria

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Considers the swimming of bacterial cells, sedimentation and swimming near surfaces.

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 176 - 189
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Aranson, I. S., Bacterial active matter. Reports on Progress in Physics 2022, 85 (7), 143.CrossRefGoogle ScholarPubMed
Lauga, E., The Fluid Dynamics of Cell Motility. Cambridge University Press: 2020.CrossRefGoogle Scholar
Lauga, E.; Powers, T. R., The hydrodynamics of swimming microorganisms. Reports on Progress in Physics 2009, 72 (9), 136.CrossRefGoogle Scholar

References

Berg, H. C., E. coli in Motion. Springer: 2004.CrossRefGoogle Scholar
Luchsinger, R. H.; Bergersen, B.; Mitchell, J. G., Bacterial swimming strategies and turbulence. Biophysical Journal 1999, 77 (5), 23772386.CrossRefGoogle ScholarPubMed
Ben-Jacob, E.; Cohen, I.; Levine, H., Cooperative self-organization of microorganisms. Advances in Physics 2010, 49 (4), 395554.CrossRefGoogle Scholar
Lauga, E., Bacterial hydrodynamics. Annual Review of Fluid Mechanics 2016, 48 (1), 105130.CrossRefGoogle Scholar
Son, K.; Guasto, J. S.; Stocker, R., Bacteria can exploit a flagellar buckling instability to change direction. Nature Physics 2013, 9 (8), 494498.CrossRefGoogle Scholar
Theves, M.; Taktikos, J.; Zaburdaev, V.; Stark, H.; Beta, C., A bacterial swimmer with two alternating speeds of propagation. Biophysical Journal 2013, 105 (8), 19151924.CrossRefGoogle ScholarPubMed
Turner, L.; Ryu, W. S.; Berg, H. C., Real-time imaging of fluorescent flagellar filaments. Journal of Bacteriology 2000, 182 (10), 27932801.CrossRefGoogle ScholarPubMed
Najafi, J.; Shaebani, M. R.; John, T.; Altegoer, F.; Bange, G.; Wagner, C., Flagellar number governs bacterial spreading and transport efficiency. Science Advances 2018, 4 (9), eaar6425.CrossRefGoogle ScholarPubMed
Levin, M. D.; Morton-Firth, C. J.; Abouhamad, W. N.; Bourret, R. B.; Bray, D., Origins of individual swimming behavior in bacteria. Biophysical Journal 1998, 74 (1), 175181.CrossRefGoogle ScholarPubMed
Figueroa-Morales, N.; Soto, R.; Junat, G.; Darnige, T.; Douarche, C.; Martinez, V. A.; Lindner, A.; Clement, E., 3D spatial exploration by E. coli echoes motor temporal variability. Physical Review X 2020, 10 (2), 021004.CrossRefGoogle Scholar
Cluzel, P.; Surette, M.; Leibler, S., An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 2000, 287 (5458), 16521655.CrossRefGoogle ScholarPubMed
Drescher, K.; Dunkel, J.; Cisneros, L. H.; Ganguly, S.; Goldstein, R. E., Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Proceedings of the National Academy of Sciences of the United States of America 2011, 108 (27), 1094010945.CrossRefGoogle ScholarPubMed
Antimicrobial peptide database. http://aps.unmc.edu/AP.Google Scholar
Pismen, L., Active Matter Within and Around Us: From Self-propelled Particles to Flocks and Living Forms. Springer: 2021.CrossRefGoogle Scholar
Lele, P. P.; Roland, T.; Shrivastava, A.; Chen, Y.; Berg, H. C., The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backward. Nature Physics 2016, 12 (2), 175178.CrossRefGoogle Scholar
Spagnolie, S. E.; Lauga, E., Comparative hydrodynamics of bacterial polymorphism. Physical Review Letters 2011, 106 (5), 058103.CrossRefGoogle ScholarPubMed
