Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T12:06:57.580Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 October 2011

Domenico Marinucci
Affiliation:
Università degli Studi di Roma 'Tor Vergata'
Giovanni Peccati
Affiliation:
Université du Luxembourg
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Random Fields on the Sphere
Representation, Limit Theorems and Cosmological Applications
, pp. 326 - 337
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abramowitz, M., Stegun, I. (1964) Handbook of Mathematical Functions, Dover.Google Scholar
[2] Adler, R.J. (1981) The Geometry of Random Fields, J. Wiley.Google Scholar
[3] Adler, R.J., Taylor, J.E. (2007) Random Fields and Geometry, Springer-Verlag.Google Scholar
[4] Anderes, E., Chatterjee, S. (2009) Consistent estimates of deformed isotropic Gaussian random fields on the plane, Annals of Statistics, 37, No. 5A, 2324–2350.CrossRefGoogle Scholar
[5] Antoine, J.-P., Vandergheynst, P. (1999) Wavelets on the sphere: a group-theoretic approach, Applied and Computational Harmonic Analysis, 7, 262–291.CrossRefGoogle Scholar
[6] Antoine, J.-P., Vandergheynst, P. (2007) Wavelets on the sphere and other conic sections, Journal of Fourier Analysis and its Applications, 13, 369–386.CrossRefGoogle Scholar
[7] Arjunwadkar, M., Genovese, C.R., Miller, C.J., Nichol, R.C., Wasserman, L. (2004) Nonparametric inference for the Cosmic Microwave Background, Statistical Science, 19, 308–321.Google Scholar
[8] Babich, D., Creminelli, P., Zaldarriaga, M. (2004) The shape of non-Gaussianities, Journal of Cosmology and Astroparticle Physics, 8, 009.CrossRefGoogle Scholar
[9] Balbi, A. (2007), The Music of the Big Bang, Springer-Verlag.Google Scholar
[10] Baldi, P., Marinucci, D. (2007). Some characterizations of the spherical harmonics coefficients for isotropic random fields, Statistics & Probability Letters, 77(5), 490–496.CrossRefGoogle Scholar
[11] Baldi, P., Marinucci, D., Varadarajan, V.S. (2007) On the characterization of isotropic random fields on homogeneous spaces of compact groups, Electronic Communications in Probability, 12, 291–302.CrossRefGoogle Scholar
[12] Baldi, P., Kerkyacharian, G., Marinucci, D., Picard, D. (2008) High frequency asymptotics for wavelet-based tests for Gaussianity and isotropy on the torus, Journal of Multivariate Analysis, 99(4), 606–636.CrossRefGoogle Scholar
[13] Baldi, P., Kerkyacharian, G., Marinucci, D., Picard, D. (2009) Asymptotics for Spherical Needlets, Annals of Statistics, 37(3), 1150–1171, arxiv:math/0606599.CrossRefGoogle Scholar
[14] Baldi, P., Kerkyacharian, G.Marinucci, D., Picard, D. (2009) Subsampling Needlet Coefficients on the Sphere, Bernoulli, 15(2), 438–463, arxiv 0706.4169.CrossRefGoogle Scholar
[15] Baldi, P., Kerkyacharian, G., Marinucci, D., Picard, D. (2009) Density estimation for directional data using needlets, Annals of Statistics, 37(6A), 3362–3395.CrossRefGoogle Scholar
[16] Baldi, P., Kerkyacharian, G., Marinucci, D., Picard, D. (2009) Besov spaces for sections of spin fiber bundles on the sphere, preprint.
[17] Balkar, E., Lovesey, S.W. (2009), Introduction to the Graphical Theory of Angular Momentum, Springer Tracts on Modern Physics, Springer.CrossRefGoogle Scholar
[18] Bartolo, N., Komatsu, E., Matarrese, S., Riotto, A. (2004). Non-Gaussianity from inflation: theory and observations, Physical Reports, 402, 103–266.CrossRefGoogle Scholar
[19] Bartolo, N., Matarrese, S., Riotto, A. (2010) Non-Gaussianity and the Cosmic Microwave Background anisotropies, Advances in Astronomy, in press, arXiv: 1001.3957.CrossRefGoogle Scholar
[20] Bartolo, N., Fasiello, M., Matarrese, S., Riotto, A. (2010) Large non-Gaussianities in the effective field theory approach to single-field inflation: the bispectrum, Journal of Cosmology and Astroparticle Physics, 1008:08, arXiv: 1004.0893.CrossRefGoogle Scholar
[21] Bennett, C. L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Page, L., Spergel, D. N., Tucker, G. S., Wollack, E., Wright, E. L., Barnes, C., Greason, M. R., Hill, R. S., Komatsu, E., Nolta, M. R., Odegard, N., Peiris, H. V., Verde, L., Weiland, J. L. (2003) First -Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results, Astrophysical Journal Supplement Series, Volume 148, Issue 1, pp. 1–27.CrossRefGoogle Scholar
[22] Bennett, C. L., Hill, S., Hinshaw, G., Larson, D., Smith, K. M., Dunkley, J., Gold, B., Halpern, M., Jarosik, N., Kogut, A., Komatsu, E., Limon, M., Meyer, S. S., Nolta, M. R., Odegard, N., Page, L., Spergel, D. N., Tucker, G. S., Weiland, J. L., Wollack, E., Wright, E. L. (2010) Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: are there Cosmic Microwave Background anomalies?, arXiv: 1001.4758.
