Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T14:18:20.206Z Has data issue: false hasContentIssue false

5 - Chromosomal Differentiation in the Common Shrew and Related Species

Published online by Cambridge University Press:  01 March 2019

Jeremy B. Searle
Affiliation:
Cornell University, New York
P. David Polly
Affiliation:
Indiana University
Jan Zima
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, A.-C., Alström-Rapaport, C., and Fredga, K. (2005). Lack of mitochondrial DNA divergence between chromosome races of the common shrew, Sorex araneus, in Sweden. Implications for interpreting chromosomal evolution and colonization history. Molecular Ecology, 14, 2703–16.Google Scholar
Andersson, A.-C., Narain, Y, Tegelström, H., and Fredga, K. (2004). No apparent reduction of gene flow in a hybrid zone between the West and North European karyotypic groups of the common shrew. Molecular Ecology, 13, 1205–15.CrossRefGoogle Scholar
Aniskin, V. M. (1987). Karyological characteristics and phylogenetic relations of some common shrew species of the araneus-arcticus complex in the genus Sorex (Insectivora, Soricidae). Zoologicheskii Zhurnal, 65, 119–23. (In Russian, with English summary).Google Scholar
Aniskin, V. M. and Lukianova, I. V. (1989). A new chromosome race and the analysis of hybridization zone of two karyomorphs of Sorex araneus (Insectivora, Soricidae). Doklady Akademii Nauk SSSR, 309, 1260–2. (In Russian, with English summary).Google Scholar
Aniskin, V. M. and Volobouev, V. T. (1980). Chromosomal polymorphism in Siberian populations of the shrews of araneus-arcticus complex (Insectivora, Soricidae). I. Chaldeevo and Bericul’s populations of the common shrew Sorex araneus L. Genetika (Moscow), 16, 1044–51. (In Russian, with English summary).Google Scholar
Aniskin, V. M. and Volobouev, V. T. (1981). Chromosomal polymorphism in Siberian populations of the shrews of araneus-arcticus complex (Insectivora, Soricidae). III. Three chromosome forms of common shrew Sorex araneus L. Genetika (Moscow), 17, 1784–91. (In Russian, with English summary).Google Scholar
Banaszek, A. (1994). The structure of the contact zone between the chromosomal races Drużno and Łegucki Młyn in the common shrew (Sorex araneus) in north-east Poland: preliminary results. Folia Zoologica 43 (Suppl. 1), 1119.Google Scholar
Banaszek, A., Ratkiewicz, M., Fedyk, S., Szałaj, K. A., and Chętnicki, W. (1996). The chromosomes and isoenzymes in marginal populations of the common shrew (Sorex araneus) in the Vistula delta. Zeitschrift für Säugetierkunde, 61, 6572.Google Scholar
Banaszek, A., Fedyk, S., Szałaj, K. A., and Chętnicki, W. (2000). A comparison of spermatogenesis in homozygotes, simple Robertsonian heterozygotes and complex heterozygotes of the common shrew (Sorex araneus). Heredity, 84, 570–7.Google Scholar
Bannikova, A. A. and Lebedev, V. S. (2010). Genetic heterogeneity of the Caucasian shrew Sorex satunini (Mammalia, Lipotyphla, Soricidae) inferred from the mtDNA markers as a potential consequence of ancient hybridization. Molecular Biology, 44, 658–62.CrossRefGoogle Scholar
Belcheva, R. G. and Kolevska, N. G. (1986). Cytogenetic studies of the common shrew Sorex araneus L. (Soricidae, Insectivora) from the Vitosha Mountain. Comptes rendus de l’Académie bulgare des Sciences, 39, 115–18.Google Scholar
Belcheva, R. and Kolevska, N. (1992). Cytogenetical study on some Soricidae (Insectivora, Mammalia). Annuaire de l’Université de Sofia “Kliment Ohridski”, Faculté de Biologie, Livre 1 – Zoologie, 80, 144–55.Google Scholar
Biltueva, L. and Vorobieva, N. (2012). Chromosome evolution in Eulipotyphla. Cytogenetic and Genome Research, 137, 154–64.Google Scholar
Biltueva, L., Vorobieva, N., Perelman, P., et al. (2011). Karyotype evolution of Eulipotyphla (Insectivora): the genome homology of seven Sorex species revealed by comparative chromosome painting and banding data. Cytogenetic and Genome Research, 135, 5164.Google Scholar
Borisov, Y., Cherepanova, E., and Orlov, V. (2010). A wide hybrid zone of chromosome races of the common shrew, Sorex araneus Linnaeus, 1758 (Mammalia), between the Dnieper and Berezina Rivers (Belarus). Comparative Cytogenetics, 4, 195201.Google Scholar
Borisov, Y.M., Gaiduchenko, H.S., Cherepanova, E.V., et al. (2016). The clinal variation of metacentric frequency in the populations of the common shrew, Sorex araneus L., in the Dnieper and Pripyat interfluve. Mammal Research, 61, 269–77.CrossRefGoogle Scholar
Borisov, Y., Kovaleva, A., Irkhin, S., and Orlov, V. (2009). Zones of contact and joint occurrence of three chromosomal races of the common shrew Sorex araneus L. (Mammalia) in the southern Valdai Hills. Doklady Biological Sciences, 428, 437–9.Google Scholar
Borisov, Y. M., Kryshchuk, I. A., Cherepanova, E. V., Gajduchenko, H. S., and Orlov, V. N. (2014). Chromosomal polymorphism of populations of the common shrew, Sorex araneus L. in Belarus. Acta Theriologica, 59, 243–9.Google Scholar
Borisov, Y. M., Kryshchuk, I. A., Gaiduchenko, H. S., et al. (2017). Karyotypic differentiation of populations of the common shrew Sorex araneus L. (Mammalia) in Belarus. Comparative Cytogenetics, 11, 359–73.Google Scholar
Borisov, Y. M. and Orlov, V. N. (2012). A comparison of chromosome G-banding pattern in two Sorex species, S. satunini and S. araneus (Mammalia, Insectivora). Comparative Cytogenetics, 6, 267–71.CrossRefGoogle ScholarPubMed
Brünner, H. (1991). The karyology of the common shrew, Sorex araneus Linné, 1758 (Insectivora, Soricidae) in southwestern Germany. Zeitschrift für zoologische Systematik und Evolutions-forschung, 29, 7381.Google Scholar
