Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T07:05:42.834Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  24 November 2017

George Jaroszkiewicz
Affiliation:
University of Nottingham
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Quantized Detector Networks
The Theory of Observation
, pp. 357 - 364
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, S. L. 1995. Quaternionic Quantum Mechanics and Quantum Fields. International Series of Monographs on Physics, 88. Oxford University Press.
Adler, S. L. 2016. Does the Peres Experiment Using Photons Test for Hyper-complex (Quaternionic) Quantum Theories? arXiv:quant-ph/1604.04950, 1–5.
Afshar, S. S. 2005. Violation of the Principle of Complementarity, and Its Implications. Pages 229–244 of: The Nature of Light: What Is a Photon? Proceedings of SPIE, no. 5866.
Apollo Program Office. 1969. Apollo 11 (AS-506) Mission. Mission Operation Report, 1–109.
Ashby, Neil. 2002. Relativity and the Global Positioning System. Physics Today, May, 41–47.
Aspect, A., Grangier, P., and Roger, G. 1982. Experimental Realization of Einstein– Podolsky–Rosen–Bohm Gedankenexperiment: A New Violation of Bell's Inequalities. Phys. Rev. Lett., 49, 91–94.Google Scholar
Becker, L. 1998. A New Form of Quantum Interference Restoring Experiment. Phys. Lett. A, 249, 19–24.Google Scholar
Bell, E. T. 1938. The Iterated Exponential Integers. Ann. Math., 39(3), 539–557.Google Scholar
Bell, J. S. 1964. On the Einstein–Podolsky–Rosen paradox. Physics, 1, 195–200.Google Scholar
Bell, J. S. 1988. Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press.
Berkeley, G. 1721. De Motu or Sive de Motus Principio & Natura et de Causa Communicationis Motuum [The Principle and Nature of Motion and the Cause of the Communication of Motions]. Translated by A. A., Luce Pages 253–276 of: Michael R., Ayers, George Berkeley: Philosophical Works. London: Everyman, 1993.
Bernstein, J. 2010. The Stern–Gerlach Experiment. asXiv.org[physics.hist.ph], arXiv:1007.2435, 1–16.
Birrell, N., and Davies, P. 1982. Quantum Fields in Curved Space. Cambridge University Press.
Bjorken, J. D., and Drell, S. D. 1965. Relativistic Quantum Fields. McGraw-Hill.
Bohm, D. 1952. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden Variables,” I and II. Phys. Rev., 85, 166–193.Google Scholar
Bohr, N. 1913. On the Constitution of Atoms and Molecules. Philos. Mag., 26(1), 1–24.Google Scholar
Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. 1987. Space-Time as a Causal Set. Phys. Rev. Lett., 59(5), 521–524.Google Scholar
Bondi, H., and Gold, T. 1948. The Steady-State Theory of the Expanding Universe. MNRAS, 108, 252–270.Google Scholar
Born, M. 1926. Zur Quantenmechanik der Stossvorgänge [The Quantum Mechanics of the Impact Process (Collision Processes)]. Zeitschrift fur Physik, 37, 863–867.Google Scholar
The Born–Einstein Letters. 1971. Trans. Irene Born. Macmillan.
Brandt, H. E. 1999. Positive Operator Valued Measure in Quantum Information Processing. Am. J. Phys., 67(5), 434–439.Google Scholar
Brightwell, G., and Gregory, R. 1991. Structure of Random Discrete Spacetime. Phys. Rev. Lett., 66(3), 260–263.Google Scholar
Burnham, D. C., and Weinberg, D. L. 1970. Observation of Simultaneity in Parametric Production of Optical Photon Pairs. Phys. Rev. Lett., 25, 84–86.Google Scholar
Candlin, D. J. 1956. On Sums over Trajectories for Systems with Fermi Statistics. Nuovo Cimento, 4(2), 231–239.Google Scholar
Casalbuoni, R. 1976a. The ClassicalMechanics for Bose–Fermi Systems. Nuovo Cimento A Series 11, 33(3), 389–431.Google Scholar
Casalbuoni, R. 1976b. On the Quantization of Systems with Anticommuting Variables. Nuovo Cimento A Series 11, 33(1), 115–125.Google Scholar
Cowan, C. L. Jr., Reines, F., Harrison, F. B., et al. 1956. Detection of the Free Neutrino: A Confirmation. Science, 124(3212), 103–104.Google Scholar
Cramer, J. G. 1986. The Transactional Interpretation of Quantum Mechanics. Rev. Mod. Phys., 58(3), 647–688.Google Scholar
D-Wave Systems. 2016. The D-Wave 2000Q Quantum Computer. D-Wave Systems, 1–12.