[23] Biedenharn, L.C., Louck, J.D. (1981) The Racah-Wigner Algebra in Quantum Theory, Encyclopedia of Mathematics and its Applications, Volume 9, Addison-Wesley.Google Scholar
[24] Billingsley, P. (1968) Convergence of Probability Measures, J. Wiley.Google Scholar
[25] Bishop, R.L., Goldberg, S. (1980) Tensor Analysis on Manifolds, Dover.Google Scholar
[26] Blei, R. (2001) Analysis in Integer and Fractional Dimensions, Cambridge University Press.CrossRefGoogle Scholar
[27] Breuer, P., Major, P. (1983) Central limit theorems for nonlinear functionals of Gaussian fields, Journal of Multivariate Analysis, 13, no. 3, 425–441.CrossRefGoogle Scholar
[28] Bridles, S. et al. (2009) Handbook for the GREAT08 Challenge: An image analysis competition for cosmological lensing, Annals of Applied Statistics, Vol. 3, No. 1, 6–37.CrossRefGoogle Scholar
[29] Brillinger, D. W. (1975) Time series. Data Analysis and Theory, Holt, Rinehart and Winston.Google Scholar
[30] Brockwell, P.J., Davis, R.A. (1991) Time Series: Theory and Methods, Second edition, Springer Series in Statistics, Springer-Verlag.CrossRefGoogle Scholar
[31] Brocker, T., tom Dieck, T. (1985) Representations of Compact Lie Groups, Graduate Texts in Mathematics, 98, Springer-Verlag.CrossRefGoogle Scholar
[32] Bump, D. (2005) Lie Groups, Graduate Texts in Mathematics, 225, Springer-Verlag.Google Scholar
[33] Cabella, P., Kamionkowskii, M. (2005) Theory of Cosmic Microwave Background Polarization, Lectures given at the 2003 Villa Mondragone School of Gravitation and Cosmology: “The Polarization of the Cosmic Microwave Background,” Rome, arxiv: astro.ph/0403392.Google Scholar
[34] Cabella, P., Hansen, F.K., Marinucci, D., Pagano, D., Vittorio, N. (2004) Search for non-Gaussianity in pixel, harmonic, and wavelet space: compared and combined, Physical Review D, 69, 063007.CrossRefGoogle Scholar
[35] Cabella, P., Hansen, F.K., Liguori, M., Marinucci, D., Matarrese, S., Moscardini, L., Vittorio, N. (2005) Primordial non-Gaussianity: local curvature method and statistical significance of constraints on fNL from WMAP data, Monthly Notices of the Royal Astronomical Society, Vol. 358, pp. 684–692.CrossRefGoogle Scholar
[36] Cabella, P., Hansen, F.K., Liguori, M., Marinucci, D., Matarrese, S., Moscardini, L., Vittorio, N. (2006) The integrated bispectrum as a test of CMB non-Gaussianity: detection power and limits on fNL with WMAP data, Monthly Notices of the Royal Astronomical Society, 369, 819–824, arxiv: astro-ph/0512112.CrossRefGoogle Scholar
[37] Cabella, P., Marinucci, D. (2009) Statistical challenges in the analysis of Cosmic Microwave Background radiation, Annals of Applied Statistics, 3(1), 61–95.CrossRefGoogle Scholar
[38] Chambers, D., Slud, E. (1989) Necessary conditions for nonlinear functionals of Gaussian processes to satisfy central limit theorems, Stochastic Processes and their Applications, 32(1), 93–107.CrossRefGoogle Scholar
[39] Chambers, D., Slud, E. (1989) Central Limit Theorems for nonlinear functionals of stationary Gaussian processes, Probability Theory and Related Fields, 80(3), 323–346.CrossRefGoogle Scholar
[40] Cruz, M., Cayon, L., Martinez-Gonzalez, E., Vielva, P., Jin, J., (2007) The non-Gaussian Cold Spot in the 3-year WMAP Data, Astrophysical Journal, 655, 11–20.CrossRefGoogle Scholar
[41] Cruz, M., Cayon, L., Martinez-Gonzalez, E., Vielva, P., (2006) The non-Gaussian Cold Spot in WMAP: significance, morphology and foreground contribution, Monthly Notices of the Royal Astronomical Society, 369, 57–67.CrossRefGoogle Scholar
[42] Dahlke, S., Steidtl, G., Teschke, G. (2007) Frames and coorbit theory on homogeneous spaces with a special guidance on the sphere, Journal of Fourier Analysis and its Applications, 13, 387–404.CrossRefGoogle Scholar
[43] Davidson, J. (1994), Stochastic Limit Theory, Oxford University Press.CrossRefGoogle Scholar
[44] De Bernardis, P. et al. (2000) A flat Universe from high-resolution maps of the Cosmic Microwave Background radiation, Nature, Vol. 404, Issue 6781, pp. 955–959.CrossRefGoogle ScholarPubMed
[45] de Gasperis, G., Balbi, A., Cabella, P., Natoli, P., Vittorio, N. (2005) ROMA: A map-making algorithm for polarised CMB data sets, Astronomy and Astrophysics, Vol. 436, Issue 3, pp. 1159–1165.CrossRefGoogle Scholar
[46] Delabrouille, J., Cardoso, J.-F., Le Jeune, M., Betoule, M., Fay, G., Guilloux, F. (2009) A full sky, low foreground, high resolution CMB map from WMAP, Astronomy and Astrophysics, Vol. 493, Issue 3, pp. 835–857, arXiv:0807.0773.CrossRefGoogle Scholar
[47] Dennis, M. (2004), Canonical representation of spherical functions: Sylvester's theorem, Maxwell's multipoles and Majorana's sphere, Journal of Physics A, 37, 9487–9500.CrossRefGoogle Scholar
[48] Dennis, M. (2005) Correlations between Maxwell's multipoles for Gaussian random functions on the sphere, Journal of Physics A, 38, 1653–1658.CrossRefGoogle Scholar
[49] Diaconis, P. (1988) Group Representations in Probability and Statistics, IMS Lecture Notes – Monograph Series, 11, Hayward.Google Scholar
[50] Diaconis, P., Freedman, D. (1987) A dozen de Finetti-style results in search of a theory, Annales Institute Henri Poincaré Probabilités et Statistiques, 23(2), 397–423.Google Scholar
[51] Dodelson, S. (2003) Modern Cosmology, Academic Press.Google Scholar
[52] Doré, O., Colombi, S., Bouchet, F.R. (2003) Probing non-Gaussianity using local curvature, Monthly Notices of the Royal Astronomical Society, 344, 905–916.CrossRefGoogle Scholar