Brünner, H., Fumagalli, L., and Hausser, J. (1994). A comparison of two contact zones between chromosomal races of Sorex araneus in the western Alps: karyology and genetics. Folia Zoologica, 43 (Suppl. 1), 113.Google Scholar
Brünner, H. and Hausser, J. (1996). Genetic and karyotypic structure of a hybrid zone between the chromosomal races Cordon and Valais in the common shrew, Sorex araneus. Hereditas, 125, 147–58.Google Scholar
Brünner, H., Lugon-Moulin, N., Balloux, F., Fumagalli, L., and Hausser, J. (2002a). A taxonomical re-evaluation of the chromosome race Valais of the common shrew, Sorex araneus (Insectivora: Soricidae), from multiple, independent characters. Acta Theriologica, 47, 245–75.CrossRefGoogle Scholar
Brünner, H., Lugon-Moulin, N., and Hausser, J. (2002b). Alps, genes, and chromosomes: their role in the formation of species in the Sorex araneus group (Mammalia, Insectivora), as inferred from two hybrid zones. Cytogenetic and Genome Research, 96, 8596.CrossRefGoogle ScholarPubMed
Brünner, H., Turni, H., Kapischke, H.-J., Stubbe, M., and Vogel, P. (2002c). New Sorex araneus karyotypes from Germany and the postglacial recolonization of central Europe. Acta Theriologica, 47, 277–93.Google Scholar
Bulatova, N. S., Bystrakova, N. V., Shchipanov, N. A., and Orlov, V. N. (1999). Karyological differentiation of the common shrew Sorex araneus L. (Insectivora, Mammalia) from the Upper and Middle Volga river basins. Doklady Biological Sciences, 366, 266–9.Google Scholar
Bulatova, N., Jones, R. M., White, T. A., et al. (2011). Natural hybridization between extremely divergent chromosomal races of the common shrew (Sorex araneus, Soricidae, Soricomorpha): hybrid zone in European Russia. Journal of Evolutionary Biology, 24, 573–86.Google Scholar
Bulatova, N., Nadjafova, R., and Krapivko, T. (2002). Intraspecific phylogenetic relationships in Sorex araneus L.: the southern Baltic subgroup of chromosome races. Russian Journal of Genetics, 38, 64–9.Google Scholar
Bulatova, N., Searle, J. B., Bystrakova, N., et al. (2000). The diversity of chromosome races in Sorex araneus from European Russia. Acta Theriologica, 45 (Suppl. 1), 3346.CrossRefGoogle Scholar
Bulatova, N., Searle, J. B., Nadjafova, R. S., Pavlova, S. V., and Bystrakova, N. V. (2009). Field protocols for the genomic era. Comparative Cytogenetics, 3, 5762.Google Scholar
Bulatova, N., Shchipanov, N., and Searle, J. B. (2007). The Seliger-Moscow hybrid zone between chromosome races of common shrews – an initial description. Russian Journal of Theriology, 6, 111–16.Google Scholar
Bystrakova, N., Bulatova, N., Kovalskaya, Y., et al. (2003). Geographical limits of chromosome races of the common shrew Sorex araneus L. in the Middle Volga (East European Russia). Mammalia, 67, 187–91.Google Scholar
Bystrakova, N., Shchipanov, N., Bulatova, N., et al. (2007). New data on the geographic distribution of chromosome races of Sorex araneus (Mammalia: Soricidae) in European Russia. Russian Journal of Theriology, 6, 105–9.Google Scholar
Catzeflis, F., Graf, J.-D., Hausser, J., and Vogel, P. (1982). Comparison biochimique des musaraignes du genre Sorex en Europe occidentale (Soricidae, Mammalia). Zeitschrift für zoologische Systematik und Evolutions-forschung, 20, 223–33.Google Scholar
Dannelid, E. (1991). The genus Sorex (Mammalia, Soricidae) – distribution and evolutionary aspects of Eurasian species. Mammal Review, 21, 120.Google Scholar
Dannelid, E. (1994). The karyotype of Sorex samniticus and its relation to that of S. araneus and three other species of Sorex (Mammalia, Soricidae). Folia Zoologica, 43 (Suppl. 1), 7188.Google Scholar
Dixkens, C., Klett, C., Bruch, J., et al. (1998). ZOO-FISH analysis in insectivores: ‘Evolution extols the virtue of the status quo’. Cytogenetics and Cell Genetics, 80, 61–7.Google Scholar
Dubey, S., Salamin, N., Ohdaichi, S. D., Barriere, P., and Vogel, P. (2007). Molecular phylogenetics of shrews (Mammalia: Soricidae) reveal timing of transcontinental colonizations. Molecular Phylogenetics and Evolution, 44, 126–37.Google Scholar
Dulić, B. (1977). Chromosomenmorphologie bei Waldspitzmäusen, Sorex araneus Linné, 1758, aus einigen Gegenden Jugoslawiens. Säugetierkundliche Mitteilungen, 26, 184–90.Google Scholar
Fedyk, S. (1980). Chromosome polymorphism in a population of Sorex araneus L. at Białowieża. Folia Biologica (Kraków), 28, 83120.Google Scholar
Fedyk, S. (1982). Further studies on the chromosome polymorphism of the common shrew. Acta Theriologica, 27, 149–60.Google Scholar
Fedyk, S. (1986). Genetic differentiation of Polish populations of Sorex araneus L. II. Possibilities of gene flow between chromosome races. Bulletin of the Polish Academy of Sciences, Biological Sciences, 34, 161–71.Google Scholar
Fedyk, S. (1995). Geographic Chromosomal Differentiation and Hybrid Zones Between Chromosome Races of Sorex araneus in North-Eastern Poland. Dissertationes 439, Universitatis Varsoviensis, Białystok.Google Scholar
Fedyk, S., Bajkowska, U., Chętnicki, W., Banaszek, A., and Jadwiszczak, K. (2002). New type of recombined karyotype of Sorex araneus in a hybrid zone. Abstracts of the ISACC’s Sixth International Meeting, Paris, 3–7 September, 2002. [Republished (2007): Russian Journal of Theriology, 6, 154].Google Scholar
Fedyk, S., Banaszek, A., Chętnicki, W., Cichomska, A., and Szałaj, K. A. (2000). Reassessment of the range of the Drnholec race: studies on meiosis in Sorex araneus hybrids. Acta Theriologica, 45 (Suppl. 1), 5967.Google Scholar