de Broglie, L. 1924. Recherches sur la Théorie des Quanta [Researches on the Quantum Theory]. Ph.D. thesis, Faculty of Sciences at Paris University.
Deutsch, D. 1997. The Fabric of Reality. Penguin Press.
Deutsch, D. 1999. Quantum Theory of Probability and Decisions. Proc. R. Soc, 455, 3129–3137.Google Scholar
DeWitt, B. S. 1975. Quantum Field Theory in Curved Spacetime. Physics Reports C, 19(6), 295–357.Google Scholar
Dingle, H. 1967. The Case against Special Relativity. Nature, 216, 119–122.Google Scholar
Dirac, P. A. M. 1938a. Classical Theory of Radiating Electrons. Proc. Roy. Soc. A, 167, 148–169.Google Scholar
Dirac, P. A. M. 1938b. A New Basis for Cosmology. Proc. Roy. Soc (London) A, 165(921), 199–208.Google Scholar
Dirac, P. A. M. 1958. The Principles of Quantum Mechanics. Clarendon Press.
Eakins, J. 2004. Classical and Quantum Causality in Quantum Field Theory, or, “The Quantum Universe.” Ph.D. thesis, University of Nottingham.
Eakins, J., and Jaroszkiewicz, G. 2005. A Quantum Computational Approach to the Quantum Universe. Pages 1–51 of: Albert, Reimer (ed.), New Developments in Quantum Cosmology Research. Horizons in World Physics, vol. 247. New York: Nova Science.
Eden, R. J., Landshoff, P. V., Olive, D. I., and Polkinghorne, J. C. 1966. The Analytic S-Matrix. Cambridge University Press.
Ehrenfest, P. 1927. Bemerkung über die angebote Gültigkeit der klassischen Mechanik Innerhalb der Quantenmechanik. Zeitschrift für Physik, 45(7–8), 455–457.Google Scholar
Einstein, A. 1905a. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [Concerning an Heuristic Point of View Toward the Emission and Transformation of Light]. Annalen der Physik, 17, 132–148. Translation into English American Journal of Physics, 33(5), May 1965.Google Scholar
Einstein, A. 1905b. Zur Electrodynamik Bewgter Körper. Annalen der Physik, 17, 891–921. On the Electrodynamics of Moving Bodies, translation in The Principle of Relativity, Dover Publications.
Einstein, A., Podolsky, B., and Rosen, N. 1935. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev., 47, 777–780.Google Scholar
Elitzur, A. C., and Vaidman, L. 1993. Quantum-Mechanical Interaction-Free Measurements. Found. Phys., 23, 987–997.Google Scholar
Encyclopaedia Britannica. 2000. Time. CD Rom. Britannica.co.uk.
Everett, H. 1957. “Relative State” Formulation of Quantum Mechanics. Rev. Mod. Phys., 29(3), 454–462.Google Scholar
Feynman, R. P., and Hibbs, A. R. 1965. Quantum Mechanics and Path Integrals. New York: McGraw-Hill.
Feynman, R. P., Leighton, R. B., and Sands, M. 1966. The Feynman Lectures on Physics: Quantum Mechanics. Vol. III. Addison-Wesley.