[53] Doroshkevich, A.G., Naselsky, P.D., Verkhodanov, O.V., Novikov, D.I., Turchaninov, V.I., Novikov, I.D., Christensen, P.R., Chiang, L.-Y. (2005) Gauss-Legendre Sky Pixelization (GLESP) for CMB Maps, International Journal of Modern Physics D, 14, 275.CrossRefGoogle Scholar
[54] Doukhan, P. (1988) Formes de Toeplitz associées à une analyse multi-échelle, (French) [Toeplitz forms associated to a multiscale analysis]Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, 306, no. 15, 663–666.Google Scholar
[55] Doukhan, P., Leon, J. R. (1990) Formes quadratique d'estimateurs de densité par projections orthogonales. (French) [Quadratic deviation of projection density estimates]Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, 310, no. 6, 425–430.Google Scholar
[56] Dudley, R.M. (2002) Real Analysis and Probability, revised reprint of the 1989 original, Cambridge Studies in Advanced Mathematics, 74, Cambridge University Press.CrossRefGoogle Scholar
[57] Duistermaat, J.J., Kolk, J.A.C. (1997) Lie Groups, Springer-Verlag.Google Scholar
[58] Duffin, R.J., Schaeffer, A.C. (1952) A class of nonharmonic Fourier series, Transactions of the American Mathematical Society, 72, 341–366.CrossRefGoogle Scholar
[59] Durastanti, C., Geller, D., Marinucci, D. (2010) Nonparametric Regression on Spin fiber Bundles, under revision for the Journal of Multivariate Analysis, arXiv preprint 1009.4345.Google Scholar
[60] Durrer, R. (2008) The Cosmic Microwave Background, Cambridge University Press.CrossRefGoogle Scholar
[61] Efstathiou, G. (2004) Myths and truths concerning estimation of power spectra: the case for a hybrid estimator, Monthly Notices of the Royal Astronomical Society, 349, Issue 2, pp. 603–626.CrossRefGoogle Scholar
[62] Eriksen, H.K., Hansen, F.K., Banday, A.J., Gorski, K.M., Lilje, P.B. (2004) Asymmetries in the CMB anisotropy field, Astrophysical Journal, 605, 14–20.CrossRefGoogle Scholar
[63] Faraut, J. (2006) Analyse sur le Groupes de Lie, Calvage et Mounet.Google Scholar
[64] Faÿ, G., Guilloux, F., Betoule, M., Cardoso, J.-F., Delabrouille, J., Le Jeune, M. (2008) CMB power spectrum estimation using waveletsPhysical Review D, 78:083013.CrossRefGoogle Scholar
[65] Faÿ, G., Guilloux, F. (2008) Consistency of a Needlet Spectral Estimator on the Sphere, arXiv:0807.2162.
[66] Feller, W. (1970) An Introduction to Probability Theory and its Applications, Volume II, 2nd Edition J. Wiley.Google Scholar
[67] Fergusson, J.R., Liguori, M., Shellard, E.P.S. (2009) General CMB and Primordial Bispectrum Estimation I: Mode Expansion, Map-Making and Measures of fNL, arXiv: 0912.5516.
[68] Fergusson, J.R., Liguori, M., Shellard, E.P.S. (2010) The CMB Bispectrum, arXiv: 1006.1642.
[69] Foulds, L.R. (1992) Graph Theory and Applications, Universitext, Springer-Verlag.CrossRefGoogle Scholar
[70] Freeden, W., Schreiner, M. (1998) Orthogonal and nonorthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere. Constructive Approximations, 14, 4, 493–515.CrossRefGoogle Scholar
[71] Gangolli, R. (1967) Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters. Annales de l'Institut H. Poincaré Sect. B, Vol. 3, 121–226.Google Scholar
[72] Geller, D., Hansen, F.K., Marinucci, D., Kerkyacharian, G., Picard, D. (2008), Spin needlets for Cosmic Microwave Background Polarization data analysis, Physical Review D, D78:123533, arXiv:0811.2881.Google Scholar
[73] Geller, D., Lan, X., Marinucci, D. (2009) Spin needlets spectral estimation, Electronic Journal of Statistics, Vol. 3, 1497–1530, arXiv:0907.3369.CrossRefGoogle Scholar
[74] Geller, D., Marinucci, D. (2008) Spin wavelets on the sphere, Journal of Fourier Analysis and its Applications, Vol. 16, Issue 6, pages 840–884, arXiv: 0811.2835.CrossRefGoogle Scholar
[75] Geller, D., Marinucci, D. (2011) Mixed needlets, Journal of Mathematical Analysis and Applications, Vol. 375, n.2, pp. 610–630, arXiv: 1006.3835.CrossRefGoogle Scholar
[76] Geller, D., Mayeli, A. (2009) Continuous wavelets on manifolds, Mathematische Zeitschrift, Vol. 262, pp. 895–927, arXiv: math/0602201.CrossRefGoogle Scholar
[77] Geller, D., Mayeli, A. (2009) Nearly Tight frames and space-frequency analysis on compact manifolds, Mathematische Zeitschrift, Vol. 263 (2009), pp. 235–264, arXiv: 0706.3642.CrossRefGoogle Scholar
[78] Geller, D., Mayeli, A. (2009) Besov spaces and frames on compact manifolds, Indiana University Mathematics Journal, Vol. 58, pp. 2003–2042, arXiv:0709.2452.CrossRefGoogle Scholar
[79] Geller, D., Mayeli, A. (2009) Nearly tight frames of spin wavelets on the sphere, Sampling Theory in Signal and Image Processing, in press, arXiv:0907.3164.Google Scholar
[80] Geller, D., Pesenson, I. (2010), Band-limited localized Parseval frames and Besov spaces on compact homogeneous manifolds, Journal of Geometric Analysis, in press, arXiv:1002.3841.Google Scholar
[81] Genovese, C.R., Perone-Pacifico, M., Verdinelli, I., Wasserman, L. (2009) On the path density of a gradient field. Annals of Statistics, 37(6A), 3236–3271.CrossRefGoogle Scholar
[82] Genovese, C.R., Perone-Pacifico, M., Verdinelli, I., Wasserman, L. (2010) Non-parametric filament estimation, arXiv:1003.5536.Google Scholar
[83] Ghosh, T., Delabrouille, J., Remazeilles, M., Cardoso, J.-F., Souradeep, T. (2010) Foreground maps in WMAP frequency bands, arxiv: 1006.0916.