Kaya, T.; Koser, H., Direct upstream motility in E. coli. Biophysical Journal 2012, 102 (7), 15141523.CrossRefGoogle Scholar
Jing, G.; Zoettl, A.; Clement, E.; Lindner, A., Chirality-induced bacterial rheotaxis in bulk shear flows. Science Advances 2020, 6 (28), eabb2012.CrossRefGoogle ScholarPubMed
Guyon, E.; Hulin, J. P.; Petit, L.; Mitescu, C. D., Physical Hydrodynamics, 2nd ed. Oxford University Press: 2015.CrossRefGoogle Scholar
Berg, H. C.; Turner, L., Torque generated by the flagellar motor of Escherichia coli. Biophysical Journal 1993, 65 (5), 22012216.CrossRefGoogle ScholarPubMed
Gurung, J. P.; Gel, M.; Baker, M. A. B., Microfluidic techniques for separation of bacterial cells via taxis. Microbial Cell 2020, 7 (3), 6679.CrossRefGoogle ScholarPubMed
Ahmed, T.; Stocker, R., Experimental verification of the behavioral foundation of bacterial transport parameters using microfluidics. Biophysical Journal 2008, 95 (9), 44814493.CrossRefGoogle ScholarPubMed
Malm, A. V.; Waigh, T. A., Elastic turbulence in entangled semi-dilute DNA solutions measured with optical coherence tomography velocimetry. Scientific Reports 2017, 7 (1), 1186.CrossRefGoogle ScholarPubMed
Tahara, H.; Takabe, K.; Sasaki, Y.; Kasuga, K.; Kawamoto, A.; Koizumi, N.; Nakamura, S., The mechanism of two-phase motility in the spirochete Leptospira: Swimming and crawling. Science Advances 2018, 4 (5), eaar7975.CrossRefGoogle ScholarPubMed
Yang, J.; Wolgemuth, C. W.; Huber, G., Kinematics of the swimming of spiroplasma. Physical Review Letters 2009, 102 (21), 218102.CrossRefGoogle ScholarPubMed
Conrad, J. C.; et al., Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophysical Journal 2011, 100 (7), 16081616.CrossRefGoogle Scholar
Lolsel, T. P.; Boujeman, R.; Pantaloni, D.; Carlier, M. F., Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 1999, 401 (6753), 613616.CrossRefGoogle Scholar
Pantaloni, D.; Le Clainche, C.; Carlier, M. F., Mechanism of actin-based motility. Science 2001, 292 (5521), 15021506.CrossRefGoogle ScholarPubMed
Dickinson, R. B.; Purich, D. L., Clamped-filament elongation model for actin-based motors. Biophysical Journal 2002, 82 (2), 605617.CrossRefGoogle ScholarPubMed
Wheeler, J. D.; Secchi, E.; Rusconi, R.; Stocker, R., Not just going with the flow: The effects of fluid flow on bacteria and plankton. Annual Review in Cellular Developmental Biology 2019, 35 (1), 213237.CrossRefGoogle ScholarPubMed
Guasto, J. S.; Rusconi, R.; Stocker, R., Fluid mechanics of planktonic microorganisms. Annual Review of Fluid Mechanics 2012, 44, 373400.CrossRefGoogle Scholar
Berg, H. C., Random Walks in Biology. Princeton University Press: 1993.Google Scholar
Carrasco, B.; de la Torre, J. G., Hydrodynamic properties of rigid particles: Comparison of different modeling and computational procedures. Biophysical Journal 1999, 76 (6), 30443057.CrossRefGoogle ScholarPubMed
Guazzelli, E.; Morris, J. F., A Physical Introduction to Suspension Dynamics. Cambridge University Press: 2012.Google Scholar
Harshey, R. M., Bacterial motility on a surface: Many ways to a common goal. Annual Reviews of Microbiology 2003, 57, 249273.CrossRefGoogle ScholarPubMed
Maali, A.; Bhushan, B., Measurement of slip length on superhydrophobic surfaces. Philosophical Transactions of the Royal Society A 2012, 370 (1967), 23042320.CrossRefGoogle ScholarPubMed
