Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Radiative Transfer Theory for the Isotropic Scattering Model
- 3 Scattering of Scalar Waves in Random Media
- 4 Radiative Transfer Theory for Scalar Wavelet Propagation through Random Media
- 5 Finite Difference Simulation of Scalar Wavelet Propagation through Random Media
- 6 Radiative Transfer Theory for Vector Wavelet Propagation through Random Elastic Media
- 7 Hybrid Monte Carlo Simulation Using the Spectrum Division
- 8 Epilogue
- Book part
- Index
4 - Radiative Transfer Theory for Scalar Wavelet Propagation through Random Media
Published online by Cambridge University Press: 31 October 2024
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Radiative Transfer Theory for the Isotropic Scattering Model
- 3 Scattering of Scalar Waves in Random Media
- 4 Radiative Transfer Theory for Scalar Wavelet Propagation through Random Media
- 5 Finite Difference Simulation of Scalar Wavelet Propagation through Random Media
- 6 Radiative Transfer Theory for Vector Wavelet Propagation through Random Elastic Media
- 7 Hybrid Monte Carlo Simulation Using the Spectrum Division
- 8 Epilogue
- Book part
- Index
Summary
Chapter 4 introduces phenomenologically the radiative transfer equation of the directional distribution of the energy density for a given anisotropic scattering coefficient of scalar waves in random media. We solve the radiative transfer equation analytically by using the Legendre expansion for isotropic radiation from a point source. By probabilistically interpreting the Born scattering coefficient and the Eikonal angular spectrum function and the traveling distance fluctuation for scalar waves, we construct the corresponding pseudo-random number generators, where the rejection sampling method is introduced. Then, we synthesize the space–time distribution of the energy density for isotropic radiation from a point source using the MC simulation and compare it with the analytical solution of the radiative transfer equation.
Keywords
- Type
- Chapter
- Information
- Seismic Wave Propagation Through Random MediaMonte Carlo Simulation Based on the Radiative Transfer Theory, pp. 58 - 84Publisher: Cambridge University PressPrint publication year: 2024