Fedyk, S. and Chętnicki, W. (2009). Whole–arm reciprocal translocation in a hybrid population of Sorex araneus. Chromosome Research, 17, 451–4.Google Scholar
Fedyk, S., Chętnicki, W., and Banaszek, A. (1991). Genetic differentiation of Polish populations of Sorex araneus L. III. Interchromosomal recombination in a hybrid zone. Evolution, 45, 1384–92.Google Scholar
Fedyk, S. and Leniec, H. (1987). Genetic differentiation of Polish populations of Sorex araneus L. I. Variability of autosome arm combinations. Folia Biologica (Kraków), 35, 5768.Google Scholar
Fedyk, S. and Michalak, I. (1980). Description of chromosomes in a population of Sorex araneus L. living in the Biebrza Valley. Folia Biologica (Kraków), 28, 237–44.Google Scholar
Fedyk, S., Wójcik, J. M., Chętnicki, W., and Mązcewski, S. (2008). Invalidation of Stobnica chromosome race of the common shrew Sorex araneus. Acta Theriologica, 53, 375–80.Google Scholar
Fedyk, S., Zajkowska, M., and Chętnicki, W. (1993). Study of a contact between two chromosomally monomorphic races of Sorex araneus L. (common shrew). Heredity, 71, 221–6.Google Scholar
Fredga, K. (1973). A new chromosome race of the common shrew (Sorex araneus) in Sweden. Hereditas, 73, 153–7.Google Scholar
Fredga, K. (1982). Distribution of and chromosome polymorphism in chromosome races of the common shrew (Sorex araneus L.) in Sweden. Hereditas, 97, 317.Google Scholar
Fredga, K. (1987a). Distribution of chromosome races in Sweden and Denmark. Abstracts of the ISACC’s First International Meeting, Oxford, 30–31 August, 1987. [Republished (2007): Russian Journal of Theriology, 6, 134–5].Google Scholar
Fredga, K. (1987b). The northern hybrid zone in Sweden. Abstracts of the ISACC’s First International Meeting, Oxford, 30–31 August, 1987. [Republished (2007): Russian Journal of Theriology, 6, 133–4].Google Scholar
Fredga, K. (1996a). The chromosome races of Sorex araneus in Scandinavia. Hereditas, 125, 123–35.Google Scholar
Fredga, K. (1996b). A new chromosome race of the common shrew (Sorex araneus) in the Kanin peninsula, NW Russia. Hereditas, 125, 247–8.Google Scholar
Fredga, K. (2003). Chromosome races of Sorex araneus in Norway. Description of two new races. Mammalia, 67, 179–85.Google Scholar
Fredga, K. (2007). Reconstruction of the postglacial colonization of Sorex araneus into northern Scandinavia based on karyotype studies, and the subdivision of the Abisko race into three. Russian Journal of Theriology, 6, 8596.Google Scholar
Fredga, K. and Narain, Y. (2000). The complex hybrid zone between the Abisko and Sidensjö chromosome races of Sorex araneus in Sweden. Biological Journal of the Linnean Society, 70, 285307.CrossRefGoogle Scholar
Fredga, K. and Nawrin, J. (1977). Karyotype variability in Sorex araneus L. (Insectivora, Mammalia). Chromosomes Today, 6, 153–61.Google Scholar
Fumagalli, L., Hausser, J., Taberlet, P., Gielly, L., and Stewart, D. T. (1996). Phylogenetic structures of the Holarctic Sorex araneus group and its relationships with S. samniticus, as inferred from mtDNA sequences. Hereditas, 125, 191–9.Google Scholar
Fumagalli, L., Taberlet, P., Stewart, D. T., et al. (1999). Molecular phylogeny and evolution of Sorex shrews (Soricidae, Insectivora) inferred from mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution, 11, 222–35.CrossRefGoogle ScholarPubMed
Gabitova, A. T. (1992). The karyotype of the common shrew from southern Ural. In Proceedings of an All-Union Conference on Biology of Insectivoran Mammals (abstracts of meeting), 4–7 February 1992, Novosibirsk, Moscow, pp. 31–2. (In Russian).Google Scholar
Gornung, E., Volleth, M., Capanna, E., and Castiglia, R. (2008). Comparative cytogenetics of moles (Eulipotyphla, Talpidae): chromosomal differences in Talpa romana and T. europaea. Cytogenetic and Genome Research, 121, 249–54.Google Scholar
Graf, J.-D., Hausser, J., Farina, A., and Vogel, P. (1979). Confirmation du statut spécifique de Sorex samniticus Altobello 1926 (Mammalia, Insectivora). Bonner zoologische Beiträge, 30, 1421.Google Scholar
Graphodatsky, A. S., Radjabli, S. I., Zaitsev, M., and Sharshov, A. (1991). The levels of chromosome conservatism in different groups of insectivores (Mammalia, Insectivora). In Questions of Systematics, Faunistics and Palaeontology of Small Mammals, ed. Zaitsev, E. V.. St Petersburg: Zoological Institute AS USSR, pp. 4757. (In Russian, with English summary).Google Scholar
Halkka, L. and Halkka, O. (1974). Karyotype Q- and G-banding in three species of the genus Sorex. Hereditas, 78, 314.Google Scholar
Halkka, L., Halkka, O., Skarén, U., and Söderlund, V. (1974). Chromosome banding pattern in a polymorphic population of Sorex araneus from northeastern Finland. Hereditas, 76, 305–14.Google Scholar
Halkka, L., Kaikusalo, A., and Vakula, N. (1994). Revision of Sorex araneus L. chromosome nomenclature, and race N new to Finland. Annales Zoologici Fennici, 31, 283–8.Google Scholar
Halkka, L., Söderlund, V., Skarén, U., and Heikkilä, J. (1987). Chromosomal polymorphism and racial evolution of Sorex araneus L. in Finland. Hereditas, 106, 257–75.Google Scholar
Hatfield, T., Barton, N., and Searle, J. B. (1992). A model for a hybrid zone between two chromosomal races of the common shrew (Sorex araneus). Evolution, 46, 1129–45.Google Scholar
Hausser, J. (1994). The Sorex of the araneus-arcticus group (Mammalia: Soricidae): do they actually speciate? In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 295306.Google Scholar
Hausser, J., Bosshard, F., Taberlet, P., and Wójcik, J. M. (1991). Relationships between chromosome races and species of Sorex of the araneus group in the western Alps. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 7995.Google Scholar