FitzGerald, G. F. 1889. The Ether and the Earth's Atmosphere. Science, 13, 390.Google Scholar
Franson, J. D. 1989. Bell Inequality for Position and Time. Phys. Rev. Lett., 62(19), 2205–2208.Google Scholar
Fuchs, C. A., and Peres, A. 2000. Quantum Theory Needs No Interpretation. Physics Today, March, 70–71.Google Scholar
Gell-Mann, M., and Pais, A. 1955. Behavior of Neutral Particles under Charge Conjugation. Phys. Rev., 97, 1387–1389.Google Scholar
Gerlach, W., and Stern, O. 1922a. Das magnetische Moment des Silberatoms. Zeits. Phys., 9, 353–355.Google Scholar
Gerlach, W., and Stern, O. 1922b. Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Zeits. Phys., 9, 349–352.Google Scholar
Glauber, R. J. 1963a. Coherent and Incoherent States of the Radiation Field. Phys. Rev., 131(6), 2766–2788.Google Scholar
Glauber, R. J. 1963b. Photon Correlations. Phys. Rev. Lett., 10(3), 84–86.Google Scholar
Glauber, R. J. 1963c. The Quantum Theory of Optical Coherence. Physical Review, 130(6), 2529–2539.Google Scholar
Gödel, K. 1949. An Example of a New Type of Cosmological Solution of Einstein's Field Equations of Gravity. Rev. Mod. Phys., 21(3), 447–450.Google Scholar
Goldstein, H. 1964. Classical Mechanics. Addison-Wesley.
Greenberger, D., and YaSin, A. 1989. “Haunted” Measurements in Quantum Theory. Found. Phys., 19(6), 679–704.Google Scholar
Griffiths, R. B. 1984. Consistent Histories and the Interpretation of Quantum Mechanics. J. Stat. Phys., 36(12), 219–272.Google Scholar
Halligan, Peter, and Oakley, David. 2000. Greatest Myth of All. New Scientist, 18 November, 34–39.Google Scholar
Hameroff, S. 1999. Quantum Computation in Brain Microtubules? The Penrose– Hameroff “Orch-OR” Model of Consciousness. www.u.arizona.edu/~hameroff/ royal.html, 1–30.
Hamming, R. W. 1950. Error Detecting and Error Correcting Codes. Bell Syst. Tech. J., 29(2), 147–160.Google Scholar
Hardy, L. 1992. Quantum Mechanics, Local Realistic Theories and Lorentz-Invariant Realistic Theories. Phys. Rev. Lett., 68(20), 2981–2984.Google Scholar
Heisenberg, W. 1925. Über Quantentheoretische Umdeutung Kinematischer und Mechanischer Beziehungen [Quantum-Theoretical Reinterpretation of Kinematic and Mechanical Relations]. Zeits. Physik A Hadrons and Nuclei, 33(1), 879 –893.Google Scholar
Heisenberg, W. 1930. The Physical Principles of the Quantum Theory. Dover Edition, 1949 ed. University of Chicago Press.
Heisenberg, W. 1952. Questions of Principle in Modern Physics. Pages 41–52 of: Philosophic Problems in Nuclear Science. London: Faber and Faber.
Horne, M. A., Shimony, A., and Zeilinger, A. 1989. Two-Particle Interferometry. Phys. Rev. Lett., 62(19), 2209–2212.Google Scholar
Howson, A. G. 1972. A Handbook of Terms Used in Algebra and Analysis. Cambridge University Press.
Hoyle, F. 1948. A New Model for the Expanding Universe. MNRAS, 108, 372–382.Google Scholar
Itano, W. M., Heinzen, D. J., Bollinger, J. J., and Wineland, D. J. 1990. Quantum Zeno Effect. Phys. Rev. A, 41(5), 2295–2300.Google Scholar
Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A., and Roch, J.-F. 2007. Experimental Realization of Wheeler's Delayed-Choice Gedankenexperiment. Science, 315(5814), 966–968. www.arxiv.org/abs/quant-ph/0610241.Google Scholar
Jacques, V., Lai, N. D., Zheng, D., Chauvat, F., Treussart, F., Grangier, P., and Roch, J.-F. 2008. Illustration of Quantum Complementarity Using Single Photons Interfering on a Grating. New. J. Phys., 10, 123009.Google Scholar
Jaroszkiewicz, G. 2004. Quantum Register Physics. arXiv:quant-ph/0409094.