[84] Goldberg, J.N., Newman, E.T., (1967) Spin-s Spherical Harmonics and ð, Journal of Mathematical Physics, 8(11), 2155–2166.CrossRefGoogle Scholar
[85] Gorski, K.M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., Bartelman, M., (2005) HEALPix – A framework for high resolution discretization, and fast analysis of data distributed on the sphere, Astrophysical Journal, 622, 759–771.CrossRefGoogle Scholar
[86] Gradshteyn, I. S., Ryzhik, I. M. (1980) Table of Integrals, Series, and Products, Academic Press.Google Scholar
[87] Guilloux, F., Fay, G., Cardoso, J.-F. (2008) Practical wavelet design on the sphere, Applied and Computational Harmonic Analysis, 26, no. 2, 143–160.CrossRefGoogle Scholar
[88] Guionnet, A. (2009) Large random matrices: lectures on macroscopic asymptotics. Lecture Notes in Mathematics, Vol. 1957, Springer-Verlag.
[89] Guivarc'h, Y., Keane, M. and Roynette, B. (1977) Marches Aléatoires sul les Groupes de Lie, Lecture Notes in Mathematics, Vol. 624, Springer-Verlag.CrossRefGoogle Scholar
[90] Hamann, Jan, Wong, Yvonne, Y. Y. (2008) The effects of Cosmic Microwave Background (CMB) temperature uncertainties on cosmological parameter estimation, Journal of Cosmology and Astroparticle Physics, Issue 03, pp. 025.CrossRefGoogle Scholar
[91] Hanany, S., Ade, P., Balbi, A., Bock, J., Borrill, J., Boscaleri, A., de Bernardis, P., Ferreira, P. G., Hristov, V. V., Jaffe, A. H., Lange, A. E., Lee, A. T., Mauskopf, P. D., Netterfield, C. B., Oh, S., Pascale, E., Rabii, B., Richards, P. L., Smoot, G. F., Stompor, R., Winant, C. D., Wu, J. H. P. (2000) MAXIMA-1: A measurement of the Cosmic Microwave Background anisotropy on angular scales of 10'-5°, The Astrophysical Journal, Vol. 545, Issue 1, L5–L9.CrossRefGoogle Scholar
[92] Hannan, E.J. (1970) Multiple Time Series. J. Wiley.CrossRefGoogle Scholar
[93] Hansen, F.K., Cabella, P., Marinucci, D., Vittorio, N. (2004) Asymmetries in the local curvature of the WMAP data, Astrophysical Journal Letters, L67–L70.CrossRefGoogle Scholar
[94] Hardle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998) Wavelets, Approximation, and Statistical Applications, Springer Lecture Notes in Statistics, 129.CrossRefGoogle Scholar
[95] Hausman, J.A. (1978) Specification tests in econometrics, Econometrica, 6, 1251–1271.CrossRefGoogle Scholar
[96] Havin, V. and Joricke, B. (1994) The Uncertainty Principle in Harmonic Analysis, Springer-Verlag.CrossRefGoogle Scholar
[97] Hernandez, E., Weiss, G. (1996) A First Course on Wavelets, Studies in Advanced Mathematics, CRC Press.CrossRefGoogle Scholar
[98] Hikage, C., Matsubara, T., Coles, P., Liguori, M., Hansen, F.K., Matarrese, S. (2008) Primordial non-Gaussianity from Minkowski functionals of the WMAP temperature anisotropies, Monthly Notices Royal Astronomical Society, 389:1439–1446.CrossRefGoogle Scholar
[99] Hinshaw, G., Weiland, J. L., Hill, R. S., Odegard, N., Larson, D., Bennett, C. L., Dunkley, J., Gold, B., Greason, M. R., Jarosik, N., Komatsu, E., Nolta, M. R., Page, L., Spergel, D. N., Wollack, E., Halpern, M., Kogut, A., Limon, M., Meyer, S. S., Tucker, G. S., Wright, E. L. (2009) Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: data processing, sky maps, and basic results, Astrophysical Journal Supplement Series, 180:225–245.CrossRefGoogle Scholar
[100] Hivon, E., Gorski, K.M., Netterfield, C.B., Crill, B.P., Prunet, S., Hansen, F.K. (2002) MASTER of the Cosmic Microwave Background anisotropy power spectrum: a fast method for statistical analysis of large and complex Cosmic Microwave Background data sets, Astrophysical Journal, Volume 567, Issue 1, pp. 2–17.CrossRefGoogle Scholar
[101] Holschneider, M., Iglewska-Nowak., I. (2007) Poisson wavelets on the sphereJournal of Fourier Analysis and its Applications, 13, 405–420.CrossRefGoogle Scholar
[102] Hu, W. (2001) The angular trispectrum of the Cosmic Microwave Background, Physical Review D, Volume 64, Issue 8, id.083005.CrossRefGoogle Scholar
[103] Hu, Y., Nualart, D. (2005) Renormalized self-intersection local time for fractional Brownian motion, The Annals of Probability, 33(3), 948–983.CrossRefGoogle Scholar