Hausser, J., Catzeflis, F., Meylan, A., and Vogel, P. (1985). Speciation in the Sorex araneus complex (Mammalia: Insectivora). Acta Zoologica Fennica, 170, 125–30.Google Scholar
Hausser, J., Dannelid, E., and Catzeflis, F. (1986). Distribution of two karyotypic races of Sorex araneus (Insectivora, Soricidae) in Switzerland and the post-glacial recolonization of the Valais: first results. Zeitschrift für zoologische Systematik und Evolutions-forschung, 24, 307–14.Google Scholar
Hausser, J., Fedyk, S., Fredga, K., et al. (1994). Definition and nomenclature of chromosome races of Sorex araneus. Folia Zoologica, 43 (Suppl. 1), 19.Google Scholar
Hausser, J., Fumagalli, F., and Taberlet, P. (1998). Mitochondrial DNA evolution in shrews. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 295308.Google Scholar
Hausser, J., Graf, J. D., and Meylan, A. (1975). Donées nouvelles sur les Sorex d‘Espagne et des Pyrénées (Mammalia, Insectivora). Bulletin de la Société Vaudoise des Sciences Naturelles, 72, 241–52.Google Scholar
Hutterer, R. (2005). Order Soricomorpha. In Mammal Species of the World: a Taxonomic and Geographic Reference, ed. Wilson, D. E. and Reeder, D. M.. Baltimore: The Johns Hopkins University Press, pp. 220311.Google Scholar
Ivanitskaya, E. Y. (1986). A new chromosome race of the common shrew (Sorex araneus). In Proceedings of the 4th Congress of All-Union Theriological Society, Academy of Sciences of the USSR (abstracts of meeting), 27–31 January 1986, Moscow, pp. 63–4. (In Russian).Google Scholar
Ivanitskaya, E. Y. (1994). Comparative cytogenetics and systematics of Sorex: a cladistic approach. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 313–23.Google Scholar
Ivanitskaya, E. Y., Kozlovsky, A. I., Orlov, V. N., Kovalskaya, Y. M., and Baskevich, M. I. (1986). New data on karyotypes of shrews (Sorex, Soricidae, Insectivora) in the fauna of the USSR. Zoologicheskii Zhurnal, 65, 1228–36. (In Russian, with English summary).Google Scholar
Jadwiszczak, K., Ratkiewicz, M., and Banaszek, A. (2006). Analysis of molecular differentiation in a hybrid zone between chromosomally distinct races of the common shrew Sorex araneus (Insectivora: Soricidae) suggests their common ancestry. Biological Journal of the Linnean Society, 89, 7990.Google Scholar
Jones, R. M. and Searle, J. B. (2003). Mapping the course of the Oxford-Hermitage chromosomal hybrid zone in the common shrew Sorex araneus – a GIS approach. Mammalia, 67, 193200.Google Scholar
Kawada, S., Harada, M., Graphodatsky, A. S., and Oda, S. (2002). Cytogenetic study of the Siberian mole, Talpa altaica (Insectivora: Talpidae) and karyological relationships within the genus Talpa. Mammalia, 66, 5362.Google Scholar
Kozlovsky, A., Orlov, V., Okulova, N., Kovalskaya, J., and Searle, J. B. (2000). Chromosome studies on common shrews from northern and central parts of European Russia. Acta Theriologica, 45 (Suppl. 1), 2731.Google Scholar
Král, B., Aniskin, V. M., and Volobouev, V. T. (1981). Karyotype variability in Siberian populations of Sorex araneus (Soricidae, Insectivora). Folia Zoologica, 30, 2337.Google Scholar
Král, B. and Radjabli, S. I. (1974). Banding patterns and Robertsonian fusion in the western Siberian population of Sorex araneus (Insectivora, Soricidae). Zoologické Listy, 23, 217–27.Google Scholar
Král, B. and Radjabli, S. I. (1976). Karyotypes and G-bands of western Siberian shrews Sorex arcticus and S. araneus (Soricidae: Insectivora). Zoologické Listy, 25 , 327–34.Google Scholar
Lavrenchenko, L. A. and Bulatova, N. (2016). The role of hybrid zones in speciation: a case study on chromosome races of the house mouse Mus domesticus and common shrew Sorex araneus. Biology Bulletin Reviews, 6, 232–44.Google Scholar
Lukáčová, L., Piálek, J., and Zima, J. (1994). A hybrid zone between the Ulm and Drnholec karyotypic races of Sorex araneus in the Czech Republic. Folia Zoologica, 43 (Suppl. 1), 3742.Google Scholar
Lukáčová, L., Zima, J., and Volobouev, V. T. (1996). Karyotypic variation in Sorex tundrensis (Soricidae, Insectivora). Hereditas, 125, 233–8.Google Scholar
Macholán, M., Filippucci, M. G., Zima, J., Kryštufek, B., and Simson, S. (1994). Karyological and allozyme survey of the common shrew, Sorex araneus, from Macedonia. Zeitschrift für zoologische Systematik und Evolutions-forschung, 32, 129–36.Google Scholar
Mackiewicz, P., Moska, M., Wierzbicki, H., Gagat, P., and Mackiewicz, D. (2017). Evolutionary history and phylogeographic relationships of shrews from Sorex araneus group. PLoS One, 12, e0179760.Google Scholar
Matveevsky, S. N., Pavlova, S. V., Acaeva, M. M., and Kolomiets, O. L. (2012). Synaptonemal complex analysis of interracial hybrids between the Moscow and Neroosa chromosomal races of the common shrew Sorex araneus showing regular formation of a complex meiotic configuration (ring-of-four). Comparative Cytogenetics, 6, 301–14.Google Scholar
Mercer, S. J. and Searle, J. B. (1991). Preliminary analysis of a contact zone between karyotypic races of the common shrew (Sorex araneus) in Scotland. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 73–8.Google Scholar
Meylan, A. and Hausser, J. (1973). Les chromosomes des Sorex du groupe araneus-arcticus (Mammalia, Insectivora). Zeitschrift für Säugetierkunde, 38, 143–58.Google Scholar
Meylan, A. and Hausser, J. (1991). The karyotype of the North American Sorex tundrensis (Mammalia, Insectivora). Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 125–9.Google Scholar