Jaroszkiewicz, G. 2008a. Quantized Detector Networks: A Review of Recent Developments. Int. J. Mod. Phys. B, 22(3), 123–188.Google Scholar
Jaroszkiewicz, G. 2008b. Quantized Detector Networks, Particle Decays and the Quantum Zeno Effect. J. Phys. A: Math. Theor., 41(9), 095301.Google Scholar
Jaroszkiewicz, G. 2010. Towards a Dynamical Theory of Observation. Proc. Roy. Soc. A, 466(2124), 3715–3739.Google Scholar
Jaroszkiewicz, G. 2016. Principles of Empiricism and the Interpretation of Quantum Mechanics. Pages 139–173 of: M., Dugic, R., Kastner, and G., Jaroszkiewicz (eds.), Quantum Structural Studies. World Scientific.
Jaynes, E. T. 2003. Probability Theory: The Logic of Science. Cambridge University Press.
Joos, E. 2012. Decoherence. www.decoherence.de.
Jordan, P., and Wigner, E. P. 1928. Über Das Paulische Äquivalenzverbot. Zeitschrift für Physik, 47, 631–651.Google Scholar
Kahneman, D. 2011. Thinking, Fast and Slow. Allen Lane.
Karyotakis, Y., and de Monchenault, G. H. 2002. A Violation of CP Symmetry in B Meson Decays. Europhysics News, May/June, 89–93.Google Scholar
Kastner, R. E. 2005. Why the Afshar Experiment Does Not Refute Complementarity. Stud. Hist. Philos. M. P., 36(4), 649–658.Google Scholar
Kastner, R. E. 2016. The Illusory Appeal of Decoherence in the Everettian Picture: Affirming the Consequent. arXiv:1603.04845 [quant-ph], 1–7.
Kim, Y., Yu, R., Kulik, S., Shih, Y., and Scully, M. 2000. A Delayed Choice Quantum Eraser. Phys. Rev. Lett., 84, 1–5. arXiv:quant-ph/9903047.Google Scholar
Kim, Yoon-Ho. 2003. Two-Photon Interference Without Bunching Two Photons. Phys. Lett. A, 315, 352–355.Google Scholar
Klauder, J. R., and Sudarshan, E. C. G. 1968. Fundamentals of Quantum Optics. W.A. Benjamin.
Klyshko, D. N., Penin, A. N., and Polkovnikov, B. F. 1970. Parametric Luminescence and Light Scattering by Polaritons. JETP Lett., 11(1), 5–8.Google Scholar
Kochen, S., and Specker, E. 1967. The Problem of Hidden Variables in Quantum Mechanics. J. Math. Mechanics, 17, 59–87.Google Scholar
Koke, S., Grebing, C., Frei, H., Anderson, A., Assion, A., and Steinmeyer, G. 2010. Direct Frequency Comb Synthesis with Arbitrary Offset and Shot-Noise-Limited Phase Noise. Nature Photonics, 4, 463–465.Google Scholar
Kracklauer, A. F. 2002. Time Contortions in Modern Physics. arXiv:quant-ph/0206164, 1–7. Draft for: Proceedings, The Nature of Time: Geometry, Physics and Perception; May 21–24, 2002, Tatranska Lomnica, Slovak Republic.
Kraus, K. 1974. Operations and Effects in the Hilbert Space Formulation of Quantum Theory. Berlin: Springer, pages 206–229.
Kraus, K. 1983. States, Effects, and Operations: Fundamental Notions of Quantum Theory. Lecture Notes in Physics (190). Berlin: Springer-Verlag.