[104] Ivanov, A.V., Leonenko, N.N. (1989), Statistical Analysis of Random Fields, Kluwer.CrossRefGoogle Scholar
[105] Jansson, S. (1997) Gaussian Hilbert Spaces, Cambridge University Press.CrossRefGoogle Scholar
[106] Johnson, N.L., Kotz, S.J. (1972) Distributions in Statistics: Continuous Multivariate Distributions, J. Wiley.Google Scholar
[107] Kagan, A.M., Linnik, Y.V., Rao, C.R. (1973) Characterization Problems in Mathematical Statistics, J. Wiley.Google Scholar
[108] Kamionkowski, M., Kosowski, A., Stebbins, A. (1997) Statistics of Cosmic Microwave Background Polarization, Physical Review D, 55, 7368–7388.CrossRefGoogle Scholar
[109] Keihänen, E., Kurki-Suonio, H., Poutanen, T. (2005) MADAM- a map-making method for CMB experiments, Monthly Notices of the Royal Astronomical Society, Vol. 360, Issue 1, pp. 390–400.CrossRefGoogle Scholar
[110] Kerkyacharian, G., Petrushev, P., Picard, D., Willer, T. (2007) Needlet algorithms for estimation in inverse problems, Electronic Journal of Statistics, 1, 30–76.CrossRefGoogle Scholar
[111] Kerkyacharian, G., Nickl, R., Picard, D. (2010) Concentration inequalities and confidence bands for needlet density estimators on compact homogeneous manifolds, Probability Theory and Related Fields, in press, arXiv:1102.2450.Google Scholar
[112] Kerkyacharian, G., Pham Ngoc, T.M., Picard, D. (2009) Localized spherical deconvolution, Annals of Statistics, in press, arXiv: 0908.1952.Google Scholar
[113] Kim, P.T., Koo, J.-Y. (2002) Optimal spherical deconvolution, Journal of Multivariate Analysis, 80, 21–42.CrossRefGoogle Scholar
[114] Kim, P.T., Koo, J.-Y., Luo, Z.-M. (2009) Weyl eigenvalue asymptotics and sharp adaptation on vector bundles, Journal of Multivariate Analysis, 100, 1962–1978.CrossRefGoogle Scholar
[115] Kitching, T. et al. (2010) Gravitational lensing accuracy testing 2010 (GREAT10) challenge handbook, preprint, arXiv: 1009.0779.
[116] Kolb, E., Turner, M. (1994), The Early Universe, Cambridge University Press.Google Scholar
[117] Komatsu, E., Spergel, D.N. (2001) Acoustic signatures in the primary Microwave Background bispectrum, Physycal Review D, 63, 063002.Google Scholar
[118] Komatsu, E.Wandelt, B.D., Spergel, D.N., Banday, A.J., Gorski, K.M. (2002), Measurement of the Cosmic Microwave Backgroun bispectrum on the COBE DMR sky maps, Astrophysical Journal, 566, 19–29.CrossRefGoogle Scholar
[119] Komatsu, E., Yadav, A., Wandelt, B. (2007) Fast estimator of primordial non-Gaussianity from temperature and polarization anisotropies in the Cosmic Microwave Background, Astrophysical Journal, 664:680–686.Google Scholar
[120] Komatsu, E., Yadav, A., Wandelt, B., Liguori, M., Hansen, F.K., Matarrese, S. (2008) Fast estimator of primordial non-Gaussianity from temperature and polarization anisotropies in the Cosmic Microwave Background II: partial sky coverage and inhomogeneous noise, Astrophysical Journal 678:578.Google Scholar
[121] Komatsu, et al. (2009) Five-Year Wilkinson Microwave Anisotropy Probe observations: cosmological interpretation, Astrophysical Journal Supplement Series, 180, 2, 330–376.CrossRefGoogle Scholar
[122] Koornwinder, T.H. (2008), Representations of SU(2) and Jacobi polynomials, preprint, available online http://staff.science.uva.nl/ thk/edu/orthopoly.pdf.
[123] Lan, X., Marinucci, D. (2008) The needlets bispectrum, Electronic Journal of Statistics, 2, 332–367.CrossRefGoogle Scholar
[124] Lan, X., Marinucci, D. (2009) On the dependence structure of wavelet coefficients for spherical random fields, Stochastic Processes and their Applications, 119, 3749–3766.CrossRefGoogle Scholar
[125] Leonenko, N. (1999) Limit Theorems for Random Fields with Singular Spectrum, Kluwer.CrossRefGoogle Scholar
[126] Leonenko, N., Sakhno, L. (2009) On spectral representations of tensor random fields on the sphere, arXiv:0912.3389.
[127] Liboff, R.L. (1999) Introductory Quantum Mechanics, Addison-Wesley.Google Scholar
[128] Magnus, J.R., Neudecker, H. (1988) Matrix Differential Calculus with Applications to Statistics and Econometrics, J. Wiley.Google Scholar
[129] Malyarenko, A. (2009) Invariant random fields in vector bundles and application to cosmology, preprint arXiv: 0907.4620.
