Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T18:11:27.407Z Has data issue: false hasContentIssue false

8 - Bootstrap Procedures

Published online by Cambridge University Press:  15 December 2009

Adonis Yatchew
Affiliation:
University of Toronto
Get access

Summary

Background

Introduction

Bootstrap procedures, widely attributed to Efron (1979), are simulation-based techniques that provide estimates of variability, confidence intervals, and critical values for tests. The fundamental idea is to create replications by treating the existing data set (say of size n) as a population from which samples (of size n) are obtained. In the bootstrap world, sampling from the original data becomes the data-generating mechanism (DGM). Variation in estimates occurs because, upon selection, each data point is replaced in the population.

In many circumstances, bootstrap procedures are simpler to implement than their asymptotic counterparts. In addition, they are often more accurate. By drawing correctly sized samples from the original data the simulated distribution inherits higher-order moment properties of the true DGM. The conventional asymptotic normal approximation ignores such information.

It is not surprising that major advances in bootstrap techniques and nonparametric procedures have occurred more or less contemporaneously. Both have been driven by the precipitous drop in computing costs. The emergence of automated data collection – which has produced very large data sets – has also contributed indirectly to the development of nonparametric techniques. Furthermore, although the bootstrap requires resampling many times, calculations need not be done serially but can be performed contemporaneously, making the bootstrap particularly suitable for parallel processing.

Bootstrap Procedures

We begin with a rudimentary introduction to the bootstrap. (References for further reading in this voluminous literature are provided at the end of this section.) This is followed by a delineation of several bootstrap techniques in nonparametric and semiparametric settings. Throughout this chapter, the superscript B will signify a bootstrap sample, estimate, confidence interval, or test statistic.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bootstrap Procedures
  • Adonis Yatchew, University of Toronto
  • Book: Semiparametric Regression for the Applied Econometrician
  • Online publication: 15 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511615887.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bootstrap Procedures
  • Adonis Yatchew, University of Toronto
  • Book: Semiparametric Regression for the Applied Econometrician
  • Online publication: 15 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511615887.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bootstrap Procedures
  • Adonis Yatchew, University of Toronto
  • Book: Semiparametric Regression for the Applied Econometrician
  • Online publication: 15 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511615887.009
Available formats
×