Kwiat, P. G., Steinberg, A. M., and Chiao, R. Y. 1993. High-Visibility Interference in a Bell-Inequality Experiment for Energy and Time. Physical Review A, 47(4), R2472–R2475.Google Scholar
Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., and Kasevich, M. 1994. Experimental Realization of “Interaction-Free” Measurements. In: K. V., Laurikainen, C., Montonen, and Sunnarborg (eds.), Symposium on the Foundations of Modern Physics 1994. Editions Frontières.
Larmor, J. J. 1897. On a Dynamical Theory of the Electric and Luminiferous Medium, Part 3, Relations with Material Media. Phil. Trans. Roy. Soc., 190, 205–300.Google Scholar
Laven, P. A., Taplin, D. W., and Bell, C. P. 1970. Television Reception over Sea Paths: The Effect of the Tide. BBC Research Department Report, 1–25.Google Scholar
Leech, J. W. 1965. Classical Mechanics. Methuen and Co.
Leggett, A. J., and Garg, A. 1985. Quantum Mechanics versus Macroscopic Realism: Is the Flux There When Nobody Looks? Phys. Rev. Lett., 54(9), 857–860.Google Scholar
Lehmann, H., Symanzik, K., and Zimmermann, W. 1955. Zur Formulierung Quantisierter Feldtheorien. Il Nuovo Cimento, 1(1), 205–225.Google Scholar
Lewis, G. N. 1926. The Conservation of Photons. Nature, 118, 874–875.Google Scholar
Liang, Y., and Czarnecki, A. 2011. Photon–Photon Scattering: A Tutorial. arXiv:1111.6126v2 [hep-ph], 1–9.Google Scholar
Lichtenberg, D. B. 1970. Unitary Symmetry and Elementary Particles. Academic Press.
Lorentz, H. A. 1899. Simplified Theory of Electrical and Optical Phenomena in Moving Systems. Proc. Acad. Science Amsterdam, I, 427–443.Google Scholar
Ludwig, G. 1983a. Foundations of Quantum Mechanics I. New York: Springer.
Ludwig, G. 1983b. Foundations of Quantum Mechanics II. New York: Springer.
Magueijo, J. 2003. New Varying Speed of Light Theories. Rept. Prog. Phys., 66(11), 2025–2068.Google Scholar
Mardari, G. N. 2005. What Is a Quantum Really Like? In: G., Adenier, A. Y., Khrennikov, and T. M., Nieuwenhuizen (eds.), Quantum Theory: Reconsideration of Foundations–3. AIP Conference Proceedings, vol. 81.
Markopoulou, F. 2000. Quantum Causal Histories. Class. Quant. Grav., 17, 2059–2072.Google Scholar
Mars Climate Orbiter Mishap Investigation Board. 1999. Phase I Report. 1–44.
Martin, J. L. 1959a. The Feynman Principle for a Fermi System. Proc. Roy. Soc., A251, 543–549.Google Scholar
Martin, J. L. 1959b. Generalized Classical Dynamics and the “Classical Analogue” of a Fermi Oscillator. Proc. Roy. Soc., A251, 536–542.Google Scholar
Merli, P. G., Missiroli, G. F., and Pozzi, G. 1976. On the Statistical Aspect of Electron Interference Phenomena. Am. J. Phys., 44(3), 306–307.Google Scholar
Meschini, D. 2007. Planck-Scale Physics: Facts and Beliefs. Found. Science, 12(4), 277–294.Google Scholar
Minkowski, H. 1908. Space and Time. A translation of an Address delivered at the 80th Assembly of German Natural Scientists and Physicians, at Cologne, 21 September, 75–91. Reprinted in H. A., Lorentz, A., Einstein, H., Minkowski, and H., Weyl, The Principle of Relativity. Dover.
Misra, B., and Sudarshan, E. C. G. 1977. The Zeno's Paradox in Quantum Theory. J. Math. Phys., 18(4), 756–763.Google Scholar
Newton, I. 1687. The Principia (Philosophiae Naturalis Principia Mathematica). University of California Press, 1999. New translation by I. B., Cohen and Anne, Whitman. University of California Press, 1999.