[130] Marinucci, D. (2004) Testing for non-Gaussianity on Cosmic Microwave Background radiation: a review, Statistical Science, 19, 294–307.CrossRefGoogle Scholar
[131] Marinucci, D. (2006) High-resolution asymptotics for the angular bispectrum of spherical random fields, Annals of Statistics, 34, 1–41.CrossRefGoogle Scholar
[132] Marinucci, D. (2008) A central limit theorem and higher order results for the angular bispectrum, Probability Theory and Related Fields, 141(3–4), 389–409.CrossRefGoogle Scholar
[133] Marinucci, D., Piccioni, M. (2004) The empirical process on Gaussian spherical harmonics, Annals of Statistics, 32, 1261–1288.Google Scholar
[134] Marinucci, D., Peccati, G. (2008) High-frequency asymptotics for subordinated stationary fields on an Abelian compact group, Stochastic Processes and their Applications, 118 (4), 585–613.CrossRefGoogle Scholar
[135] Marinucci, D., Peccati, G. (2010) Group representations and high-resolution Central Limit Theorems for subordinated spherical random fields, Bernoulli, 16, 798–824.CrossRefGoogle Scholar
[136] Marinucci, D.; Peccati, G. (2010) Representations of SO(3) and angular polyspectra, Journal of Multivariate Analysis, 101, 77–100.CrossRefGoogle Scholar
[137] Marinucci, D.; Peccati, G. (2010) Ergodicity and Gaussianity for spherical random fields, Journal of Mathematical Physics, 51, n. 4, 043301, 23 pp.CrossRefGoogle Scholar
[138] Marinucci, D., Wigman, I. (2010) On the excursion sets of spherical Gaussian eigenfunctions, preprint, arXiv: 1009.4367.
[139] Marinucci, D., Pietrobon, D., Balbi, A., Baldi, P., Cabella, P., Kerkyacharian, G., Natoli, P., Picard, D., Vittorio, N. (2008) Spherical needlets for CMB data analysis, Monthly Notices of the Royal Astronomical Society, Vol. 383, 539–545, arXiv: 0707.0844.CrossRefGoogle Scholar
[140] Mayeli, A. (2010) Asymptotic uncorrelation for Mexican needlets, Journal of Mathematical Analysis and Applications, Vol. 363, Issue 1, pp. 336–344, arXiv: 0806.3009.CrossRefGoogle Scholar
[141] McEwen, J.D., Vielva, P., Wiaux, Y., Barreiro, R.B., Cayon, L., Hobson, M.P., Lasenby, A.N., Martinez-Gonzalez, E., Sanz, J. (2007) Cosmological applications of a wavelet analysis on the sphere, Journal of Fourier Analysis and its Applications, 13, 495–510.CrossRefGoogle Scholar
[142] Miller, W.Topics in Harmonic Analysis with Applications to Radar and Sonar, preprint, available online http://www.ima.umn.edu/ miller/radarla.pdf.
[143] Narcowich, F.J., Petrushev, P., Ward, J.D. (2006) Localized tight frames on spheres, SIAM Journal of Mathematical Analysis, 38, 2, 574–594.CrossRefGoogle Scholar
[144] Narcowich, F.J., Petrushev, P., Ward, J.D. (2006) Decomposition of Besov and Triebel-Lizorkin spaces on the sphere, Journal of Functional Analysis, 238, 2, 530–564.CrossRefGoogle Scholar
[145] Natoli, P., Degasperis, G., Marinucci, D., Vittorio, N. (2002) Non-iterative methods to estimate the in-flight noise properties of CMB detectors, Astronomy and Astrophysics, 383, pp. 1100–1112.CrossRefGoogle Scholar
[146] Newman, E. T., Penrose, R. (1966) Note on the Bondi-Metzner-Sachs group, Journal of Mathematical Physics, 7, 863–870.CrossRefGoogle Scholar
[147] Nourdin, I., Peccati, G. and Reinert, G. (2010) Invariance principles for homogeneous sums: universality of the Gaussian Wiener chaos, Annals of Probability, 38(5), 1947–1985.CrossRefGoogle Scholar
[148] Nourdin, I., Peccati, G. (2009). Stein's method on Wiener chaos, Probability Theory and Related Fields, 145(1), 75–118.CrossRefGoogle Scholar
[149] Nourdin, I., Peccati, G. (2009) Stein's method meets Malliavin calculus: a short survey with new estimates. In the volume: Recent Advances in Stochastic Dynamics and Stochastic Analysis, World Scientific.Google Scholar
[150] Nourdin, I., Peccati, G., Réveillac, A. (2008). Multivariate normal approximation using Stein's method and Malliavin calculus, Annales de l'Institut H. Poincaré (B), 46(1), 45–58.CrossRefGoogle Scholar
[151] Nualart, D. (2006) The Malliavin Calculus and Related Topics. Second edition, Springer-Verlag.Google Scholar
[152] Nualart, D., Peccati, G. (2005) Central limit theorems for sequences of multiple stochastic integrals, Annals of Probability, 33, 177–193.CrossRefGoogle Scholar
[153] Patanchon, G., Delabrouille, J., Cardoso, J.-F., Vielva, P. (2005) CMB and foreground in WMAP first-year data, Monthly Notices of the Royal Astronomical Society, 364, pp. 1185–1194.CrossRefGoogle Scholar
[154] Peacock, J.A. (1999) Cosmological Physics, Cambridge University Press.Google Scholar
[155] Peccati, G. (2001) On the convergence of multiple random integrals, Studia Sc. Math. Hungarica, 37, 429–470.Google Scholar
[156] Peccati, G. (2007) Gaussian approximations of multiple integrals, Electronic Communications in Probability 12, 350–364.CrossRefGoogle Scholar
[157] Peccati, G., Pycke, J.-R. (2010) Decompositions of stochastic processes based on irreducible group representations, Theory of Probability and Applications, 54(2), 217–245.CrossRefGoogle Scholar