Minina, J.M., Borodin, P.M., Searle, J.B., Volobouev, V.T., and Zhdanova, N.S. (2007). Standard DAPI karyotype of the common shrew Sorex araneus L. (Soricidae, Eulipotyphla). Russian Journal of Theriology, 6, 36.Google Scholar
Mirol, P. M. and Searle, J. B. (1994). Dichroplus pratensis and Sorex araneus: two examples of chromosomal hybrid zones in the context of speciation. Folia Zoologica, 43 (Suppl. 1), 2936.Google Scholar
Mishta, A. (1994). A karyological study of the common shrew, Sorex araneus (Insectivora, Soricidae) in Ukraine: first results. Folia Zoologica, 43 (Suppl. 1), 63–8.Google Scholar
Mishta, A. V., Searle, J. B., and Wójcik, J. M. (2000). Karyotypic variation of the common shrew Sorex araneus in Belarus, Estonia, Latvia, Lithuania and Ukraine. Acta Theriologica, 45 (Suppl. 1), 4758.CrossRefGoogle Scholar
Moska, M. (2003). A hybrid zone between the chromosomal races Łegucki Młyn and Popielno of the common shrew in north-eastern Poland: preliminary results. Acta Theriologica, 48, 441–55.Google Scholar
Narain, Y. and Fredga, K. (1996). A hybrid zone between the Hällefors and Uppsala chromosome races of Sorex araneus in central Sweden. Hereditas, 125, 137–45.Google Scholar
O’Brien, S. J., Menninger, J. C., and Nash, W. G. (eds) (2006). Atlas of Mammalian Chromosomes. Hoboken, NJ: Wiley.Google Scholar
Olert, J. and Schmid, M. (1978). Comparative analysis of karyotypes in European shrew species. I. The sibling species Sorex araneus and S. gemellus: Q-bands, G-bands, and position of NORs. Cytogenetics and Cell Genetics, 20, 308–22.Google Scholar
Orlov, V. N., Balakirev, A. E., and Borisov, Y. M. (2010). A new subspecies of the Caucasian shrew Sorex satunini (Mammalia) and phylogenetic relationships of the species from mtDNA sequences and chromosome markers data. Povolzhskiy Journal of Ecology, 1, 111–14. (In Russian, with English summary).Google Scholar
Orlov, V. N., Balakirev, A. E., and Borisov, Y. M. (2011). Phylogenetic relationships of Caucasian shrew Sorex satunini Ogn. (Mammalia) inferred from the data of karyological analysis and the mtDNA cyt b sequencing. Russian Journal of Genetics, 47, 711–19.Google Scholar
Orlov, V. N. and Borisov, Y. M. (2007). Chromosome races of the common shrew Sorex araneus Linnaeus, 1758 (Mammalia: Insectivora) from the south part of Valdai Heights (Russia). Comparative Cytogenetics, 1, 101–6.Google Scholar
Orlov, V. N. and Borisov, Y. M. (2009). Phylogenetic relationships of the common shrew (Sorex araneus, Insectivora) populations in Belarus according to chromosome evidence. Zoologicheskii Zhurnal, 88, 1506–14. (In Russian, with English summary).Google Scholar
Orlov, V. N., Borisov, Y. M., Cherepanova, E. V., and Milishnikov, A. N. (2013). Assortative mating in the hybrid zones of the common shrew (Sorex araneus, Mammalia) chromosome race West Dvina. Doklady Biological Sciences, 451, 217–20.CrossRefGoogle ScholarPubMed
Orlov, V. N., Borisov, Y. M., Cherepanova, E. V., et al. (2012). Narrow hybrid zone between Moscow and Western Dvina chromosomal races and specific features of population isolation in common shrew Sorex araneus (Mammalia). Russian Journal of Genetics, 48, 70–8.Google Scholar
Orlov, V. N., Borisov, Y. M., Irkhin, S. Y., and Kovaleva, A. A. (2010). Characteristics of the contact zone of three chromosome races of the common shrew Sorex araneus L. (Mammalia) as indices of interpopulation competition. Russian Journal of Ecology, 41, 519–23.Google Scholar
Orlov, V., Bulatova, N., Kozlovsky, A., Nadjafova, R., and Searle, J. B. (1996). Karyotypic variation of the common shrew (Sorex araneus) in European Russia: preliminary results. Hereditas, 125, 117–21.Google Scholar
Orlov, V. N., Bulatova, N. S., Kozlovskii, A. I., and Balakirev, A. E. (2004). Hierarchy of intraspecific taxa of the common shrew, Sorex araneus (Insectivora), and taxonomic structure of species in mammals. Zoologicheskii Zhurnal, 83, 199212. (In Russian, with English summary).Google Scholar
Orlov, V. N. and Kozlovsky, A. I. (2002). The role of glacial epochs in the formation of chromosomal polymorphism in the common shrew Sorex araneus L. (Insectivora, Mammalia). Doklady Biological Sciences, 386, 462–5.Google Scholar
Orlov, V. N., Kozlovsky, A. I., Balakirev, A. E., and Borisov, Y. M. (2007a). Endemic chromosome races of the common shrew Sorex araneus L. (Insectivora, Mammalia) and the possible preservation of refugia in the Late Valdai glaciation area. Doklady Biological Sciences, 416, 396–9.Google Scholar
Orlov, V. N., Kozlovsky, A. I., Bulatova, N. S., Balakirev, A. E., and Malygin, V. M. (2003). New data for the distribution of the Moscow race and a new Penza race of Sorex araneus L. In Theriofauna of Russia and Adjacent Regions (abstracts of meeting), 6–7 February 2003, Moscow: IPEE RAS, pp. 248–9. (In Russian).Google Scholar
Orlov, V. N., Kozlovsky, A. I., Okulova, N. M., and Balakirev, A. E. (2007b). Postglacial recolonisation of European Russia by the common shrew Sorex araneus. Russian Journal of Theriology, 6, 97104.Google Scholar
Pavlova, S. V. (2010). A distinct chromosome race of the common shrew (Sorex araneus Linnaeus, 1758) within the Arctic Circle in European Russia. Comparative Cytogenetics, 4, 73–8.Google Scholar
Pavlova, S. V. (2013). Cytogenetic analysis of a hybrid zone between the Moscow and Neroosa races of the common shrew (Sorex araneus) differing by a single WART-like chromosome rearrangement. Tsitologia, 55, 271–4.Google Scholar
Pavlova, S. V., Aniskin, V. M., and Shchipanov, N. A. (2017a). A new chromosomal race of the common shrew Sorex araneus (Lipotyphla, Mammalia) found in Russia. Genetika (Moscow), 53, 1453–57.Google Scholar