Newton, I. 1704. Opticks. 1952 ed. Dover Publications.
Newton, I. 2006. Original letter from Isaac Newton to Richard Bentley. The Newton Project (online).
Nielsen, M. A., and Chuang, I. L. 2000. Quantum Computation and Quantum Information. Cambridge University Press.
Paris, M. G. A. 2012. The Modern Tools of Quantum Mechanics (A Tutorial on Quantum States, Measurement, and Operations). Eur. Phys. J. Special Topics, 203, 61–86.Google Scholar
Paul, H. 2004. Introduction to Quantum Optics. Cambridge University Press. Translated from the German Photonen. Eine Einführung in die Quantenoptik, 2. Auflage (1999).
Penrose, R. 1971. Angular Momentum: An Approach to Combinatorial Spacetime. In: T., Bastin (ed.), Quantum Theory and Beyond. Cambridge University Press.
Peres, A. 1995. Quantum Theory: Concepts and Methods. Kluwer Academic.
Petkov, V. 2012. Space and Time: Minkowski's Papers on Relativity. Minkowski Institute Press, pages 1–37.
Planck, M. 1900a. On the Theory of the Energy Distribution Law of the Normal Spectrum. Verhandl. Dtsch. Phys. Ges., 2(17), 237–245.Google Scholar
Planck, M. 1900b. Ueber eine Verbesserung der Wien'schen Spectralgleichung [On an Improvement of Wein's Equation for the Spectrum]. Verhandl. Dtsch. Phys. Ges., 2(13), 202–204.Google Scholar
Poincaré, H. 1890. Sur Le Problème Des Trois Corps et Les Équations de la Dynamique. Acta. Math., 13, 1–270.Google Scholar
Price, H. 1997. Time's Arrow. Oxford University Press.
Procopio, L. M., et al. 2016. Experimental Test of Hyper-Complex Quantum Theories. arXiv:1602.01624v2 [quant-ph].
Regge, T. 1961. General Relativity Without Coordinates. Il Nuovo Cimento, 19(3), 558–571.Google Scholar
Renniger, M. 1953. Zum Wellen-Korpuskel-Dualismus. Zeits. für Physik, 136, 251–261.Google Scholar
Requardt, M. 1999. Space-Time as an Orderparameter Manifold in Random Networks and the Emergence of Physical Points. gr-qc/99023031, 1–40.
Ridout, D. P., and Sorkin, R. D. 2000. A Classical Sequential Growth Dynamics for Causal Sets. Phys. Rev., D61, 024002. arXiv: gr-qc/9904062.Google Scholar
Rosa, R. 2012. The Merli–Missiroli–Pozzi Two-Slit Electron-Interference Experiment. Phys. Perspect., 14, 178–195.Google Scholar
Scarani, V., Tittel, W., Zbinden, H., and Gisin, N. 2000. The Speed of Quantum Information and the Preferred Frame: Analysis of Experimental Data. Phys. Lett., A276, 1–7.Google Scholar
Schrödinger,, E. 1926. Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys., 384(4), 361–376.Google Scholar
Schrödinger, E. 1935. The Present Situation in Quantum Mechanics. Naturwissenschaften, 23(48), 807–812. Original title: Die gegenw artige Situation in der Quantenmechanik, reprinted in Quantum Theory and Measurement, edited by J. A., Wheeler and W. H., Zurek, Princeton University Press, 1983.
Schutz, B. 1980. Geometrical Methods of Mathematical Physics. Cambridge University Press.
Schwinger, J. 1958. Spin, Statistics and the TCP theorem. Proc. N. A. S., 44, 223–228.Google Scholar
Schwinger, J. 1969. Particles and Sources. Gordon and Breach.
Schwinger, J. 1998a. Particles, Sources, and Fields. Advanced Books Classics. Reading, MA: Perseus.