[158] Peccati, G., Taqqu, M.S. (2008) Stable convergence of multiple Wiener-Itô integrals, Journal of Theoretical Probability, 21(3), 527–570.CrossRefGoogle Scholar
[159] Peccati, G., M.S., Taqqu (2010) Wiener Chaos: Moments, Cumulants and Diagrams. A Survey with Computer Implementation, Springer-Verlag.Google Scholar
[160] Peccati, G., Tudor, C.A. (2005) Gaussian limits for vector-valued multiple stochastic integrals. In: Séminaire de Probabilités XXXVIII, 247–262, Springer Verlag.CrossRefGoogle Scholar
[161] Peebles, J. (1993), Principles of Cosmology, Princeton University Press.Google Scholar
[162] Pietrobon, D., Balbi, A., Marinucci, D. (2006) Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3-Year and the NRAO VLA Sky Survey Data: new results and constraints on dark energy, Physical Review D, 74, 043524.CrossRefGoogle Scholar
[163] Pietrobon, D.Amblard, A., Balbi, A., Cabella, P., Cooray, A., Marinucci, D. (2008) Needlet detection of features in the WMAP CMB sky and the impact on anisotropies and hemispherical asymmetries, Physical Review D, Vol. 78, Issue 10, id. 103504.CrossRefGoogle Scholar
[164] Pietrobon, D.Amblard, A., Balbi, A., Cabella, P., Cooray, A., Vittorio, N. (2009) Constraints on primordial non-Gaussianity from a needlet analysis of the WMAP-5 data, Monthly Notices of the Royal Astronomical Society, Volume 396, Issue 3, pp. 1682–1688.CrossRefGoogle Scholar
[165] Pietrobon, D.Amblard, A., Balbi, A., Cabella, P., Cooray, A., Vittorio, N. (2009) Needlet bispectrum asymmetries in the WMAP 5-year Data, Monthly Notices of the Royal Astronomical Society, L367, arXiv: 0905.3702.Google Scholar
[166] Pietrobon, D., Balbi, A., Cabella, P.Gorski, K. M. (2010) Needatool: A Needlet Analysis Tool for Cosmological Data Processing, Astrophysical Journal, 723, 1.CrossRefGoogle Scholar
[167] Polenta, G., Marinucci, D., Balbi, A., De Bernardis, P., Hivon, E., Masi, S., Natoli, P., Vittorio, N. (2005) Unbiased estimation of angular power spectra, Journal of Cosmology and Astroparticle Physics, Issue 11, n.1, pp.1–17.CrossRefGoogle Scholar
[168] Pycke, J.-R. (2007) A decomposition for invariant tests of uniformity on the sphere, Proceedings of the American Mathematical Society, 135, 2983–2993.CrossRefGoogle Scholar
[169] Revuz, D., Yor, M. (1999) Continuous Martingales and Brownian motion, Third edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293, Springer-Verlag.CrossRefGoogle Scholar
[170] Robinson, P.M. (1995) Log-periodogram regression of time series with long range dependence, Annals of Statistics, 23, 1048–1072.CrossRefGoogle Scholar
[171] Robinson, P.M. (1995) Gaussian semiparametric estimation of long range dependence, Annals of Statistics, 23, 1630–1661.CrossRefGoogle Scholar
[172] Rosca, D. (2007) Wavelet bases on the sphere obtained by radial projection, Journal of Fourier Analysis and its Applications, 13, 421–434.CrossRefGoogle Scholar
[173] Rudin, W. (1962) Fourier Analysis on Groups, Wiley Classics Library, Wiley.Google Scholar
[174] Rudin, W. (1975) Real and Complex Analysis, McGraw-Hill.Google Scholar
[175] Rudjord, O., Hansen, F.K.Lan, X., Liguori, M., Marinucci, D., Matarrese, S. (2009) An estimate of the primordial non-Gaussianity parameter fNL using the needlet bispectrum from WMAP, The Astrophysical Journal, 701:369–376, arXiv:0901.3154.CrossRefGoogle Scholar
[176] Rudjord, O., Hansen, F.K.Lan, X., Liguori, M., Marinucci, D., Matarrese, S. (2010), Directional variations of the non-Gaussianity parameter fNL, Astrophysical Journal, Vol. 708, 2, 1321–1325.CrossRefGoogle Scholar
[177] Schreiber, M. (1969) Fermeture en probabilité de certains sous-espaces d'un espace L2, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 14, 36–48.CrossRefGoogle Scholar
[178] Schwartzman, A., Mascarenhas, W.F. and Taylor, J.E.T. (2008) Inference for eigenvalues and eigenvectors of Gaussian symmetric matrices, Annals of Statistics, 36, no. 6, 2886–2919.CrossRefGoogle Scholar
[179] Scodeller, S., Rudjord, O., Hansen, F.K., Marinucci, D., Geller, D., Mayeli, A. (2010) Introducing Mexican needlets for CMB analysis: Issues for practical applications and comparison with standard needlets, Astrophysical Journal, in press, arXiv: 1004.5576.Google Scholar
[180] Simon, B. (1996) Representations of Finite and Compact Groups, Graduate Studies in Mathematics, 10, American Mathematical Society.Google Scholar
[181] Seljak, U., Zaldarriaga, M. (1996) Line-of-Sight integration approach to Cosmic Microwave Background anisotropies, Astrophysical Journal, Vol.469, p.437.CrossRefGoogle Scholar
[182] Senatore, L., Smith, K.M., Zaldarriaga, M. (2010) Non-Gaussianities in single field inflation and their optimal limits from the WMAP 5-year data, Journal of Cosmology and Astroparticle Physics, 1001:028.CrossRefGoogle Scholar
[183] Serre, J.P. (1977) Linear Representation of Finite Groups, Springer-Verlag.CrossRefGoogle Scholar
[184] Regan, D.M., Shellard, E.P.S. (2009), Cosmic string power spectrum, bispectrum and trispectrum, arXiv:0911.2491.