Pavlova, S. V., Borisov, S. A., Timoshenko, A. F., and Sheftel, B. I. (2017b). “European” race-specific metacentrics in East Siberian common shrews (Sorex araneus): a description of two new chromosomal races, Irkutsk and Zima. Comparative Cytogenetics, 11, 797806.Google Scholar
Pavlova, S. V. and Bulatova, N. S. (2010). Identification of a novel WART-like chromosome rearrangement in complex heterozygotes in an interracial hybrid zone of the common shrew Sorex araneus L. Russian Journal of Genetics, 46, 1125–6.Google Scholar
Pavlova, S. V., Bulatova, N. S., and Shchipanov, N. A. (2007). Cytogenetic control of a hybrid zone between two Sorex araneus chromosome races before breeding season. Russian Journal of Genetics, 43, 1357–63.Google Scholar
Pavlova, S. V., Kolomiets, O. I., Bulatova, N. S., and Searle, J. B. (2008). Demonstration of a WART in a hybrid zone of the common shrew (Sorex araneus Linnaeus, 1758). Comparative Cytogenetics, 2, 115120.Google Scholar
Pavlova, S. V. and Shchipanov, N. A. (2014). A hybrid zone between the Kirillov and Petchora chromosomal races of the common shrew (Sorex araneus L., 1758) in northeastern Russia: a preliminary description. Acta Theriologica, 59, 415–26.Google Scholar
Pavlova, S. V., Tumasian, P. A., and Shchipanov, N. A. (2014). Karyotypic variant diversity in the common shrew Sorex araneus (Eulipotyphla, Mammalia) in European Russia. Povolzhskiy Journal of Ecology, 4, 555–63. (In Russian, with English summary).Google Scholar
Polyakov, A. V., Borodin, P. M., Lukáčová, L., Searle, J. B., and Zima, J. (1997a). The hypothetical Old-Northern chromosome race of Sorex araneus found in the Ural Mts. Annales Zoologici Fennici, 34, 139–42.Google Scholar
Polyakov, A. V., Chadova, N. B., Rodionova, M. I., et al. (1997b). Novosibirsk revisited 24 years on: chromosome polymorphism in the Novosibirsk population of the common shrew Sorex araneus L. Heredity, 79, 172–7.Google Scholar
Polyakov, A. V., Panov, V. V., Ladygina, T. Y., et al. (2001). Chromosomal evolution of the common shrew Sorex araneus L. from the Southern Urals and Siberia in the postglacial period. Russian Journal of Genetics, 37, 351–7.Google Scholar
Polyakov, A. V., Volobouev, V. T., Aniskin, V. M., et al. (2003). Altitudinal partitioning of two chromosome races of the common shrew (Sorex araneus) in West Siberia. Mammalia, 67, 201–7.Google Scholar
Polyakov, A. V., Volobouev, V. T., Borodin, P. M., and Searle, J. B. (1996). Karyotypic races of the common shrew (Sorex araneus) with exceptionally large ranges: the Novosibirsk and Tomsk races of Siberia. Hereditas, 125, 109–15.Google Scholar
Polyakov, A. V., White, T. A., Jones, R. M., Borodin, P. M., and Searle, J. B. (2011). Natural hybridization between extremely divergent chromosomal races of the common shrew (Sorex araneus, Soricidae, Soricomorpha): hybrid zone in Siberia. Journal of Evolutionary Biology, 24, 1393–402.Google Scholar
Polyakov, A. V., Zima, J., Banaszek, A., Searle, J. B., and Borodin, P. M. (2000a). New chromosome races of the common shrew Sorex araneus from Eastern Siberia. Acta Theriologica, 45 (Suppl. 1), 1117.Google Scholar
Polyakov, A. V., Zima, J., Searle, J. B., Borodin, P. M., and Ladygina, T. (2000b). Chromosome races of the common shrew Sorex araneus in the Ural Mts: a link between Siberia and Scandinavia? Acta Theriologica, 45 (Suppl. 1), 1926.Google Scholar
Ratkiewicz, M., Fedyk, S., Banaszek, A., et al. (2002). The evolutionary history of the two karyotypic groups of the common shrew, Sorex araneus, in Poland. Heredity, 88, 235–42.Google Scholar
Rausch, R. L. and Rausch, V. R. (1993). Karyotypic characteristics of Sorex tundrensis Merriam (Mammalia: Soricidae), a Nearctic species of the S. araneus group. Proceedings of the Biological Society of Washington, 106, 410–16.Google Scholar
Searle, J. B. (1984a). Three new karyotypic races of the common shrew Sorex araneus (Mammalia: Insectivora) and a phylogeny. Systematic Zoology, 33, 184–94.CrossRefGoogle Scholar
Searle, J. B. (1984b). Hybridization between Robertsonian karyotypic races of the common shrew Sorex araneus. Experientia, 40, 876–8.Google Scholar
Searle, J. B. (1986). Factors responsible for a karyotypic polymorphism in the common shrew, Sorex araneus L. Proceedings of the Royal Society of London B, 229, 277–98.Google Scholar
Searle, J. B. (1988a). Selection and Robertsonian variation in nature: the case of the common shrew. In The Cytogenetics of Mammalian Autosomal Rearrangements, ed. Daniel, A.. New York: Alan R. Liss, pp. 507–31.Google Scholar
Searle, J. B. (1988b). Karyotypic variation and evolution in the common shrew, Sorex araneus. In Kew Chromosome Conference III, ed. Brandham, P. E.. London: Her Majesty’s Stationery Office (HMSO), pp. 97107.Google Scholar
Searle, J. B., Fedyk, S., Fredga, K., Hausser, J., and Volobouev, V. T. (1991). Nomenclature for the chromosomes of the common shrew (Sorex araneus). Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 1322.Google Scholar
Searle, J. B., Hübner, R., Wallace, B. M. N., and Garagna, S. (1990). Robertsonian variation in wild mice and shrews. Chromosomes Today, 10, 253–63.Google Scholar
Searle, J. B. and Wilkinson, P. J. (1987). Karyotypic variation in the common shrew (Sorex araneus) in Britain – a “Celtic Fringe”. Heredity, 59, 345–51.Google Scholar
Searle, J. B. and Wójcik, J. M. (1998). Chromosomal evolution: the case of Sorex araneus. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 219–68.Google Scholar
Sharman, G. B. (1956). Chromosomes of the common shrew. Nature, 177, 941–2.Google Scholar
