Published online by Cambridge University Press: 24 May 2021
Various loading geometries can be used for mechanical testing aimed at plasticity characterization. The simplest involve uniform stress states of uniaxial tension or compression, while the other common configuration is indentation, which creates complex and changing (2-D or 3-D) stress fields that are not amenable to simple analysis. These tests are covered in earlier chapters. However, other types of geometry can be employed, which may offer certain advantages. For example, bending or torsion of beams can be convenient experimentally and, while the associated stress fields are not uniform, they are relatively simple and may be suitable for analytical treatment. In fact, beam bending, in particular, offers potential for obtaining material properties via iterative FEM, in a similar way to indentation plastometry. Other geometries, such as those involving hollow tubes, may be relevant to particular types of application and expected (plastic) failure modes (such as buckling). There are also various tests involving temporal effects. Prolonged application of constant, uniform stress, leading to creep deformation, is covered in Chapter 5. However, again with a view to specific applications, the applied load may be cycled with a certain frequency, rather than being held constant or increased monotonically. While such (fatigue) testing is sometimes focused on propagation of well-defined cracks, there is also interest in progressive damage that essentially arises from plastic deformation. Finally, some types of test are designed to create high strain rates, under which plasticity often takes place rather differently (because, as outlined in Chapter 3, the mechanisms involved exhibit a time dependence). This chapter covers all of these testing variants.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.