[185] Shigekawa, I. (1986) De Rham–Hodge–Kodaira's decomposition on an abstract Wiener space, Journal of Mathematics of the Kyoto University, 26, 191–202.CrossRefGoogle Scholar
[186] Shyraev, A.N. (1984) Probability, Springer-Verlag.CrossRefGoogle Scholar
[187] Smoot, G. F., Bennett, C. L., Kogut, A., Wright, E. L., Aymon, J., Boggess, N. W., Cheng, E. S., de Amici, G., Gulkis, S., Hauser, M. G., Hinshaw, G., Jackson, P. D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, K., Lubin, P., Mather, J., Meyer, S. S., Moseley, S. H., Murdock, T., Rokke, L., Silverberg, R. F., Tenorio, L., Weiss, R., Wilkinson, D. T. (1992) Structure in the COBE differential microwave radiometer first-year maps, Astrophysical Journal, Part 2 - Letters, Vol. 396, no. 1, pp. L1–L5.CrossRefGoogle Scholar
[188] Spergel, D.N. et al. (2003) First-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters, Astrophysical Journal Supplement Series, 148, 1, pp. 175–194.CrossRefGoogle Scholar
[189] Spergel, D.N. et al. (2007) Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology, Astrophysical Journal Supplement Series, 170, 2, 377–408.CrossRefGoogle Scholar
[190] Stein, E.M., Weiss, G. (1971) Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press.Google Scholar
[191] Sternberg, S.Group Theory and Physics, Cambridge University Press.
[192] Surgailis, D. (2003) CLTs for polynomials of linear sequences: Diagram formula with illustrations. In Theory and Applications of Long Range Dependence, 111–128, Birkhäuser.Google Scholar
[193] Szego, G. (1975) Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Volume 23 Reprinted version of the 1939 original.Google Scholar
[194] Varadarajan, V.S. (1999) An Introduction to Harmonic Analysis on Semisimple Lie Groups, Corrected reprint of the 1989 original, Cambridge University Press.Google Scholar
[195] Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K. (1988). Quantum Theory of Angular Momentum, World Scientific Press.CrossRefGoogle Scholar
[196] Vielva, P., Martínez-González, E., Gallegos, J. E., Toffolatti, L., Sanz, J. L. (2003) Point source detection using the spherical Mexican hat wavelet on simulated all-sky Planck maps, Monthly Notice of the Royal Astronomical Society, Vol. 344, Issue 1, 89–104.CrossRefGoogle Scholar
[197] Vilenkin, N.Ja. and Klimyk, A.U. (1991) Representation of Lie Groups and Special Functions, Kluwer.CrossRefGoogle Scholar
[198] Yadav, A.P.S., Komatsu, E., Wandelt, B.D. (2007) Fast estimator of primordial non-Gaussianity from temperature and polarization anisotropies in the Cosmic Microwave Background, Astrophysical Journal, 664:680–686.CrossRefGoogle Scholar
[199] Yadav, A.P.S. and Wandelt, B.D. (2008) Evidence of primordial non-Gaussianity (fNL) in the Wilkinson Microwave Anisotropy Probe 3-Year Data at 2.8 sigma, Physical Review Letters, Vol. 100, Issue 18, id. 181301.CrossRefGoogle Scholar
[200] Yadav, A.P.S. and Wandelt, B.D. (2010) Primordial non-Gaussianity in the Cosmic Microwave Background, Advances in Astronomy, in press, arXiv: 1006.0275.
[201] Yadrenko, M.I. (1983) Spectral Theory of Random Fields, Translated from the Russian, Translation Series in Mathematics and Engineering, Optimization Software, Inc., Publications Division.Google Scholar
[202] Wiaux, Y., McEwen, J.D., Vielva, P., (2007) Complex data processing: fast wavelet analysis on the sphere, Journal of Fourier Analysis and its Applications, 13, 477–494.CrossRefGoogle Scholar
[203] Wiaux, Y., Jacques, L., Vandergheynst, P. (2005) Correspondence principle between spherical and Euclidean wavelets, The Astrophysical Journal, Vol. 632, Issue 1, pp. 15–28.CrossRefGoogle Scholar
[204] Wiaux, Y., Jacques, L., Vandergheynst, P. (2007) Fast spin +-2 spherical harmonics transforms and application in cosmology, Journal of Computational Physics, 226:2359–2371.CrossRefGoogle Scholar
[205] Wiener, N. (1938), The homogeneous chaos, American Journal of Mathematics, 60, 879–936.CrossRefGoogle Scholar
[206] Wigman, I. (2009) On the distribution of the nodal sets of random spherical harmonics, Journal of Mathematical Physics, 50, no. 1, 013521, 44 pp.CrossRefGoogle Scholar
[207] Wigman, I. (2010) Fluctuations of the nodal length of random spherical harmonics, Communications in Mathematical Physics, Vol. 298, n. 3, pp. 787–831, arXiv: 0907.1648.CrossRefGoogle Scholar
[208] Zaldarriaga, M., Seljak, U. (2000) CMBFAST for spatially closed Universes, Astrophysical Journal Supplements Series, 129, 431–434.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Domenico Marinucci, Università degli Studi di Roma 'Tor Vergata', Giovanni Peccati, Université du Luxembourg
  • Book: Random Fields on the Sphere
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511751677.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Domenico Marinucci, Università degli Studi di Roma 'Tor Vergata', Giovanni Peccati, Université du Luxembourg
  • Book: Random Fields on the Sphere
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511751677.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Domenico Marinucci, Università degli Studi di Roma 'Tor Vergata', Giovanni Peccati, Université du Luxembourg
  • Book: Random Fields on the Sphere
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511751677.015
Available formats
×