Lettinga, P.; Manneville, S., Competition between shear banding and wall slip in wormlike micelles. Physical Review Letters 2009, 103 (24), 248302.CrossRefGoogle ScholarPubMed
Desai, N.; Ardekani, A. M., Biofilms at interfaces: Microbial distribution in floating films. Soft Matter 2020, 16 (7), 17311750.CrossRefGoogle ScholarPubMed
Berke, A. P.; Turner, L.; Berg, H. C.; Lauga, E., Hydrodynamic attraction of swimming microorganisms by surfaces. Physical Review Letters 2008, 101 (3), 038101.CrossRefGoogle ScholarPubMed
Lauga, E.; DiLuzio, W. R.; Whitesides, G. M.; Stone, H. A., Swimming in circles: Motion of bacteria near solid boundaries. Biophysical Journal 2006, 90 (2), 400412.CrossRefGoogle ScholarPubMed
Di Leonardo, R.; Dell’Arciprete, D.; Angelani, L.; Lebba, V., Swimming with an image. Physical Review Letters 2011, 106 (3), 038101.CrossRefGoogle ScholarPubMed
Lecuyer, S.; Rusconi, R.; Shen, Y.; Forsyth, A.; Vlamakis, H.; Kolter, R.; Stone, H. A., Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa. Biophysical Journal 2011, 100 (2), 341350.CrossRefGoogle ScholarPubMed
Gelimson, A.; Zhao, K.; Lee, C. K.; Kranz, W. T.; Wong, G. C. L.; Golestanian, R., Multicellular self-organization of P. aeruginosa due to interactions with secreted trails. Physical Review Letters 2016, 117 (17), 178102.CrossRefGoogle ScholarPubMed
Couzin, I. D.; Franks, N. R., Self-organized lane formation and optimized traffic flow in army ants. Proceedings of Royal Society B – Biological Sciences 2003, 270 (1511), 139146.CrossRefGoogle ScholarPubMed
Bianchi, S.; Saglimbeni, F.; Frangipone, G.; Dell’Arciprete, D.; Di Lenarda, R., 3D dynamics of bacteria wall entrapment at a water-air interface. Soft Matter 2019, 15 (16), 33973406.CrossRefGoogle Scholar
Vladescu, I. D.; et al., Filling an emulsion drop with motile bacteria. Physical Review Letters 2014, 113 (26), 268101.CrossRefGoogle ScholarPubMed
Rusconi, R.; Guasto, J. S.; Stocker, R., Bacterial transport suppressed by fluid shear. Nature Physics 2014, 10, 212217.CrossRefGoogle Scholar
Hamby, A. E.; Vig, D. K.; Safonova, S.; Wolgemuth, C. W., Swimming bacteria power microscopic cycles. Science Advances 2018, 4 (12), eaau0125.CrossRefGoogle Scholar
Ramos, G.; Cordero, M. L.; Soto, R., Bacterial driving droplets. Soft Matter 2020, 16 (5), 13591365.CrossRefGoogle ScholarPubMed
Li, G.; Tang, J. X., Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Physical Review Letters 2009, 103 (7), 078101.CrossRefGoogle Scholar
Mather, W.; Mondragon-Palomino, O.; Danino, T.; Hasty, J.; Tsimring, L. S., Streaming instability in growing cell populations. Physical Review Letters 2010, 104 (20), 208101.CrossRefGoogle ScholarPubMed
Darnton, N.; Turner, L.; Breuer, K.; Berg, H. C., Moving fluid with bacterial carpets. Biophysical Journal 2004, 86 (3), 18631870.CrossRefGoogle ScholarPubMed
Altschuler, E.; Mino, G.; Perez-Penichet, C.; del Rio, L.; Lindner, A.; Rousselet, A.; Clement, E., Flow controlled densification and anomalous dispersion of E. coli through a constriction. Soft Matter 2013, 9 (6), 18641870.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Motility
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Motility
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Motility
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.020
Available formats
×