Shchipanov, N. A., Bobretsov, A. V., Bulatova, N. S., Kalinin, A. A., and Kupriyanova, I. F. (2005). Ural chromosomal Serov race of common shrew Sorex araneus L. (Insectivora, Mammalia) that inhabits polydominant deep coniferous taiga in the north of European Russia. Doklady Biological Sciences, 404, 360–3.Google Scholar
Shchipanov, N. A., Bulatova, N. S., Demidova, T. B., and Bobretsov, A. V. (2008a). Chromosomal races of the common shrew (Sorex araneus L.) inhabiting northeastern European Russia: do physical obstacles restrict their distribution? Doklady Biological Sciences, 422 , 348–51.Google Scholar
Shchipanov, N. A., Bulatova, N. S., and Oparin, M. L. (2002). A population of the common shrew Sorex araneus L. (Insectivora, Mammalia) of the Sok race inhabiting a patch of forest at the southern boundary of the species range. Doklady Biological Sciences, 386, 466–8.Google Scholar
Shchipanov, N. A., Bulatova, N. S., and Pavlova, S. V. (2008b). Distribution of two chromosome races of the common shrew (Sorex araneus L.) in the hybrid zone: can a change of the dispersal mode maintain independent gene frequencies? Russian Journal of Genetics, 44, 635–45.Google Scholar
Shchipanov, N., Bulatova, N., Pavlova, S., and Shchipanov, A. (2009). The common shrew (Sorex araneus) as a model species in ecological and evolutionary studies. Zoologicheskii Zhurnal, 88, 975–89. (In Russian, with English summary).Google Scholar
Shchipanov, N. A. and Pavlova, S. V. (2013). Contact zones and ranges of chromosomal races of the common shrew, Sorex araneus, in north-eastern European Russia. Folia Zoologica, 62, 2435.Google Scholar
Shchipanov, N. A. and Pavlova, S. V. (2016a). Multi-level subdivision in the species group “araneus” of the genus Sorex. 1. Chromosomal differentiation. Zoologicheskii Zhurnal, 95, 216–33. (In Russian, with English summary).Google Scholar
Shchipanov, N. A. and Pavlova, S. V. (2016b). Multi-level subdivision in the species group “araneus” of the genus Sorex. 2. Subdivision within the common shrew. Zoologicheskii Zhurnal, 95, 353–65. (In Russian, with English summary).Google Scholar
Shchipanov, N. A. and Pavlova, S. V. (2017). Density-dependent processes determine the distribution of chromosomal races of the common shrew Sorex araneus (Lipotyphla, Mammalia). Mammal Research, 62, 267–82.Google Scholar
Stacheev, V. V., Balakirev, A. E., Grigoryeva, O. O., et al. (2010). Distribution of cryptic shrew species of the genus Sorex (Mammalia) on the plain between the Don and Kuban rivers with molecular marker diagnostics. Povolzhskiy Journal of Ecology, 4 , 396403. (In Russian, with English summary).Google Scholar
Szałaj, K. A., Fedyk, S., Banaszek, A., and Chętnicki, W. (1995). Maximization of the frequency of recombinants in the hybrid zones of Sorex araneus in northern Poland. Acta Theriologica, 40, 225–36.Google Scholar
Szałaj, K. A., Fedyk, S., Banaszek, A., Chętnicki, W., and Ratkiewicz, M. (1996). A hybrid zone between two chromosome races of the common shrew, Sorex araneus, in eastern Poland: preliminary results. Hereditas, 125, 169–76.Google Scholar
Taberlet, P., Fumagalli, L., and Hausser, J. (1991). mtDNA comparison of the Alpine chromosomal races and species of the Sorex araneus group: preliminary results. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 107–18.Google Scholar
Taberlet, P., Fumagalli, L., and Hausser, J. (1994). Chromosomal versus mitochondrial DNA evolution: tracking the evolutionary history of the southwestern European populations of the Sorex araneus group (Mammalia, Insectivora). Evolution, 48, 623–36.Google Scholar
Tada, T. and Obara, Y. (1988). Karyological relationships among four species and subspecies of Sorex revealed by differential staining techniques. Journal of the Mammalogical Society of Japan, 13, 2131.Google Scholar
Turni, H., Kapischke, H. J., Brünner, H., and Feiler, A. (2001). Der Status von Sorex isodon marchicus Passarge, 1984. Zoologische Abhandlungen Staatliche Museum für Tierkunde Dresden, 51, 205–20.Google Scholar
Volleth, M. and Müller, S. (2006). Zoo-FISH in the European mole (Talpa europaea) detects all ancestral Boreo-Eutherian human homologous chromosome associations. Cytogenetic and Genome Research, 115, 154–7.Google Scholar
Volobouev, V. T. (1983). Les Types de Polymorphisme Chromosomique et Leur Rôle Évolutif Chez les Mammifères (Insectivora, Rodentia et Carnivora). Thèse de doctorat d’Etat, University of Paris 6.Google Scholar
Volobouev, V. T. (1989). Phylogenetic relationships of the Sorex araneus-arcticus species complex (Insectivora, Soricidae) based on high-resolution chromosome analysis. Journal of Heredity, 80, 284–90.Google Scholar
Volobouev, V. and Catzeflis, F. (1989). Mechanism of chromosomal evolution in three European species of the Sorex araneus-arcticus group (Insectivora: Soricidae). Zeitschrift für Zoologische Systematik und Evolutions-forschung, 27, 252–62.Google Scholar
Volobouev, V. and Dutrillaux, B. (1991). Chromosomal evolution and phylogenetic relationships of the Sorex araneus-arcticus group. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 131–40.Google Scholar
Volobouev, V. T. and van Zyll de Jong, C. G. (1988). The karyotype of Sorex arcticus maritimensis (Insectivora, Soricidae) and its systematic implications. Canadian Journal of Zoology, 66, 1968–72.Google Scholar
White, T.A., Bordewich, M., and Searle, J.B. (2010). A network approach to study karyotypic evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Systematic Biology, 59, 262–76.Google Scholar
Wójcik, J. M. (1986). Karyotypic races of the common shrew (Sorex araneus L.) from northern Poland. Experientia, 42, 960–2.Google Scholar