Schwinger, J. 1998b. Particles, Sources, and Fields. Advanced Books Classics, vol. 2. Reading, MA: Perseus.
Schwinger, J. 1998c. Particles, Sources, and Fields. Advanced Books Classics, vol. III. Reading, MA: Perseus.
Sen, R. N. 2010. Causality, Measurement Theory and the Differentiable Structure of Space-Time. Cambridge Monographs on Mathematical Physics. Cambridge University Press.
Shannon, C. E. 1948. A Mathematical Theory of Communication. Bell Syst. Tech. J., 27(July, October), 379–423, 623–656.Google Scholar
Sillitto, R. M., and Wykes, C. 1972. An Interference Experiment with Light Beams Modulated in Anti-Phase by an Electro-Optic Shutter. Phys. Lett. A, 39(4), 333–334.Google Scholar
Sinha, U., et al. 2010. Ruling Out Multi-Order Interference in Quantum Mechanics. Science, 329, 418–421.Google Scholar
Snyder, H. S. 1947a. The Electromagnetic Field in Quantized Space-Time. Phys. Rev., 72(1), 68–71.Google Scholar
Snyder, H. S. 1947b. Quantized Space-Time. Phys. Rev., 71(1), 38–41.Google Scholar
Sorkin, R. D. 1994. Quantum Mechanics as Quantum Measure Theory. Mod. Phys. Lett. A, 9, 3119–3128.Google Scholar
Streater, R. F., and Wightman, A. S. 1964. PCT, Spin and Statistics, and All That. W.A. Benjamin.
Stuckey, M. 1999. Pregeometry and the Trans-Temporal Object. In: R., Buccheri, V. Di, Gesu, and M., Saniga (eds.), Studies of the Structure of Time: from Physics to Psycho(Patho)Logy, 121–128. Dordrecht: Kluwer.
Taylor, G. I. 1909. Interference Fringes with Feeble Light. Proc. Camb. Philos. Soc., 15, 114–115.Google Scholar
Tropper, A. M. 1969. Linear Algebra. Thomas Nelson and Sons.
Unruh, W. G. 1976. Notes on Black-Hole Evaporation. Phys. Rev. D, 14(4), 870–892.Google Scholar
von Neumann, J. 1955. The Mathematical Foundations of Quantum Mechanics. Princeton University Press. Originally published as Mathematische Grundlagen der Quantenmechanik, Berlin: Springer, 1932.
Walborn, S. P., Cunha, M. O. Terra, Pádua, S., and Monken, C. H. 2002. Double–Slit Quantum Eraser. Phys. Rev., 65, 033818 1–6.Google Scholar
Wheeler, J. A. 1979. From the Big Bang to the Big Crunch. Cosmic Search Magazine, 1(4). Interview with J. A. Wheeler.Google Scholar
Wheeler, J. A. 1980. Pregeometry: Motivations and Prospects. Pages 1–11 of: A. R., Marlow (ed.), Quantum Theory and Gravitation. New York: Academic Press.
Wheeler, J. A. 1983. Quantum Theory and Measurement. Princeton Series in Physics. Princeton University Press, pages 182–213.Google Scholar
Woit, P. 2006. Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law. Basic Books.
Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. D., and Hudson, R. P. 1957. Experimental Test of Parity Conservation in Beta Decay. Phys. Rev., 105(4), 1413–1415.Google Scholar
Zurek, W. 2002. Decoherence and the Transition from Quantum to Classical–Revisited. Los Alamos Science, (27), 2–24.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • George Jaroszkiewicz, University of Nottingham
  • Book: Quantized Detector Networks
  • Online publication: 24 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781316477182.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • George Jaroszkiewicz, University of Nottingham
  • Book: Quantized Detector Networks
  • Online publication: 24 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781316477182.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • George Jaroszkiewicz, University of Nottingham
  • Book: Quantized Detector Networks
  • Online publication: 24 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781316477182.029
Available formats
×