Wójcik, J. M. (1989). Karyotypic races of the common shrew (Sorex araneus L.) from Poland. In Fifth International Theriological Congress (abstracts of meeting), 22–29 August 1989, Rome, pp. 691–2.Google Scholar
Wójcik, J. M. (1991). Chromosomal polymorphism in the common shrew Sorex araneus and its adaptive significance. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 5162.Google Scholar
Wójcik, J. M. (1993). Chromosome races of the common shrew Sorex araneus in Poland: a model of karyotype evolution. Acta Theriologica, 38, 315–38.Google Scholar
Wójcik, J. M., Borodin, P. M., Fedyk, S., et al. (2003). The list of the chromosome races of the common shrew Sorex araneus (updated 2002). Mammalia, 67 , 169–78.Google Scholar
Wójcik, J. M. and Fedyk, S. (1985). A new chromosome race of Sorex araneus L. from northern Poland. Experientia, 41, 750–2.Google Scholar
Wójcik, J. M., Ratkiewicz, M., and Searle, J. B. (2002). Evolution of the common shrew, Sorex araneus: chromosomal and molecular aspects. Acta Theriologica, 47 (Suppl. 1), 139–67.Google Scholar
Wójcik, J. M. and Searle, J. B. (1988). The chromosome complement of Sorex granarius – the ancestral karyotype of the common shrew (Sorex araneus)? Heredity, 61, 225–9.Google Scholar
Wójcik, J. M., Wójcik, A. M., and Zalewska, H. (1996). Chromosome and allozyme variation of the common shrew, Sorex araneus, in different habitats. Hereditas, 125, 183229.Google Scholar
Yannic, G., Basset, P., and Hausser, J. (2008). A new perspective on the evolutionary history of western European Sorex araneus group revealed by paternal and maternal molecular markers. Molecular Phylogenetics and Evolution, 47, 237–50.Google Scholar
Yannic, G., Dubey, S., Hausser, J., and Basset, P. (2010). Additional data for nuclear DNA give new insights into the phylogenetic position of Sorex granarius within the Sorex araneus group. Molecular Phylogenetics and Evolution, 57, 1062–71.Google Scholar
Yannic, G., Pellissier, L., Dubey, S., et al. (2012). Multiple refugia and barriers explain the phylogeography of the Valais shrew, Sorex antinorii (Mammalia: Soricomorpha). Biological Journal of the Linnean Society, 105, 864–80.Google Scholar
Ye, J., Biltueva, L., Huang, L., et al. (2006). Cross-species chromosome painting unveils cytogenetic signatures for the Eulipotyphla and evidence for the polyphyly of Insectivora. Chromosome Research, 14, 151–9.Google Scholar
Zaitsev, M. V. and Bulatova, N. S. (1999). Shrews of two western regions of Pskov district and their chromosome diagnoses (Sorex, Soricidae, Insectivora). Zoologicheskii Zhurnal, 78, 601–5. (In Russian, with English summary).Google Scholar
Zhdanova, N. S., Draskovic, I., Minina, J. M., et al. (2014). Recombinogenic telomeres in diploid Sorex granarius (Soricidae, Eulipotyphla) fibroblast cells. Molecular and Cellular Biology, 34, 2786–99.Google Scholar
Zhdanova, N. S., Karamisheva, T. V., Minina, J., et al. (2005). Unusual distribution pattern of telomeric repeats in the shrews Sorex araneus and Sorex granarius. Chromosome Research, 13, 617–25.Google Scholar
Zhdanova, N. S., Minina, Y.M., Karamisheva, T.V., et al. (2007a). The very long telomeres in Sorex granarius (Soricidae, Eulipotyphla) contain ribosomal DNA. Chromosome Research, 15, 881–90.Google Scholar
Zhdanova, N. S., Minina, J. M., Karamysheva, T. V., and Rubtsov, N. B. (2007b). The distributions of telomeric and ribosomal DNA on the chromosomes of two closely related species, Sorex araneus and Sorex granarius (Soricidae, Eulipotyphla). Russian Journal of Theriology, 6, 713.Google Scholar
Zhdanova, N. S., Rogozina, Y. I., Minina, Y. M., Borodin, P. M., and Rubtsov, N. B. (2009). Telomeric DNA allocation in chromosomes of common shrew Sorex araneus, Eulipotyphla. Tsitologiia, 51, 577–84. (In Russian, with English summary).Google Scholar
Zima, J. (1983). Chromosomes of the harvest mouse, Micromys minutus, from the Danube delta (Muridae, Rodentia). Folia Zoologica, 32, 1922.Google Scholar
Zima, J. (1991). Banded chromosomes of Sorex daphaenodon: a comparison with S. araneus (Mammalia, Insectivora). Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 119–24.Google Scholar
Zima, J. (1994). A note on the karyotype of Sorex asper. Folia Zoologica, 43 (Suppl. 1), 6970.Google Scholar
Zima, J., Fedyk, S., Fredga, K., et al. (1996). The list of the chromosome races of the common shrew (Sorex araneus). Hereditas, 125, 97107.Google Scholar
Zima, J. and Král, B. (1985). Karyotype variability in Sorex araneus in central Europe (Soricidae, Insectivora). Folia Zoologica, 34, 235–43.Google Scholar
Zima, J., Lukáčová, L., and Macholán, M. (1998). Chromosomal evolution in shrews. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 175218.Google Scholar
Zima, J., Macholán, M., Filippucci, M. G., et al. (1994). Karyotypic and biochemical status of certain marginal populations of Sorex araneus. Folia Zoologica, 43 (Suppl. 1), 4351.Google Scholar
Zima, J., Slivková, L., Andreas, M., Benda, P., and Reiter, A. (1997). Karyotypic status of shrews (Sorex) from Thrace, European Turkey. Zeitschrift für Säugetierkunde, 62, 315–17.Google Scholar
Zima, J., Slivková, L., and Tomášková, L. (2003). New data on karyotypic variation in the common shrew, Sorex araneus, from the Czech Republic: an extension of the range of the Laska race. Mammalia, 67, 209–15.Google Scholar
Zima, J., Wójcik, J. M., and Horáková, M. (1988). The number of karyotypic variants in the common shrew (Sorex araneus). Acta Theriologica, 33, 467–75.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×